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Resumo da Tese de Doutoramento

Introdución

Na actualidade, o desenvolvemento de novas arquitecturas de computadores

h́ıbridas de memoria compartida/distribúıda que fan uso de nodos de procesadores

multinúcleo, coa posible asistencia de aceleradores hardware tales como procesadores

gráficos (GPUs), está a proporcionar unha maior capacidade de procesamento aos

sistemas computacionais paralelos e heteroxéneos baseados nelas. Consecuentemen-

te, o desenvolvemento de aplicacións para computación de altas prestacións nestes

sistemas requere da explotación eficiente dos seus recursos, de xeito que se optimicen,

entre outros factores, a explotación da programación multif́ıo e o acceso á memo-

ria para cada un deles. Porén, a crecente complexidade das arquitecturas paralelas

actuais leva consigo un incremento na dificultade da súa programación, requerendo

un maior esforzo de programación por parte dos desenvolvedores de aplicacións. As

linguaxes e bibliotecas de programación paralela utilizadas tradicionalmente, tanto

en memoria compartida (OpenMP) como en memoria distribúıda (MPI), permiten

obter solucións que resultan ser ou ben ineficientes e pouco escalables por falta de

flexibilidade na súa definición, ou ben complexas para a obtención dun rendemento

adecuado.

Esta situación fai medrar o interese pola obtención de novos paradigmas de pro-

gramación que favorezan unha maior produtividade dos programadores de aplica-

cións paralelas, na procura dunha mellor integración da arquitectura do computador

h́ıbrido no xeito de programar para a súa explotación eficiente. Entre as diferentes

aproximacións, o paradigma PGAS (Partitioned Global Address Space, ou espazo de

direccións globais particionado) acadou un desenvolvemento relevante. Este modelo
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de programación establece unha visión da memoria dividida en dous espazos: par-

tillado (visible e accesible para todos os f́ıos de execución - threads - do programa)

e privado (bloques de acceso local exclusivo para cada un dos threads), co obxec-

tivo de ofrecer un ambiente máis adaptado a arquitecturas h́ıbridas de memoria

compartida/distribúıda que simplifique a súa programación.

O paradigma PGAS é empregado como modelo de memoria na linguaxe Uni-

fied Parallel C (UPC), que é unha extensión paralela da linguaxe C. UPC inclúe

construcións espećıficas de apoio ao desenvolvemento de aplicacións paralelas, como

(1) movementos de datos remotos mediante asignacións a variables compartidas,

(2) constantes predefinidas que definen parámetros do programa paralelo, como o

número de threads, e (3) bibliotecas de funcións para movemento de datos en memo-

ria e operacións colectivas. Con todo, as especificacións estándar da linguaxe UPC

son relativamente recentes, e hai procesos de debate abertos dentro da comunidade

de usuarios e programadores de UPC para a súa mellora e ampliación. Do mesmo

xeito, diversos centros de investigación e fabricantes de software desenvolveron com-

piladores e ambientes de execución para a linguaxe UPC, que ofrecen soporte para

as funcionalidades estándar da linguaxe, alén de distintos conxuntos de códigos de

probas (benchmarks) para a avaliación do seu rendemento.

Porén, a adecuación de UPC para o seu uso en aplicacións en computación de

altas prestacións áında debe ser confirmada por un maior grao de aceptación e intro-

dución na comunidade cient́ıfica. Na actualidade, UPC áında carece dunha implanta-

ción maioritaria neste ámbito, debido a diversos factores. A posición preponderante

de linguaxes de programación paralela tradicionalmente usadas (MPI, OpenMP) fai

dif́ıcil a súa introdución, pola incidencia da curva de aprendizaxe en programadores

xa expertos nese eido. Ademáis, os beneficios de UPC en termos de programabilida-

de e produtividade dos programadores non son facilmente cuantificables. Por outro

lado, os compiladores e ambientes de execución para UPC deben tratar con diversos

problemas para dar soporte ás funcionalidades PGAS da linguaxe, especialmente

o feito da tradución de direccións de memoria compartida a memoria f́ısica e, en

xeral, o almacenamento de variables para a adecuación a arquitecturas multinúcleo.

Nos últimos anos, a implementación a baixo nivel destas funcionalidades mostrou

unha notable mellora, e na actualidade diversas implementacións de UPC obteñen

un rendemento moi competitivo na transferencia de datos en memoria compartida.
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Con todo, o feito de focalizar os esforzos de investigación en UPC na optimización

do rendemento da linguaxe causou un estancamento no desenvolvemento da progra-

mabilidade, de xeito que a procura dunha maior eficiencia en UPC áında non se

traduciu nunha maior popularidade da linguaxe.

Neste contexto, o primeiro obxectivo da presente Tese de Doutoramento é facer

unha análise do “estado da arte” da programación paralela con UPC. A realización

dunha análise de rendemento actualizada sobre distintas arquitecturas h́ıbridas de

memoria compartida/distribúıda, avaliando diversas funcionalidades de UPC, com-

pleméntase co estudo de programabilidade da linguaxe, facendo fincapé no uso de

técnicas de análise emṕırica para obter indicios sobre a percepción da linguaxe a

través dos propios programadores. En base a estas tarefas, o seguinte paso nesta

Tese é a detección de necesidades inmediatas da linguaxe no eido da produtividade

focalizando no ámbito das comunicacións locais e remotas entre threads, sendo neste

punto confirmadas unha serie de carencias na implementación de funcións colectivas

en UPC. Como solución a estes problemas, proxéctase o desenvolvemento dunha

biblioteca de funcións colectivas que permita dar solución a unha serie de limita-

cións nas bibliotecas estándar da linguaxe. Entre as principais aportacións desta

biblioteca está a implementación de distintos algoritmos de comunicacións segundo

o ambiente de execución, alén dunha interface de usuario flexible para obter unha

maior funcionalidade e comodidade para o seu uso. Como punto final, esta Tese

presenta o deseño e implementación en paralelo de distintas aplicacións cient́ıficas

utilizando a devandita biblioteca, facendo unha avaliación do seu rendemento en

termos do impacto da introdución das funcións colectivas nos códigos e da escalabi-

lidade obtida para un número elevado de threads (até 2048). Para conclúır esta Tese,

dase unha perspectiva do traballo presente e futuro no ámbito da programación con

UPC, tomando como base a experiencia do traballo realizado.

Metodolox́ıa de Traballo

A metodolox́ıa utilizada para o desenvolvemento desta Tese de Doutoramento

baseouse na definición dunha serie de tarefas, cuns obxectivos iniciais ben deter-

minados. A súa concreción tomou como referencia un estudo do “estado da arte”

no ámbito de UPC, tanto en termos de rendemento como de programabilidade, e a
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partir deste obxectivo inicial planeouse un obxectivo final para o traballo: o desen-

volvemento dunha nova biblioteca de funcións colectivas para a linguaxe UPC que

incrementase a produtividade dos programadores. Con todo, os obxectivos inter-

medios desta Tese defińıronse dunha forma ampla, de xeito que fosen as primeiras

etapas da investigación as que permitisen unha maior concreción no seu contido en

función das necesidades detectadas en tarefas previas, o cal serviŕıa para modelar

o contido dos desenvolvementos subsecuentes. A duración destas tarefas estimou-

se tendo en conta estas posibles variacións de contido, sempre tendo en conta as

dependencias entre elas para a súa realización. Finalmente, o traballo realizado dis-

tribuiuse en bloques temáticos (Bn), de xeito que cada bloque permitise acadar

uns determinados obxectivos (On) mediante a realización dun conxunto de tarefas

(Tn). A continuación móstranse a organización das tarefas realizadas seguindo este

esquema:

B1 Introdución á linguaxe UPC.

O1.1 Familiarización co modelo de programación PGAS e a linguaxe UPC.

T1.1.1 Lectura de bibliograf́ıa relacionada.

T1.1.2 Aprendizaxe da estrutura dun programa en UPC.

O1.2 Análise de distintos compiladores e ambientes de execución para UPC.

T1.2.1 Coñecemento dos compiladores de UPC: execución de códigos de pro-

ba con distintas implementacións e análise preliminar das súas carac-

teŕısticas.

T1.2.2 Probas de integridade dos códigos: comprobación da corrección nas

comunicacións implementadas.

T1.2.3 Probas de comunicacións en memoria compartida (nivel intranodo).

T1.2.4 Execucións sobre diferentes redes de comunicacións en memoria dis-

tribúıda (nivel internodo).

T1.2.5 Avaliación preliminar dos resultados obtidos: selección dos compila-

dores e ambientes máis relevantes.

B2 Análise de rendemento e programabilidade da linguaxe UPC.

O2.1 Avaliación do rendemento das aplicacións sobre diversos sistemas en base

ao coñecemento básico adquirido nas tarefas previas.
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T2.1.1 Selección de códigos para a análise de rendemento: primitivas de co-

municación e códigos de pequeno tamaño que realizan operacións

simples (kernels).

T2.1.2 Deseño de experimentos: tamaño de problema e número de threads

usados para as execucións en función dos recursos dispoñibles.

T2.1.3 Execución e depuración dos códigos en ambientes multinúcleo.

T2.1.4 Avaliación de rendemento e estudo de problemas de rendemento e

puntos de estrangulamento (bottlenecks).

O2.2 Estudo da programabilidade de UPC con base anaĺıtica e emṕırica.

T2.2.1 Análise de estudos previos de programabilidade para linguaxes de

programación paralela.

T2.2.2 Deseño e realización dunha proba emṕırica con programadores nóveis

e expertos.

T2.2.3 Obtención e análise dos resultados recollidos: probas de programabi-

lidade e enquisa final.

O2.3 Detección de carencias e necesidades na linguaxe UPC para a realización

de futuras accións que proporcionen solucións adecuadas.

T2.3.1 Avaliación dos principais problemas detectados na análise de rende-

mento: as comunicacións son tomadas como punto de referencia.

T2.3.2 Estudo e análise das carencias da linguaxe UPC reportadas na proba

de programabilidade: nomeadamente, o uso de construcións de baixo

nivel para obter rendemento.

T2.3.3 Detección de áreas de mellora para a linguaxe UPC: selección da

biblioteca de funcións colectivas como principal obxectivo.

B3 Deseño e implementación dunha biblioteca de funcións colectivas estendidas.

O3.1 Organización da biblioteca por grupos de funcións e deseño de interfaces.

T3.1.1 Estudo de traballos previos na área de funcións colectivas en UPC.

T3.1.2 Detección de necesidades espećıficas para a mellora da biblioteca

estándar de colectivas: análise de propostas feitas pola comunidade

de usuarios de UPC.
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T3.1.3 Estruturación da biblioteca por grupos de funcións.

T3.1.4 Definición das caracteŕısticas principais das interfaces: simplicidade

e flexibilidade.

O3.2 Desenvolvemento dos algoritmos de funcións colectivas estendidas.

T3.2.1 Desenvolvemento de algoritmos de referencia para cada grupo de fun-

cións: in-place, vector-variant, team-based e get-put-priv.

T3.2.2 Optimización dos algoritmos para memoria compartida: uso de ver-

sións get e put para a mellora do rendemento.

T3.2.3 Deseño e implementación de algoritmos para memoria h́ıbrida: apro-

veitamento das arquitecturas multinúcleo.

T3.2.4 Realización de tests de integridade para as funcións implementadas.

O3.3 Análise de rendemento e programabilidade da biblioteca de funcións im-

plementada.

T3.3.1 Avaliación de rendemento (microbenchmarking) das funcións.

T3.3.2 Estudo preliminar do impacto do uso das funcións colectivas esten-

didas en diferentes kernels.

B4 Aplicación da biblioteca de funcións colectivas estendidas en códigos represen-

tativos en computación de altas prestacións.

O4.1 Implementación de MapReduce en UPC con operacións colectivas esten-

didas.

T4.1.1 Análise de implementacións existentes de MapReduce en Java e C.

T4.1.2 Deseño de interfaces e xustificación da utilidade das funcións colec-

tivas estendidas.

T4.1.3 Desenvolvemento do código paralelo: implementación xenérica da

funcionalidade con procedementos template.

T4.1.4 Análise de rendemento e estudo do impacto das funcións colectivas

estendidas.

O4.2 Paralelización do movemento browniano de part́ıculas en UPC con ope-

racións colectivas estendidas.

T4.2.1 Análise bibliográfica e revisión do código de simulación.
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T4.2.2 Estudo da distribución de carga de traballo para o código paralelo:

análise de dependencias na simulación utilizando distintos algorit-

mos.

T4.2.3 Implementación do código: uso de distintas reparticións de traballo

con funcións colectivas estendidas segundo o algoritmo utilizado.

T4.2.4 Avaliación do rendemento obtido polos códigos implementados.

B5 Conclusións tiradas do traballo feito e análise de desenvolvementos futuros.

O5.1 Exposición das principais leccións aprendidas do traballo realizado.

T5.1.1 Resumo do traballo feito e principais aportacións.

T5.1.2 Análise de perspectivas de traballo futuro no eido da linguaxe UPC.

O5.2 Composición da memoria final da Tese de Doutoramento.

T5.2.1 Estruturación e organización da información sobre o traballo feito.

T5.2.2 Redacción da memoria.

Para a elaboración desta Tese de Doutoramento utilizáronse os medios descritos

deseguido:

Material de traballo e financiamento económico fornecidos básicamente polo

Grupo de Arquitectura de Computadores da Universidade da Coruña, alén da

Xunta de Galicia (contrato predoutoral “Maŕıa Barbeito”) e a Universidade

da Coruña (contratos de profesor interino de substitución).

Proxectos de investigación que teñen financiado esta Tese de Doutoramento:

• Con financiamento privado: proxecto “Improving UPC Usability and Per-

formance in Constellation Systems: Implementation/Extension of UPC

Libraries” (Hewlett-Packard Española, S.L.).

• Con financiamento estatal (Goberno de España): proxectos TIN2007-

67537-C03-02 (Ministerio de Educación e Ciencia) e TIN2010-16735 (Mi-

nisterio de Ciencia e Innovación).
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• Con financiamento autonómico (Xunta de Galicia): programa de Conso-

lidación de Grupos de Investigación Competitivos (ref. 2006/3 no DOG

13/12/2006 e ref. 2010/06 no DOG 15/09/2010) e Rede Galega de Compu-

tación de Altas Prestacións (ref. 2007/147 no DOG 31/08/2007 e ref.

2010/53 no DOG 15/09/2010), alén do devandito contrato predoutoral

“Maŕıa Barbeito” (DOG 15/01/2010, con prórroga no DOG 13/01/2012).

Clusters e supercomputadores utilizados como usuario:

• Clúster muxia (Universidade da Coruña, 2006-2008): 24 nodos con pro-

cesador Intel Xeon (8 nodos a 1.8 GHz con 1 GB RAM, 8 nodos a 2.8

GHz con 2 GB de RAM e 8 nodos a 3.2 GHz con 4 GB de RAM) con

redes de interconexión SCI e Gigabit Ethernet.

• Clúster nm (Universidade da Coruña, 2009-2011): 8 nodos con 2 procesa-

dores Intel Xeon 5060 de 2 núcleos (con Simultaneous Multithreading) a

3.2 GHz con 8 GB de RAM, 3 nodos con 2 procesadores Intel Xeon E5440

de 4 núcleos a 2.83GHz con 16 GB de RAM, 4 nodos con 2 procesadores

Intel Xeon EMT64 de 2 núcleos (con Simultaneous Multithreading) a 3.2

GHz con 32 GB de RAM, todos con rede de interconexión InfiniBand.

• Clúster pluton (Universidade da Coruña, desde 2008): 8 nodos con 2

procesadores Intel Xeon E5620 de 4 núcleos a 2.4 GHz con até 16 GB

de RAM, 8 nodos con 2 procesadores Intel Xeon E5520 de 4 núcleos a

2.27 GHz con até 8 GB de RAM e 2 nodos con 2 procesadores Intel Xeon

E5440 de 4 núcleos a 2.83 GHz con até 8 GB de RAM, todos con rede

de interconexión InfiniBand. Ademáis, 1 nodo con 4 procesadores Intel

Xeon E7450 de 6 núcleos a 2.4 GHz e 32 GB de RAM.

• Supercomputador Finis Terrae (Centro de Supercomputación de Galicia,

desde 2008): 144 nodos con procesador Itanium2 Montvale de 16 núcleos a

1.6 GHz con 128 GB de RAM e rede de interconexión InfiniBand 4 x DDR

a 20 Gbps, e 1 nodo Superdome con procesador Itanium2 Montvale de 128

núcleos a 1.6 GHz con 1 TB de RAM. Estaba clasificado no posto 101 da

lista TOP500 no momento de comezar a súa utilización, segundo os datos

de Novembro de 2007 (na actualidade non está inclúıdo na devandita

lista).
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• Supercomputador SVG (Centro de Supercomputación de Galicia, des-

de 2011): 46 nodos HP ProLiant SL165z G7 con 2 procesadores AMD

Opteron 6174 de 12 núcleos, 2.2 GHz e até 64 GB de RAM, e rede de

interconexión Gigabit Ethernet.

• Supercomputador JuRoPa (Forschungszentrum Jülich, desde 2011): 2208

nodos con 2 procesadores Intel Xeon X5570 (Nehalem-EP) de 4 núcleos a

2.93 GHz con 24 GB de RAM e rede de interconexión InfiniBand. Estaba

clasificado no posto 25 da lista TOP500 no momento de comezar a súa

utilización, segundo os datos de Xuño de 2011 (na actualidade ocupa o

posto 89 da mesma lista, conforme á actualización de Novembro de 2012).

Estad́ıa de investigación no Jülich Supercomputing Centre (Forschungszen-

trum Jülich, Alemaña) durante 3 meses (do 1 de setembro ao 30 de novembro

de 2011), a cal permitiu a realización das tarefas asociadas ao obxectivo 4.2

en colaboración co Profesor Godehard Sutmann. A realización desta colabora-

ción facilitou o acceso ao supercomputador JuRoPa referido anteriormente. O

financiamento desta estad́ıa facilitouno a Xunta de Galicia na súa convocato-

ria de axudas para estad́ıas para contratados predoutorais “Maŕıa Barbeito”

(DOG 21/12/2011).

Conclusións

A presente Tese de Doutoramento, “Extended Collectives Library for Unified

Parallel C”, analizou os actuais desenvolvementos e caracteŕısticas proporcionados

pola linguaxe UPC. O modelo de memoria PGAS mostrou ser beneficioso para a

programabilidade de aplicacións para computación de altas prestacións, e conse-

cuentemente o centro da atención da Tese púxose na avaliación da utilidade das

propiedades PGAS en UPC e no desenvolvemento de novas funcionalidades para

favorecer a produtividade.

A primeira etapa no desenvolvemento da tese consistiu na análise da linguaxe

UPC en termos de rendemento e programabilidade. A principal fonte de información

nesas áreas foi a avaliación de rendemento de funcións UPC mediante microbench-

marking e a análise de programabilidade mediante probas emṕıricas realizadas con
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dous grupos heteroxéneos de programadores. O estudo dos códigos desenvolvidos

polos participantes nas sesións e as súas valoracións sobre a experiencia con UPC,

xunto cunha avaliación xeral das funcionalidades de UPC, proporcionaron informa-

ción moi relevante para definir varias áreas de mellora:

A obtención dun bo rendemento tende a estar en conflito co uso de constru-

cións para programabilidade: varios elementos da linguaxe, como as asigna-

cións a variables compartidas, non obteñen un rendemento óptimo e por iso

substitúense por solucións máis eficientes que introducen maior complexidade

no código, como as privatizacións de variables. A solución máis conveniente

seŕıa unha implementación eficiente integrada no compilador, pero o uso de

movementos de datos pequenos é en xeral dif́ıcil de optimizar.

Algunhas das funcións nas bibliotecas estándar, como as funcións colectivas,

presentan múltiples restricións na súa aplicabilidade a códigos paralelos. Por

exemplo, as colectivas estándar só poden definir comunicacións entre variables

compartidas, e o tamaño dos datos enviados por cada thread debe ser igual.

Outro efecto colateral é que as variables privatizadas non poden ser usadas en

comunicacións colectivas, o cal tamén inflúe no rendemento.

Hai unha carencia de desenvolvementos para obter maior programabilidade: a

mellora das implementacións da linguaxe a baixo nivel foi o principal obxectivo

das investigacións no eido de UPC nos últimos anos, e a programabilidade asu-

miuse como un factor impĺıcito. Aı́nda que isto sexa certo en comparación con

outras aproximacións (por exemplo, MPI), é preciso explorar a posibilidade de

ofrecer bibliotecas adicionais ou funcionalidades de alto nivel para simplificar

a escritura de código.

De acordo con estes feitos, esta Tese procurou dar solución a estes problemas

en termos de programabilidade e sen esquecer o rendemento. Por iso, a segunda

etapa no desenvolvemento da Tese foi a mellora da programabilidade en UPC por

medio dunha biblioteca estendida de funcións colectivas. Esta biblioteca soluciona as

limitacións máis relevantes da especificación de UPC coas seguintes caracteŕısticas:

O uso da mesma variable como orixe e destino das comunicacións (colectivas

in-place).
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O soporte de distintos tamaños de mensaxe en cada thread (colectivas vector-

variant).

A selección dun subconxunto dos threads nun programa para a execución dun-

ha tarefa espećıfica (colectivas team-based).

O uso de variables privadas como orixe e/ou destino das comunicacións (co-

lectivas get-put-priv).

En total, a biblioteca ten cerca de 200 funcións colectivas estendidas que imple-

mentan as caracteŕısticas anteriores, inclúındo algunhas variacións e combinacións

destas e outras funcionalidades, co obxectivo de proporcionar a máxima flexibilidade

para as comunicacións colectivas con UPC. Internamente, os algoritmos destas fun-

cións están implementados de maneira eficiente, inclúındo diferentes caracteŕısticas

adicionais:

Implementación adaptada á execución en arquitecturas multinúcleo: a dis-

poñibilidade de varios algoritmos de comunicación colectiva permite a selección

do óptimo para o uso en diferentes plataformas. As comunicacións en memo-

ria compartida aprovéitanse a través de transferencias de datos baseadas en

árbores planas, mentres que as comunicacións entre nodos utilizan árbores

binomiais para aproveitar a largura de banda máis adecuadamente. As aproxi-

macións h́ıbridas utiĺızanse preferentemente en ambientes multinúcleo, xunto

con optimizacións no uso da memoria e a asignación de threads a núcleos

(thread pinning) cando for posible.

Privatización interna de argumentos de colectivas estendidas: a definición de

variables orixe e destino, como tamén outros argumentos auxiliares, é maiori-

tariamente feita no espazo de memoria compartido, pero internamente estas

variables son privatizadas de xeito transparente ao usuario para obter mellor

rendemento.

Desenvolvemento dunha biblioteca de soporte para grupos de threads (teams):

as colectivas team-based constrúense mediante a manipulación dun grupo de

threads no programa (team), pero na actualidade non hai unha definición

estándar para esta estrutura. Por iso, desenvolveuse unha biblioteca auxiliar
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para soportar a funcionalidade precisa para a implementación das colectivas

team-based, inclúındo funcións para a creación e destrución de teams, ou tamén

a inclusión e eliminación de threads neles.

O uso da biblioteca de funcións colectivas foi inicialmente testada con catro

kernels representativos, que realizan operacións comúns como a multiplicación de

matrices (densas e dispersas), a ordenación de enteiros ou a transformada de Fourier

(FFT) en 3D. A flexibilidade da biblioteca favoreceu a introdución de colectivas nes-

tes códigos, substitúındo as copias expĺıcitas de datos en memoria e a privatización

de variables, o cal proporcionou códigos máis simples. Adicionalmente, os algoritmos

e optimizacións para ambientes multinúcleo das funcións da biblioteca melloraron o

rendemento dos códigos, que en determinados casos mostraron maior eficiencia que

códigos análogos implementados con MPI, como no caso da FFT.

A terceira etapa no desenvolvemento da Tese foi a implementación dunha nova

funcionalidade para mellorar a programabilidade de UPC, que consistiu no desenvol-

vemento do framework UPC MapReduce (UPC-MR). UPC-MR representa a adap-

tación para UPC do coñecido paradigma de procesado masivo de datos de baixa

granularidade, e foi concebido para obter programabilidade asumindo tres princi-

pios básicos:

O usuario non precisa escribir código paralelo: UPC-MR proporciona dúas

funcións modelo (template) para a xestión das etapas “Map” e “Reduce”,

respectivamente, para facilitar a interface e dando a posibilidade de realizar

todas as comunicacións entre threads de forma transparente ao usuario.

A implementación é xenérica: todos os elementos de entrada ás dúas funcións

de xestión son procesados de xeito análogo, independentemente do seu tipo

de datos. O único requerimento é que as funcións definidas polo usuario para

“Map” e “Reduce” deben ter un tipo de datos coherente para un correcto

procesado dos valores de entrada e sáıda.

O procesamento optimı́zase de acordo cos requerimentos de comunicacións:

UPC-MR proporciona a flexibilidade suficiente para realizar axustes concretos

na especificación das comunicacións. O uso de diferentes opcións de configura-
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ción, aśı como da biblioteca de funcións colectivas, axuda a mellorar a xestión

dos datos e das comunicacións, respectivamente.

Finalmente, a última etapa da elaboración da Tese consistiu na análise e avalia-

ción de aplicacións de grande tamaño que aproveitan os desenvolvementos anteriores

(a biblioteca estendida de colectivas UPC e o framework UPC-MR) para grandes sis-

temas computacionais, co obxectivo de obter escalabilidade para un grande número

de threads (até 2048). Esta avaliación incluiu: (1) varios códigos con procesamento de

tipo MapReduce, e (2) a paralelización dunha simulación de movemento browniano

de part́ıculas (Brownian dynamics).

As aplicacións utilizadas para testar UPC-MR presentaron diferentes cargas

computacionais para as etapas “Map” e “Reduce”, aśı como un número de elementos

de entrada diferentes, co obxectivo de analizar o impacto destas caracteŕısticas no

rendemento dos distintos códigos e para despois comparalos con outras implementa-

cións de MapReduce en memoria compartida e distribúıda utilizando C (Phoenix) e

MPI (MapReduce-MPI), respectivamente. As principais conclusións desta avaliación

de rendemento son as seguintes:

A cantidade de procesamento asociada a cada elemento de entrada na etapa

“Map” é un factor clave para o rendemento xeral: se é moi reducida, o procesa-

do un a un de cada elemento (element-by-element) na implementación de MPI

resulta ser máis ineficiente que o de UPC en memoria distribúıda, especialmen-

te cando o número de elementos de entrada é elevado. O código de memoria

compartida implementado con Phoenix obtén mellores resultados, áında que

o uso repetido de chamadas a funcións de bibliotecas en C++ provoca menor

rendemento que o código UPC.

O uso das colectivas estendidas pode axudar a optimizar o rendemento, espe-

cialmente cando se utiliza un número elevado de threads e consecuentemente

hai unha grande cantidade de comunicacións na etapa “Reduce”. Nestes ca-

sos de proba mostrouse a posibilidade de obter escalabilidade até millares de

threads dependendo do tempo consumido por “Reduce” en relación co tempo

da etapa “Map”.

En relación á simulación do movemento browniano de part́ıculas, desenvolvéronse
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tres implementacións usando OpenMP, MPI e UPC para comparar o seu rendemen-

to en diferentes situacións. En xeral, a implementación en OpenMP ofrece a maior

programabilidade mediante o uso de directivas, áında que o seu rendemento limı́tase

a execucións intranodo sen ter un aproveitamento axeitado para sistemas de memo-

ria distribúıda, de xeito análogo á paralelización directa sobre memoria compartida

usando UPC. O uso dunha distribución de datos axeitada proporciona un alto ren-

demento e escalabilidade para MPI e UPC. Os principais resultados extráıdos deste

traballo son os seguintes:

A análise do código secuencial e das súas dependencias, que axudaron a de-

tectar as principais partes do algoritmo de simulación e guiaron o proceso de

descomposición do dominio para cada ambiente de execución.

O uso das colectivas estendidas, que melloraron o rendemento de UPC e favo-

receron a súa escalabilidade até millares de threads.

Unha única implementación coa linguaxe UPC foi capaz de obter alto ren-

demento tanto nun ambiente de memoria compartida como de memoria dis-

tribúıda, con resultados similares ou incluso mellores que os dos códigos de

OpenMP e MPI, respectivamente para cada ambiente de execución.

As contribucións desta Tese publicáronse en varias revistas e congresos con re-

visión por pares. As avaliacións iniciais de UPC, tanto de rendemento [44, 46, 77]

como de programabilidade [83], levaron ao deseño e implementación da biblioteca

de funcións colectivas estendidas [82], que foron aplicadas con éxito a unha imple-

mentación eficiente do framework MapReduce con UPC [81] e á paralelización da

simulación do movemento browniano de part́ıculas [78, 79, 80].

Entre as principais liñas de investigación para estender este traballo, cabe men-

cionar a integración das funcionalidades propostas nos compiladores de UPC exis-

tentes na actualidade, como un primeiro paso para a súa aceptación e espallamen-

to na comunidade de programadores e usuarios de UPC. A vindeira especificación

estándar da linguaxe UPC definirá un novo marco para os futuros desenvolvemen-

tos na linguaxe, e neste punto as colectivas estendidas poden usarse como unha

implementación de referencia que mostra os beneficios e posibilidades da estensión

do ámbito das colectivas. Deste xeito, e cos códigos desenvolvidos e avaliados nesta
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Tese, poderase debater a integración da biblioteca estendida (ou dun subconxunto

dela) como unha biblioteca requerida ou opcional en futuras especificacións de UPC.

Principais Contribucións

En termos xerais, as contribucións máis relevantes deste traballo son as seguintes:

A descripción detallada da linguaxe UPC como alternativa a solucións de pro-

gramación paralela máis tradicionais (MPI e OpenMP) para o desenvolvemen-

to de códigos en arquitecturas de memoria h́ıbrida compartida/distribúıda. A

análise das súas vantaxes e inconvenientes en comparación con outras aproxi-

macións, con especial atención ao estudo do modelo de memoria PGAS, xus-

tifica a utilización de UPC pola súa capacidade de adaptación aos devanditos

ambientes.

A análise actualizada do rendemento da linguaxe UPC, a través do estudo de

primitivas básicas (funcións de movemento de datos e funcións colectivas) e

distintos kernels e aplicacións. O uso de diferentes compiladores, alén de varios

ambientes clúster e supercomputadores, axuda a ofrecer unha maior variedade

de resultados e aumenta a significatividade nas avaliacións.

O estudo da linguaxe UPC en termos de programabilidade e produtivida-

de mediante a análise emṕırica con programadores expertos e inexpertos en

programación paralela. O desenvolvemento de códigos nun ambiente de pro-

bas adecuadamente illado, complementado coa información reportada polos

participantes na proba, favoreceu a obtención de valiosa información sobre a

potencialidade de UPC e as áreas de mellora máis importantes.

O desenvolvemento dunha biblioteca de funcións colectivas estendidas, ofre-

cendo unha sintaxe simple e flexible para a implementación de movementos

de datos en UPC de xeito máis produtivo. Estas funcións desenvolvéronse

utilizando elementos de sintaxe estándar de UPC e ANSI C, proporcionando

distintos algoritmos configurables (de forma automática ou a nivel de interfa-

ce) que permiten obter un rendemento optimizado en ambientes de memoria
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compartida e memoria h́ıbrida compartida/distribúıda. Ademáis, en certos ca-

sos de operacións de tipo in-place, o seu rendemento móstrase notablemente

mellor en memoria distribúıda que o de implementacións paralelas tradicio-

nais como MPI, alén de proporcionar unha maior escalabilidade de xeito que

a melloŕıa incrementa co número de threads e o tamaño da mensaxe.

A implementación do modelo de programación MapReduce para o procesamen-

to masivo de datos en paralelo con UPC. A abstracción das comunicacións e a

súa capacidade de procesamento xenérico de datos posibilita a súa integración

en calquer tipo de aplicación existente, tanto secuencial en C como parale-

la en UPC. Alén diso, a utilización das novas funcións colectivas estendidas

axuda a obter códigos máis eficientes en ambientes de computación de altas

prestacións.

A avaliación das novas funcionalidades mediante a súa utilización en códigos

cient́ıficos e computacionais. O principal desenvolvemento neste ámbito é a

paralelización da simulación do movemento browniano de part́ıculas: a análise

de dependencias, a adaptación da estrutura da aplicación a ambientes de exe-

cución paralela e a utilización de funcións colectivas estendidas contribúıron a

obter un desenvolvemento eficiente, mostrando un rendemento competitivo con

outras aproximacións análogas usando MPI e OpenMP, tamén desenvolvidas

no ámbito desta Tese de Doutoramento.
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Abstract

Current multicore processors mitigate single-core processor problems (e.g., power,

memory and instruction-level parallelism walls), but they have raised the programma-

bility wall. In this scenario, the use of a suitable parallel programming model is key

to facilitate a paradigm shift from sequential application development while maxi-

mizing the productivity of code developers. At this point, the PGAS (Partitioned

Global Address Space) paradigm represents a relevant research advance for its appli-

cation to multicore systems, as its memory model, with a shared memory view while

providing private memory for taking advantage of data locality, mimics the memory

structure provided by these architectures. Unified Parallel C (UPC), a PGAS-based

extension of ANSI C, has been grabbing the attention of developers for the last

years. Nevertheless, the focus on improving performance of current UPC compiler-

s/runtimes has been relegating the goal of providing higher programmability, where

the available constructs have not always guaranteed good performance.

Therefore, this Thesis focuses on making original contributions to the state of the

art of UPC programmability by means of two main tasks: (1) presenting an analyti-

cal and empirical study of the features of the language, and (2) providing new func-

tionalities that favor programmability, while not hampering performance. Thus, the

main contribution of this Thesis is the development of a library of extended collec-

tive functions, which complements and improves the existing UPC standard library

with programmable constructs based on efficient algorithms. A UPC MapReduce

framework (UPC-MR) has also been implemented to support this highly scalable

computing model for UPC applications. Finally, the analysis and development of

relevant kernels and applications (e.g., a large parallel particle simulation based on

Brownian dynamics) confirm the usability of these libraries, concluding that UPC

can provide high performance and scalability, especially for environments with a

large number of threads at a competitive development cost.
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Para quem estiver





Acknowledgments

The development of this Thesis has been the result of a gratifying personal

experience, which has been possible thanks not only to my own work, but also to

the support of many people that have been with me in this period of my life. I would

like to acknowledge my advisors Guillermo and Juan for their guidance and patience

during this time. Big thanks also go to all the colleagues and comrades-in-arms at

the Computer Architecture Group, extending this to all the inhabitants of Lab. 1.2

that have seen me there in these years, for all the good times.

I also want to acknowledge the people at the Supercomputing Center of Galicia

(CESGA), the University of Santiago de Compostela (USC) and Hewlett-Packard

(HP) that I met during my doctoral courses and with whom I worked in different

projects and tasks. A particular acknowledgment goes to the systems support staff

at CESGA, for rebooting the nodes of the Finis Terrae supercomputer after the

crash of many of my submitted jobs.

Very special thanks go to Godehard Sutmann for hosting me during my research
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Preface

Currently, the popularization and further development of new hybrid shared/dis-

tributed memory architectures based on multicore processors is providing a signif-

icantly higher processing power. In this scenario the development of High Per-

formance Computing (HPC) parallel applications is essential in order to take full

advantage of the possibilities offered by these architectures. However, the growing

complexity of these systems is increasing the difficulties for the development of ef-

ficient codes, which demand additional efforts and expertise from the application

developers. At this point, traditional parallel languages and libraries, either for dis-

tributed memory (e.g., MPI) or shared memory (e.g., OpenMP), are not suitable

for providing an integral solution for these environments.

In order to solve this situation, there is a growing interest in the development of

new programming paradigms that favor a higher productivity for parallel applica-

tions. Among different approaches, the PGAS (Partitioned Global Address Space)

paradigm has gained significant popularity, because of its memory view divided in

two spaces: shared (visible and accessible for all threads in a program) and private

(local-access blocks only accessible by its associated thread). Among the languages

that implement the PGAS paradigm, Unified Parallel C (UPC), the parallel exten-

sion of the ANSI C language, deserves to be mentioned. UPC includes constructs

for parallel programming, being the most relevant: (1) remote data movements by

means of assignments to shared variables, (2) predefined constants that determine

different parameters of the parallel execution, such as the number of threads; and

(3) libraries of functions for data copies and collective operations.

However, despite the suitability of the use of UPC on HPC applications, the

language has not been widely adopted, either because of the lack of efficient imple-

1
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mentations of compilers and runtimes or because of some limitations in the expres-

siveness of some operations. The analysis and improvement of UPC performance

has been an outstanding area of research in the last years, and a shared outcome

by the research in this topic is the incompatibility of programmable constructs with

the achievement of efficient codes. For instance, the use of privatizations for shared

arrays is a key factor to avoid the overhead of address translations when accessing

shared memory positions. As a result, there is a need for further analyses regarding

programmability and performance in order to integrate the efficient UPC imple-

mentations into higher-level constructs that provide higher coding expressiveness

and hence parallel programming productivity. The controversy between the effi-

ciency and the simplicity of UPC codes also indicates that the UPC specification

(whose current version dates from 2005) still needs some further improvements in

order to enhance the flexibility of the existing UPC constructs and libraries. Thus,

the productivity of UPC developments will be significantly increased by providing

higher level functionalities based on efficient algorithms that take advantage of data

locality in multicore architectures.

Work Methodology

Currently the UPC community is involved in the process of updating the UPC

specification. In this context, there is a consensus about the explicit differentiation

between language specifications and library specifications, where a library can be

considered as required or optional. Given this scenario, this Thesis is intended

to contribute to the discussions within the UPC community, endorsing the latest

agreements of the community of UPC users and programmers.

The Thesis methodology has followed a classical approach in research and en-

gineering: analysis, design, implementation and evaluation. Thus, the work of this

Thesis has started with the study of the state of the art in parallel programming

with UPC, evaluating multiple implementations and compilers for the language. The

baseline analysis of performance of UPC constructs is here complemented with the

evaluation of UPC programmability using analytical and empirical methods, study-

ing the productivity and the impressions of programmers about the UPC language

through the analysis of the codes developed by them in a controlled environment
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(a type of test known as “classroom study”), as well as a survey of programmers’

opinions on UPC benefits and drawbacks. The feedback obtained from these initial

tasks has been used to define and structure the subsequent developments, where one

of the most relevant contributions is the extension of the UPC standard collectives

library in order to solve all the detected limitations of this library. This new library

complements the functionality of the existing primitives to achieve the best produc-

tivity for parallel programming with UPC for both expert and novice developers.

Additionally, this library has been used to implement another programmability-

oriented major improvement for UPC: a MapReduce framework for massively paral-

lel data processing in high performance applications. The development of these new

functionalities has been assessed through the use of a wide variety of codes, from

small computational kernels to large applications, in order to prove their benefits

on different test cases. An important contribution has been the parallelization of a

Brownian dynamics simulation with hydrodynamic interactions, evaluated compar-

atively against its counterpart parallel implementations using MPI and OpenMP,

which have also been developed by the author of this Thesis.

Contributions

The main contributions of this PhD Thesis are:

The detailed description of the UPC language as an alternative to traditional

parallel programming solutions (MPI and OpenMP) for code development on

hybrid shared/distributed memory architectures. The analysis of benefits and

drawbacks against other approaches, specially focusing on the study of the

PGAS paradigm, points out the easy adaptation of UPC to these architectures.

The performance analysis of the UPC language through the microbenchmark-

ing of collective functions and the study of several UPC kernels and applica-

tions. The use of different cluster and supercomputer environments helps to

provide a wide variety of results with a high significativity.

The study of UPC in terms of programmability and productivity by means

of an empirical analysis with expert and novice parallel programmers. The
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evaluation of the codes developed in an isolated and controlled test environ-

ment, as well as the feedback about their experience with UPC reported by

the programmers, provides valuable information about the potential of UPC

and the most relevant areas of improvement.

The development of a library of extended collective functions, which provides

a simple and flexible syntax for the implementation of data movements with

UPC in a more productive way. These functions are developed using ANSI

C and standard UPC constructs in order to provide complete portability, and

they also implement different configurable algorithms that optimize their per-

formance in hybrid shared/distributed memory environments, providing high

scalability for large message sizes with a growing number of threads. More-

over, some collective functions executed on the same array (in-place) obtain

a notably better performance than other traditional parallel implementations

such as MPI, confirming the suitability of the functions for HPC codes.

The implementation of a UPC MapReduce framework for the massively paral-

lel processing of data. The abstraction of communications and the generic data

processing allows its integration in any existing code using either sequential C

or parallel UPC as base language. Additionally, the use of extended collectives

can be enabled to implement the required communications at the “Reduce”

stage transparently to the user, thus favoring the efficiency of the framework.

A set of applications from information retrieval and image processing fields are

used to test the efficiency of the UPC MapReduce framework against analo-

gous approaches on shared and distributed memory, using threads and MPI

respectively.

The evaluation of the new functionalities developed for UPC through the de-

sign, implementation and performance analysis of parallel scientific codes. A

main contribution is the development of a parallel simulation of the Brownian

motion of particles in a fluid: the analysis of dependencies in the code, the

adaptation of the code structure to parallel execution environments and the use

of extended collectives produce an efficient UPC implementation, which ob-

tains competitive performance when compared to analogous implementations

using MPI and OpenMP (also developed in the framework of this Thesis).
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Overview of the Contents

This Thesis report is organized into five chapters, whose contents are summarized

in the following paragraphs.

Chapter 1, Parallel Programming with Unified Parallel C, is intended to give an

introduction to the UPC language, presenting the motivations for developing this

new PGAS language, based on its differential features versus other parallel program-

ming approaches. Thus, the chapter also covers the description of the foundations of

PGAS. Furthermore, different compiler and runtime implementations are described,

alongside with a baseline analysis about its programmability, which will determine

the next chapter.

Chapter 2, UPC Productivity Analysis, focuses on describing the UPC language

both in terms of programmability and performance, presenting the guidelines for

the subsequent developments in this Thesis. First, an analytical description of the

programmability problems in UPC is given, considering the main constructs pro-

vided by the UPC standard specification and also giving some relevant performance

information. This analysis has been focused on privatizations of shared variables

and collective functions. These initial tasks have been complemented with the de-

velopment of two empirical studies of programmability accomplished on controlled

environments (classroom studies). In these studies a group of programmers are asked

to develop several parallel UPC codes in a given period of time, and at the end of

the session the impressions about the programming tasks are collected by means

of a survey. The outcome of the previous analytical and empirical evaluations has

been the development of new UPC functionalities in this Thesis, presented in the

subsequent chapters.

Chapter 3, Design and Implementation of Extended Collectives in UPC, presents

the development process of an extended collectives library for UPC, that broadens

the applicability of the eight original functions in the UPC specification. First, the

main drawbacks of UPC collectives are identified, designing a solution to overcome

them through the provision of a set of suitable extended functions. As a result, the

library contains a significantly higher number of functions, which can be grouped in

four categories: in-place (functions that use the same array as source and destina-

tion of communications), vector-variant (supporting the use of different data sizes
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for communications in each thread), team-based (collectives that are executed only

by a subset of all available threads in a UPC program) and get-put-priv (use of pri-

vate arrays as source and/or destination). The library includes efficient algorithms

based on optimized memory management, which minimizes the allocation and use

of buffers for communications, and also supports adaptable executions for multicore

based architectures through structured communications using binomial or flat trees

(or a combination of both). The performance of the library is assessed using repre-

sentative kernels and applications (e.g., matrix multiplication and 3D FFT), which

are able to benefit from the use of several extended collectives.

Chapter 4, MapReduce for UPC: UPC-MR, discusses the implementation of the

MapReduce programming model in UPC, a key contribution to improve its pro-

ductivity in scalable data analytics. The MapReduce processing is based on the

application of a function to a set of input elements (“map”), and subsequently a

combination of the results to generate a single output (“reduce”). Nowadays this

paradigm is mainly used in distributed applications written in Java or C++, but

here an HPC-oriented implementation is provided, exploiting UPC facilities to ob-

tain high scalability on multicore systems. The basic features of this framework

are its generality (the ability of dealing with any kind of input elements) and sim-

plicity (usable and flexible management functions), as well as being based on an

entirely sequential approach to the user, thus abstracting all communications. In

order to perform efficient communications between threads at the “reduce” stage,

the previously developed extended collectives have been used whenever possible.

The developed MapReduce framework has been assessed using representative codes

from data processing (e.g., information retrieval and image processing), confirming

its high performance and suitability for productive programming.

Chapter 5, Parallel Simulation of Brownian Dynamics, presents the paralleliza-

tion of the simulation of a set of particles using Brownian dynamics with hydrody-

namic interactions. This simulation is a representative code in the areas of physics

and biology, and shows an exponential algorithmic complexity with multiple data

dependencies. As a result of this, different approaches have been followed for its par-

allelization with UPC, considering the load balancing and the efficient management

of communications as key factors, as well as the use of several extended collectives.

Furthermore, two additional parallelizations of this Brownian dynamics simulation,



Preface 7

with MPI and OpenMP, have been developed and considered for this work in order

to assess comparatively the capabilities of UPC. The evaluation of these parallel

implementations confirms the suitability of UPC to provide a productive solution,

not only in terms of programmability, allowing a fast time-to-solution, but also in

performance on multicore systems, both for shared and distributed memory com-

munications, with significantly high scalability.

Finally, the Conclusions chapter summarizes the contributions of this work, con-

firming that UPC can successfully achieve high programmability and scalability on

multicore systems, and pointing out the potential integration of the developed li-

braries into the UPC specification. A complete description of the functions in the

extended collectives library is also included afterwards as an appendix.





Chapter 1

Parallel Programming with

Unified Parallel C

This chapter presents Unified Parallel C (UPC) [21], a parallel programming lan-

guage designed to increase the productivity of the development of High Performance

Computing (HPC) parallel codes, especially suitable for hybrid shared/distributed

memory architectures. First, the basis of the language and its main features are

commented, as well as the state of the art of its implementations, compilers and

runtimes. After that, the language is presented in the context of the programmabil-

ity and productivity requirements of current parallel programming.

1.1. Introduction to UPC

The increasing popularity of multicore systems demands an efficient support for

the development of applications on them. The mitigation of single-core proces-

sor problems (power, memory and instruction-level parallelism walls) provided by

multicore systems has however raised the programmability wall, where developers

without parallel programming skills have to confront the growing complexity of new

systems. The use of traditional parallel programming models for HPC, such as

message-passing, data parallel and shared memory, have been successfully applied

on distributed and shared memory environments. However, the hybrid shared/dis-

9
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tributed memory architecture of clusters of multicore nodes presents challenges to

the traditional models when looking for the exploitation of all their possibilities

in a simple and efficient way, avoiding the cumbersome process of adding parallel

programming facilities in a sequential programming model.

As a result of this, significant research efforts have been put in the development of

more productive parallel programming paradigms [8], such as the Partitioned Global

Address Space (PGAS), which is grabbing the attention of developers of parallel

applications looking for programmability. This paradigm considers the existence

of two different memory spaces: (1) a private space, in which each thread can

define variables that are only accessible by it, and (2) a shared space, that allows

communication among threads. The shared space is partitioned between threads,

and each partition is said to have affinity to one of the threads in the program, which

benefits from data locality in memory accesses to its associated shared space. Thus,

the PGAS programming model provides a shared memory view that simplifies code

development while it can take advantage of the scalability of distributed memory

architectures through the efficient exploitation of data locality.

In the last years several PGAS-based languages have been developed in order

to improve parallel programming productivity. Two main approaches have been

followed at this point: (1) the earliest one has been focused on taking advantage

of existing programming languages in order to extend their functionality imple-

menting PGAS features on them, whereas (2) a more recent approach proposes the

development of new languages that provide a suitable set of constructs for paral-

lel programming designed to increase the productivity of code development. The

most representative languages of the first branch are UPC (an extension of ANSI

C), Titanium [87] (an extension of Java) and Co-array Fortran [9] (which imple-

ments co-arrays on top of Fortran). Regarding the second approach, the most rele-

vant achievements are related to the High Productivity Computer Systems (HPCS)

project [35], funded by DARPA, which led to the proposal of three languages [43],

being each of them developed by a different vendor: (1) X10 [99], a Java-like lan-

guage developed by IBM in order to be integrated in its own solution for large-scale

computing systems, providing data storage divided in “places”, which are compu-

tational contexts in which different tasks are performed; (2) Chapel [84], a C-like

language developed by Cray Inc., which is based on different abstractions that can
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support task and nested parallelism, as well as facilities for generic programming;

and (3) Fortress [65], a Fortran-like language initially developed by Sun Microsys-

tems (now Oracle Corporation), which supports implicit parallelism and the use of

a syntax similar to mathematical formulae.

The adoption and popularity of the languages of the first approach (UPC, Tita-

nium and Co-array Fortran) is mainly motivated by the similar syntax to the base

languages, which has favored the development of a significant community of users

and developers of each language. The languages that follow the second approach

(X10, Chapel and Fortress) have been designed to improve the programmability

of the previous ones, but they propose substantial differences with traditional pro-

gramming languages, which requires the adaptation of the programmers to new

environments and structures. As a consequence of this limitation, currently these

programmability-oriented languages have not been widely adopted yet and their de-

velopment is not mature enough (in the case of Fortress, it is being wound down).

Thus, improving the programmability facilities of PGAS languages based on the first

approach represents a convenient choice in order to put together the best features of

both approaches. Bearing this motivation in mind, this Thesis has been conceived

to work on the languages of the first approach, and more specifically with UPC, in

order to provide new functionalities that facilitate a more productive development

of parallel applications using UPC.

1.2. UPC Language and Specification

Different research efforts have pursued the definition and development of the

necessary constructions for the UPC language, receiving continuous feedback dur-

ing the last years by the growing UPC programmers community [96]. In order to

coordinate this process, the UPC Consortium has been constituted as the controlling

body for the language. It is composed by members of industry (HP, Intrepid, IBM,

Cray), academia (University of California at Berkeley, Michigan Technological Uni-

versity [95], University of Florida [91]) and several USA national laboratories and

departments. The first UPC language specifications agreed by the UPC Consortium

were released in 2001 (v1.0), some modifications were published in 2003 (v1.1), and

the latest specifications have been established in 2005 (v1.2).
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The main statement of the language definition is that any given C code is also

a UPC code, because C variables are considered as private according to the PGAS

memory model, and thus independent executions are performed for each thread.

Shared variables in UPC are defined with the shared keyword before the type decla-

ration of the variable. In order to illustrate the PGAS paradigm in UPC, Figure 1.1

presents a scheme of the memory partitioning for UPC in a four-thread scenario

with different variable definitions: a private integer (i), a shared integer (j) and

two shared arrays (k and l).

THREAD 0 THREAD 1 THREAD 3THREAD 2

GLOBAL

SHARED

MEMORY

PRIVATE

MEMORY

int i;

        i

        j

        i        i        i

shared int j;

shared int k[6];

shared [2] int l[11];

           k[0]                 k[1]                k[2]             k[3]

    k[0]                 k[5]           k[4]

     l[0]      l[1]        l[2]        l[3]        l[4]        l[5]      l[6]      l[7]

     l[8]      l[9]       l[10]

Fig. 1.1: Scheme of the PGAS memory model in UPC

A UPC variable declared as private (single-valued or array) is allocated by every

thread in the program in its associated private memory space. If a single-valued

variable is declared as shared, UPC allocates memory for it only in the shared space

with affinity to thread 0, and thus the variable becomes accessible to all threads.

Regarding shared arrays, the elements are stored in the shared space with a cyclic

distribution of elements in blocks of a given size. By default, the block size is 1,

but a custom block size value can be defined between square brackets just after
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the shared keyword. If the array length is larger than the product of the number

of threads by the block size, more than one block will be assigned to one or more

threads following a cyclic approach.

1.3. UPC Compiler/Runtime Projects

Since the definition of the first UPC specification, several compliant implemen-

tations of the UPC language have been developed. Here the most relevant projects

for the implementation of compilers and runtimes are presented, alongside with

additional information on other related UPC projects.

1.3.1. Open Source Projects

The Berkeley UPC (BUPC) distribution [3] is the most relevant open-source im-

plementation of UPC, and currently serves as the main reference for performance

evaluations and application development with UPC. BUPC is part of a joint project

of the University of California at Berkeley and the Lawrence Berkeley National Lab-

oratory, and it consists of a source-to-source UPC-to-C compiler, which is built on

top of an underlying C compiler (e.g., GCC or the Intel C compiler), and a run-

time environment, which uses a low-level networking layer called GASNet (Global-

Address Space Networking) [88]. This layer is implemented using Active Messages

and has direct control over the network architecture. The use of GASNet provides a

common environment for PGAS-based programming languages (not only UPC, but

also Titanium, for example) by means of different functions (including high-level

constructs such as remote data movements and collective operations) that are able

to interact with standard and proprietary networks (e.g., InfiniBand, Quadrics or

Myrinet, as well as with the Portals API used by Cray XT supercomputers). The

current version of BUPC is 2.16.0, which was released in October 2012.

Another outstanding project is the GNU UPC compiler [39], which is a UPC-to-

C compiler developed by Intrepid Technology Inc. and licensed under GPL version

3 (2007) that extends the GNU GCC compiler. It is fully compliant with the latest

UPC specification, supports several platforms (e.g., Intel, MIPS, Cray), and also
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includes a specific debugger for UPC applications (GDB UPC). Nevertheless, GNU

UPC is restricted to intranode communications on shared memory, and distributed

memory executions are only possible by using its interoperability with the BUPC

runtime. One major goal of the project is its integration into the development trunk

of GCC, in order to provide UPC support for the current and upcoming versions of

GCC.

1.3.2. Vendor Projects

The first fully-compliant commercial implementation of UPC was developed by

Compaq (now Hewlett-Packard Company), which has been involved in the develop-

ment of a UPC compiler since 2002, when Compaq UPC 2.0 was developed. Now,

the HP UPC [34] compiler has also been the first commercial UPC implementation

to give full support to the current specification in 2005 (under the name “Compaq

UPC”). Some other research institutions have collaborated in the development of

HP UPC, such as the Michigan Technological University, which already had some

experience in the production of a reference runtime environment for UPC [53]. Cur-

rently, the latest release of HP UPC is v3.3, which includes VAST optimizations

provided by Crescent Bay Software (since v3.0), and supports a variety of systems,

mainly focusing on optimizing communications on Infiniband and shared memory

on Linux systems.

Cray Inc. has also been involved in the development of its own UPC compiler,

Cray UPC [11], which is embedded in the Cray C compiler. It focuses on optimiz-

ing UPC communications for Cray supercomputers, and also provides compatibility

with different parallel programming libraries. However, Cray UPC imposes some

limitations with respect to the UPC specification, which are related to the decla-

ration of shared array dimensions and block sizes, and also includes some deferred

functions and statements.

Some other key players in HPC, such as SGI and IBM, are also developing and

providing some UPC facilities for their own systems. In these cases, UPC is typically

supported by a source-to-source compiler that is integrated on a suite of performance

optimization libraries and tools. For example, the SGI UPC compiler uses directly

the MPI runtime environment for UPC.
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1.4. Comments on UPC Programmability

As commented in the previous sections, the use of C as base language is one of the

main characteristics that favor the adoption of UPC: the reason is that C is among

the most popular choices for the development of high performance applications, be-

cause of its good performance and wide adoption. Additionally, the use of PGAS

features in UPC favors the efficient execution of parallel codes on hybrid shared/dis-

tributed memory systems, because of the adaptation of the memory paradigm to

these architectures. The data movements on shared memory can be local or remote

to a node, but the access to data in the same node can be performed more efficiently,

thus exploiting data locality. In both cases, the shared memory view of UPC takes

advantage of a set of constructs that are designed to obtain programmability:

Standard language definitions, such as implicit data transfers in assignments of

shared variables, and also the predefined constants THREADS (total number

of threads in a program) and MYTHREAD (identifier of each thread).

Standard high-level constructs for work distribution between threads (e.g., the

upc forall loop definition, that assigns the execution of each iteration in the

loop to a thread).

Libraries that provide different constructs, such as memory copy functions and

collective primitives.

One important advantage of UPC with respect to other parallel programming

approaches is the extensive use of one-sided communications, i.e. communications

in a single direction with an active and a passive peer. The threads involved in

these communications are not required to synchronize among them, thus allow-

ing the overlapping between independent communications and computations, and

consequently providing better performance and especially higher scalability, as the

synchronizations tend to burden performance as the number of threads increases.

Additionally, collective primitives allow the custom definition of synchronization

points at the beginning and at the end of their execution, which also reduces the

overall synchronization overhead.
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All these programmability constructs are included in the UPC specification, but

the community of UPC programmers has been suggesting possible extensions to

these features to provide a higher degree of flexibility. Moreover, the implementation

of all these constructs represents a challenging process, because of the difficulties in

combining programmability and efficiency. Given these facts, the work in this Thesis

is intended to contribute to the improvement of the UPC language by analyzing its

capabilities in terms of programmers’ productivity, and then providing additional

functionalities that will improve its syntax, alongside with several examples of ker-

nels and applications that prove the usability of the new constructs. The following

chapters will go through all these points, illustrating the lessons learned from each

step in this research and motivating the subsequent decisions taken.



Chapter 2

UPC Productivity Analysis

The present chapter analyzes the UPC language in terms of productivity, con-

sidering both the programmability provided by the current specification and the

detected limitations, and the tradeoffs between programmability and performance

in UPC. The main goal here is to identify the strengths and weaknesses of the UPC

language and libraries in its application to HPC codes, detecting some possible areas

of improvement for the language and providing solutions to the limitations. Thus,

this study has been based not only on research in the language specifications and

the analysis of the language constructs, but also on experimental information. More

precisely, the experience gathered from the UPC community has been contrasted

against the results obtained from two experimental evaluations (frequently called

programmability sessions or classroom studies), which test programmers’ ability to

develop UPC codes in a controlled environment. These actions have been the main

sources of analytical and empirical feedback that has guided the future developments

in this Thesis, with the goal of improving the productivity of UPC.

The organization of this chapter is as follows. First, the most outstanding re-

cent advances on programmability analysis in the area of HPC are commented,

mainly focusing on PGAS languages. Then, UPC is analyzed in terms of productiv-

ity, considering its programmability according to the current language specification,

commenting the demands of the UPC community in this area, and its implications

on performance. Next, an empirical programmability study with groups of pro-

grammers is described, and the results are analyzed and linked to the study of the

17
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UPC syntax, giving out a complete image of UPC programmability with some ad-

ditional performance information. Finally, the conclusions argue for the need of

improvements on some specific areas, namely the collectives library.

2.1. Programmability vs. Performance with UPC

In general, the studies of programmability in parallel programming have usually

been devoted to general considerations and requirements for a parallel language in

terms of productivity [43], as well as comments about benefits and disadvantages

of the most popular approaches (MPI [52] and OpenMP [85]). Moreover, there are

also some additional works on programmability in HPC that propose and analyze

different metrics [41, 74] and the design of specific benchmarks [31]. An important

conclusion extracted from some of these studies is that a language is considered to be

good in terms of programmability if it contains expressive constructs which allow a

more compact and simple coding, hence making low-level programming complexities

transparent to the user.

Nevertheless, parallel programming languages are difficult to compare accurately

in terms of productivity. The main reason for this does not only lie in significant

syntax differences between them, but also in the popularity and implantation of the

languages. For example, the development of programmability-oriented languages

can support parallel programming focused on productivity, i.e. favoring a simple

and straightforward development. Thus, general concepts, such as tasks, are used to

abstract low-level data structures and data distributions. However, in these cases,

there are two main requirements for a parallel language when parallelizing HPC

codes: (1) the parallel programming constructs and auxiliary libraries have to be

flexible and configurable to provide enough expressiveness; and (2) the implemen-

tation of the language has to be mature enough to represent an efficient solution.

These two conditions are necessary because the acquisition of programming abilities

with a new language requires a period of adaptation, which should be as short as

possible in order to be a low entry barrier (low adaptation cost). Furthermore, its

functionalities should cover all the requirements of developers.

Moreover, the learning curve (i.e. the process in which proficiency with a new
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language is acquired) may be steeper when a new paradigm has to be understood

and applied. However, implementing a programmability-oriented parallel language

extending a well-known language may facilitate a better adaptation of programmers

to parallel programming. Thus, regarding current PGAS approaches, the fact that

a large number of HPC applications are nowadays written in C can be considered as

one of the main motivations to parallelize them with UPC, especially when looking

for programmability. Even though this represents a significant advantage, the two

previous requirements (language expressiveness and mature implementation) have to

be fulfilled to confirm its suitability, and here some points of conflict appear, as there

are some constraints in the UPC syntax and its compilers/runtimes still present some

inefficiencies. At this point, the most relevant previous works on programmability

have dealt with constructs and algorithms focused on performance increase [57,

101], whereas other approaches tackle the measurement of programming effort in

terms of Lines Of Code (LOC) [6]. In general, there are very few specific works on

programmability, because the research on UPC has mainly focused on performance

evaluation and optimization [10, 19, 20, 104], one of the main shortcomings of initial

UPC implementations.

A shared outcome from many performance studies is that UPC shows better per-

formance when data locality and the use of private memory are maximized, estab-

lishing some hints as useful programming practices when looking for efficiency [22].

Nevertheless, most of these performance benefits have turned out to be drawbacks

when looking for programmability and productivity. Two of these main points of

conflict between programmability and performance are shown in the next subsec-

tions.

2.1.1. Privatization of Shared Variables

The privatization of shared data with affinity to a thread is a common workaround

in parallel programming with UPC, and it is related to the definition of shared mem-

ory variables and arrays in UPC. The content of a pointer to shared memory in UPC

is not defined by the specification, and therefore each compiler may implement it in

a different way, but three concepts are defined for all cases: (1) the thread to which

the shared memory pointer belongs, (2) the phase of the pointer, i.e. the offset
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of the memory position with respect to the beginning of its corresponding affinity

block, which will be nonzero for most elements of shared arrays with definite block

size; and (3) the virtual address of the referenced variable in the shared memory

space. As a result of this, shared pointer arithmetic presents higher complexity than

private pointers (which are equal to ANSI C pointers), and therefore the use of sys-

tematic references to shared variables involves a certain overhead that may become

significant for a certain amount of processing. In order to illustrate the relation-

ship between this arithmetic and its impact on performance and programmability,

Listing 2.1 presents a simple code in which every thread calculates the sum of the

values in the shared array x with affinity to it. The most straightforward imple-

mentation uses upc forall in order to distribute the execution of iterations of the

loop between threads, using a pointer to each element of x as the affinity parameter:

this code takes advantage of UPC programmability facilities and its expressiveness

is high. Nevertheless, this implementation uses as many shared memory references

as the number of elements in x, thus the shared address translations commented

before may affect performance for large array sizes.

// Common v a r i a b l e s : l e t cons tant ‘N’ be a mu l t i p l e o f ‘THREADS’
#define N . . .
int i , accum ;
shared [N/THREADS] int x [N ] ;

// S t ra i gh t f o rward implementat ion us ing u p c f o r a l l
upc forall ( i =0; i<N; i ++; &x [ i ] ) accum += x [ i ] ;

// A l t e rna t i v e e f f i c i e n t implementat ion us ing f o r
int ∗ x l o c a l = ( int ∗) x [MYTHREAD∗N/THREADS] ;
for ( i =0; i<N/THREADS; i++)

accum += x l o c a l [ i ] ;

List. 2.1: Example of programmability vs. performance in UPC

The alternative algorithm at the end of Listing 2.1 uses the privatization tech-

nique: a pointer to private memory (x local) is used to reference the first element

of the shared data block with affinity to each thread. Once the translation of the

base address is made, the rest of elements in the array can be dereferenced locally

using x local, thus upc forall can be substituted by a for loop with a modified
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termination condition (here the number of iterations is the number of elements in

each data block, instead of the number of elements in x). The resulting code is more

efficient than the use of upc forall, but it introduces significant complexity, which

is not desirable for programmability’s sake.

2.1.2. UPC Standard Collective Operations

A traditional controversy between performance and programmability in UPC re-

sides in the language libraries, and particularly in collective communications. The

UPC standard collectives library [92], which is part of the UPC standard speci-

fication [93], includes eight functions that perform different data-movement (e.g.,

broadcast and scatter) and computational operations (such as reductions) which

are typically used in traditional parallel programming approaches (e.g., MPI). List-

ing 2.2 presents the signatures of all UPC collective primitives. Despite the fact that

they are included in the specification, UPC collectives have not become very popu-

lar because of two main reasons: (1) the traditionally low performance of many of

these functions, which has led programmers to replace them by combinations of bulk

data copy functions (namely upc memcpy, upc memget and upc memput) with addi-

tional logic for efficiency purposes, although at the cost of increasing programming

complexity; and (2) some limitations for their use which restrict their applicability.

Thus, for instance, source and destination arrays must be different and stored in

shared memory, and additionally the amount of data per thread involved in the

operation should be the same.

In order to analyze the first causes of the poor performance of UPC collectives,

an up-to-date analysis of different implementations of collectives was necessary to

assess their performance. The results of this performance evaluation have been

published in [77], presenting the comparison of multiple implementations of UPC

collective communications, as well as representative MPI collective results. MPI is

a traditional and widely used approach for parallel programming, and nowadays is

the de facto standard for programming distributed memory architectures, because

of the maturity and optimization of the implementations available (e.g., MPICH2

and Open MPI), thus representing a good reference for performance evaluations.

Regarding the implementation of UPC collectives, two libraries have been evalu-
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void u p c a l l b r o a d c a s t ( shared void ∗dst , shared const void ∗ src ,
s ize t nbytes , upc flag t f l a g s

) ;
void u p c a l l s c a t t e r ( shared void ∗dst , shared const void ∗ src ,

s ize t nbytes , upc flag t f l a g s
) ;
void u p c a l l g a t h e r ( shared void ∗dst , shared const void ∗ src ,

s ize t nbytes , upc flag t f l a g s
) ;
void u p c a l l g a t h e r a l l ( shared void ∗dst , shared const void ∗ src ,

s ize t nbytes , upc flag t f l a g s
) ;
void upc a l l exchange ( shared void ∗dst , shared const void ∗ src ,

s ize t nbytes , upc flag t f l a g s
) ;
void upc a l l pe rmute ( shared void ∗dst , shared const void ∗ src ,

shared const int ∗perm , s ize t nbytes , upc flag t f l a g s
) ;
void upc a l l r educeT ( shared void ∗dst , shared const void ∗ src ,

upc op t op , s ize t nelems , s ize t b l k s i z e ,
TYPE(∗ func ) (TYPE, TYPE) , upc flag t f l a g s

) ;
void u p c a l l p r e f i x r e d u c e T ( shared void ∗dst ,

shared const void ∗ src , upc op t op , s ize t nelems ,
s ize t b l k s i z e , TYPE(∗ func ) (TYPE, TYPE) , upc flag t f l a g s

) ;

List. 2.2: Signatures of the UPC collectives included in the current specification

ated: (1) the collectives implementation provided by the Berkeley UPC distribution

(from now on, Berkeley Collectives or BCOL) [3], and (2) the reference implementa-

tion of UPC collectives based on standard UPC memory copy functions, which was

developed at Michigan Tech. University (from now on REF) [54].

BCOL is based on the low-level GASNet communication library [88] implemented

on top of Active Messages [97]. From version 2.6.0 of the BUPC compiler, the for-

mer linear flat-tree algorithm implementation of collectives has been replaced by

a binomial-tree communication pattern, which organizes data transfers in a loga-

rithmic number of steps, reducing memory and network contention. The current

implementation of collectives has remained without major changes from v2.6.0 up

to the latest version (v2.16.0). Regarding REF, the implementation of its collective

primitives is based on standard UPC upc memcpy data transfers. Its communications

use a fully parallel flat-tree algorithm, performing all communications in parallel in
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a single step. For illustrative purposes, Figure 2.1 presents the differences between

communications using a flat tree (left) and a binomial tree (right).

  0
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Fig. 2.1: Collective communications: flat tree vs. binomial tree (8 threads)

Table 2.1 shows the relative performance from the microbenchmarking of a set

of representative UPC collectives (broadcast, scatter and exchange) compared to

their MPI counterparts (MPI Bcast, MPI Scatter and MPI Alltoall, respectively)

using 32 threads either on 4 HP rx7640 nodes or 1 HP Superdome node of the Finis

Terrae supercomputer at the Galicia Supercomputing Center (CESGA) [25]. Each

HP rx7640 node has 8 Montvale Itanium2 (IA-64) dual-core processors at 1.6 GHz,

128 GB of memory and InfiniBand [38] as interconnection network, whereas the HP

Superdome has 64 Montvale Itanium2 processors (128 cores) at 1.6 GHz and 1 TB of

shared memory. Berkeley UPC v2.6.0, with Intel C compiler 10.1 as backend and the

IBV conduit (InfiniBand Verbs) activated for GASNet communications, was used for

the UPC microbenchmarking, whereas HP MPI v.2.2.5.1 was selected as MPI im-

plementation as it showed the highest performance in this system. Shared memory

results (“SMP”) have been obtained from the Superdome, whereas pure distributed

memory measurements with MPI, as well as UPC on InfiniBand (“DMP”) and hy-

brid shared/distributed memory (“HYB”), have been obtained from the HP rx7640

nodes. Both DMP and HYB use 8 threads per node, so the difference between both

measurements lies in the fact that for HYB the intranode communications take ad-

vantage of shared memory transfers, whereas for DMP GASNet transfers are used

for intranode communications. These results have been obtained for two represen-

tative message sizes (1 KB and 1 MB), and the throughput of UPC collectives is
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shown as a percentage of the MPI performance, thus UPC outperforms MPI when

the percentage is higher than 100%. This situation, UPC outperforming MPI, only

happens when communicating 1 MB messages on REF SMP, because of the high

performance of the parallel access in the shared memory of the destination threads

to the data of the source thread, without any additional synchronization.

As BCOL on SMP implements a binomial-tree algorithm, it needs five steps

(log232) to implement the operations, thus obtaining poorer performance than REF

because of the synchronization overhead incurred by each of the five steps, compared

to the single step synchronization required for REF. Regarding the HYB microbench-

marking scenario, UPC performance is lower than MPI results. Furthermore, UPC

suffers from higher start-up latencies than MPI, which means poor performance for

1 KB messages, especially for the broadcast. This comparative analysis of MPI

and UPC collectives has served to assess that there is room for improvement in

the implementation of the UPC collectives by taking advantage of shared memory

communications. The traditional inefficiency of UPC collectives is mainly restricted

to distributed memory communications, and this overhead in the execution times

may be lightened by implementing efficient algorithms that exploit data locality on

multicore systems according to the required communications between threads.

Broadcast Scatter Exchange/Alltoall
Library \ Message size 1 KB 1 MB 1 KB 1 MB 1 KB 1 MB

MPI (GBps) 0.0992 4.4013 0.0088 1.5360 0.0066 0.0971
BCOL SMP 3% 22% 23% 44% 21% 40%
REF SMP 8% 145% 61% 171% 82% 514%

BCOL DMP 2% 30% 13% 28% 11% 53%
REF DMP 1% 15% 11% 40% 6% 52%

BCOL HYB 5% 86% 43% 44% 16% 89%
REF HYB 9% 24% 72% 97% 13% 68%

Table 2.1: UPC vs. MPI collectives performance (32 threads/processes, MPI = 100%)

Considering the second reason for the lack of adoption of UPC collectives (the

limitations in their applicability), little research has been conducted in this area.

Up to now, the most relevant proposals on extensions for UPC collectives were

described in a technical report [68] and in a draft specification [70] elaborated at

Michigan Tech. University (MTU). These documents propose the implementation



2.2 Empirical Programmability Analysis of UPC with Classroom Studies 25

of several collective extensions using concepts already present in other parallel pro-

gramming languages and libraries (e.g., MPI), such as the definition of variable-sized

data blocks for communications (vector-variant collectives), a simplified interface

for communications in the same shared array (in-place collectives), the use of teams

(subsets of the threads that execute a UPC program), and also asynchronous data

transfers. The use of one-sided communications (see Section 1.4) is considered as the

main basis to implement collectives [69]. Other related proposals are value-based

collectives [4], which use single-valued variables, either shared or private, as source

and destination of communications.

However, the vast majority of these works on extended UPC collectives represent

just a sketch on how these collectives could be implemented. In fact, only the MTU

report [68] presents some implementation details and a preliminary benchmarking

for a small subset of these functions, whereas many other issues, such as the imple-

mentation of teams or in-place operations, are simply mentioned, without further

discussion. The main research efforts on UPC collectives have traditionally focused

on performance analysis and the proposal of potential performance optimizations to

the standard collectives library [71] and low-level tuning support in order to build

a more efficient library [58]. This latter work also comments some hints about the

use of routines that would support handling subsets of threads in a team according

to the affinity of the data involved in the collective call, similarly to MPI commu-

nicators. Nevertheless, few implementation details are given on this issue, as that

work focuses mainly on performance evaluation on multiple systems.

2.2. Empirical Programmability Analysis of UPC

with Classroom Studies

Besides the analysis of language features and code development, a good way to

prove if a language provides good programmability is to make a survey on a group of

programmers. The benefits and disadvantages reported by various code developers,

especially when they have different skills, can give valuable information about the

programming language and also help to guess if it could become popular among the

parallel programming community. Classroom programmability sessions are used as
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a good reference in order to measure productivity. Some tests with homogeneous

groups of students have also been carried out, obtaining general conclusions for

different languages and paradigms [1, 28, 47]. UPC has also been considered for

a programmability study [62] in comparison with MPI that includes an analysis

of statistical significance of the results. However, the development times were not

taken into account and the experimental conditions of the study were undefined.

In these studies, the typical measures that are used to evaluate programmability

are Source Lines Of Code (SLOC) and speedup, directly measured from the codes

developed during a programmability session. Here, special tools are generally used

to manage the logs of the test, as well as to report complete information about the

work performed by each participant in the study [24]. Among these tools it is worth

mentioning UMDInst [15], which consists of a set of wrappers that create XML

logs including the most relevant actions performed at code development (edition,

compilation and execution), also saving snapshots of the codes. These features help

to give a more accurate measure of the development time and cost associated to the

parallelization of code.

This section presents the results of two classroom studies [83], each one consisting

of a four-hour session with a group of UPC-inexperienced programmers. These

studies have been carried out in the framework of the research of this Thesis, in

its early stages (February 2009) in order to obtain useful information to motivate

further actions. In the first session, the participants are final-year students of the

B.S. in Computer Science at the University of A Coruña (UDC) [90], whereas in the

second one the participants are a heterogeneous group of research staff at the Galicia

Supercomputing Center (CESGA) [29]. These two groups present special features

that are interesting for the analysis, specially in terms of programmer profile. The

students at UDC are a quite homogeneous group, with minor variations in their

academic curricula, but the staff at CESGA present clearly different profiles, as

they have different degrees, specializations and work experience.

The development of these sessions is structured in different stages. First, the

participants fill out a form to characterize their profile. Then, a seminar explaining

the basic constructs of UPC (using a slide show and some practical examples) is given

to the programmers. Afterwards they are asked to parallelize several sequential

codes in order to test the acquired skills. Finally data about their impressions
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on UPC and some detected benefits and disadvantages are obtained. The main

advantages of this approach are: (1) the time control of the development stage, (2)

the use of inexperienced programmers in the UPC language but with some general

background knowledge on different programming paradigms, and (3) the inclusion

of their opinions as a complement to the analysis of the developed codes, which gives

some guidelines to identify desirable features in a parallel programming language.

The next subsections present the details of this programmability study. First,

the design of the activities is outlined, presenting the codes and software used in the

sessions. Afterwards, detailed information about the most relevant results is given.

2.2.1. Design of the Programmability Study

As commented before, the two sessions organized at UDC and CESGA have fol-

lowed the same overall structure. Initially, each participant was asked to fill out an

initial questionnaire about his/her academic profile and parallel programming back-

ground, as well as his/her interest on this area. The questions have been slightly

adapted to the participants of each study. After this initial questionnaire, the par-

ticipants attended a seminar on UPC. The contents of this talk were taken from

slides used in UPC seminars at UC Berkeley [100], and included all basic concepts

and constructs needed to understand the PGAS paradigm (shared address space

vs. private address space) and develop UPC codes (upc forall construct, barrier

synchronizations, pointers, distribution of shared arrays and raw memory copies).

During the presentation of this material, the students were asked to test some sam-

ple codes (“Hello World”, Pi computation using the Monte Carlo approach and

matrix-vector multiplication). The UPC seminar, including the explanations and

the execution of the test codes, had a duration of about 1.5 hours.

After that began the development stage, where the participants were asked to

develop three parallel codes in UPC from their sequential versions, implemented in

C, that were given to them. The overall coding time was set to be 2 hours. The

three proposed codes were:

A simple Stencil operation on a 106-element vector, analogous to one of the ex-

ample codes included in the Berkeley UPC distribution. The Stencil operation
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over the 106 elements of the vector is performed 100 times (it uses an external

100-iteration loop). The initial sequential code had 21 SLOCs in total.

The Buffon-Laplace Needle problem, a Monte Carlo simulation that gives an

accurate approximation of Pi based on the probability that a needle of length

l that is dropped in a grid of equally spaced parallel lines will touch at least

one line. The number of predefined trials is 107. This sequential code had 90

SLOCs.

The Computation of the Minimum Distance among different nodes in a graph

(a version of the Floyd-Warshall algorithm [27]). This code was implemented

by some of the students at UDC as an MPI project during a previous course

on parallel programming. The size of the source distance matrix is 500x500

(that is, 500 nodes). This code had 63 SLOCs.

After parallelizing each code, the students were asked to run their codes and

then report their performance. Finally, the participants had to fill out a final survey

about their impressions about UPC, their interest on the language, the benefits or

disadvantages they could notice and the features they would like to see in UPC.

The number of participants that attended the classroom study at UDC were 22,

all with some previous knowledge of MPI and OpenMP. At CESGA, 13 programmers

with different profiles (e.g., B.S. and PhD degrees in computer science, physics and

mathematics) took part in the experiment. In general, all participants at CESGA

had previous experience with programming languages, but only a few reported to

have a previous knowledge on parallel programming. Even some of these program-

mers did not have much experience with C, as they were used to programming with

other languages (e.g., Java and PHP).

The two experimental testbeds used for the execution of the developed codes

were: (1) 8 nodes of an InfiniBand cluster at UDC [64], with 4 cores per node and

Simultaneous Multithreading; and (2) 16 single-core nodes of a Myrinet cluster at

CESGA. All performance results were obtained using the Berkeley UPC compiler,

version 2.8.0 [3]. The UMDInst system was used to generate logs. A summary of

the most relevant results from each code was obtained with two Perl scripts that

parsed the UMDInst logs. Additionally, the number of SLOCs for each code was

obtained using the CLOC Perl script [60].
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2.2.2. Analysis of Results

The analysis of the different results obtained in the two classroom studies has

been accomplished using two sources of information: the codes developed by each

participant and their profiles and opinions about UPC. The study of the codes is

based on the speedup achieved, the number of SLOCs and the development time for

each code.

Code # Participants
Outcome

Correct Incorrect N/A
Stencil (UDC) 22 20 2 0
Stencil (CESGA) 13 10 3 0
Buffon-Laplace N. (UDC) 22 15 7 0
Buffon-Laplace N. (CESGA) 13 9 3 1
Minimum Dist. (UDC) 22 7 8 7
Minimum Dist. (CESGA) 13 2 4 7

Table 2.2: Summary of codes obtained in the classroom studies

Table 2.2 presents a summary of the UPC codes developed in the classroom

studies undertaken, indicating the number of correct and incorrect codes developed

by the participants. Two conclusions can be extracted from this table: on the

one hand, most of the participants were able to obtain a correct solution for the

Stencil and the Buffon-Laplace Needle problems; on the other hand, few of them

were able to parallelize the Minimum Distance Computation code. Regarding the

incorrect implementations produced by some of the participants, there are several

points in common among them: the Stencil code is quite simple, but five people

(two at UDC and three at CESGA) did not obtain a correct solution, being the

most common error the parallelization of the external iterations loop instead of the

internal Stencil loop. Although the results obtained with these codes are correct,

this work distribution causes all threads to perform all the operations over the whole

array instead of splitting the array processing among the different threads. Thus,

these participants have misunderstood the basic concepts of SPMD programming

and work distribution with upc forall, and hence their implementations for this

code are highly inefficient.

The incorrect Buffon-Laplace Needle codes (7 at UDC and 3 at CESGA) also

shared a common error: these participants forgot to synchronize the threads after the
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computation of the Pi estimation in each thread. This race condition can produce an

erroneous result, because there is no guarantee that the partial results are updated

when the root thread tries to retrieve them from shared memory. Additionally,

6 out of these 10 erroneous codes also used a scalar shared variable to retrieve

without synchronization the partial results for every thread, instead of storing them

in a shared array and performing a reduction on it, thus causing a race condition.

Again, this error is due to a misunderstanding of the UPC memory model.

Finally, unlike the previous cases, the characterization of the errors in the Min-

imum Distance code is more difficult, because many of them are due to a bad

initialization of the matrix or some misunderstanding of the algorithm. In general,

many participants (even the ones that developed a correct code) found it difficult to

deal with shared array arguments in functions because of the block size definitions.

The results of each session are next analyzed in more detail. Tables 2.3-2.8 show

the results of all correct UPC codes developed in the programmability session at

UDC (Tables 2.3-2.5) and CESGA (Tables 2.6-2.8), respectively. The codes have

been classified according to the performance obtained in terms of speedup when they

are executed with up to 16 threads. The speedup is specified qualitatively, and each

of these values corresponds to a different behavior of the speedup for this code when

the number of threads increases (e.g., if the efficiency is almost 100%, the speedup

is considered as “Excellent”). Alongside the speedup, the average number of SLOCs

and the average development time of all the codes included in each group are shown

in every table, because they can help give a measure of the acquired capability of

each group to develop UPC programs.

Speedup Num. Codes
Num. SLOCs Development Time

(average) (average)
Excellent 1 28 38’ 19”
Quite good 4 22 49’ 35”
Good 12 23 50’ 28”
Fair 2 22 50’ 20”
Bad 1 23 1 h 1’ 43”

Table 2.3: Stencil with 106 elements (UDC group)

The results presented in Table 2.3 show that there are five possible qualifica-
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tions in terms of speedup for the 20 UPC Stencil codes developed in the session

at UDC. As the parallelization of this code is defined using a few syntactic con-

structs, it is easy to find a correlation between the use of these constructs and the

speedup obtained by each code. Thus, the only code that included the correct par-

allel constructs, and also used a privatization method for one of the arrays, could

obtain an “Excellent” speedup (which means that it was very close to the ideal).

A “Quite good” speedup (about 80% of parallel efficiency) was obtained by codes

that included the correct parallel constructs, but without a privatization method (in

these cases, they used a upc forall loop with an optimal blocking factor for the

arrays and performed all operations in shared memory), thus obtaining a slightly

lower speedup than with privatization. Most of the Stencil codes obtained a speedup

rating of “Good”, because they were parallelized using the upc forall loop, but

with non-optimal array blocking for the arrays. A “Fair” speedup was obtained by

two codes that implemented the upc forall loop, but performed a particular array

blocking: the two arrays used for the Stencil operation had different blocking factors,

that is, one had a block distribution and the other used a cyclic distribution. Thus,

depending on the definition of affinity in the upc forall loop, these codes achieve

a different speedup, but it is always lower than for the previous cases. Finally, one

code could not get any speedup at all, because of a bad definition of the affinity in

the upc forall loop, which maximized the number of remote accesses.

Additionally, the study of SLOCs for Stencil indicates that a quite good speedup

can be obtained without increasing the size of the code, but the best performance

is achieved with more lines. This is due to the use of privatization, that requires

additional processing (e.g., the definition of private arrays and the copy of the shared

arrays to private memory).

In terms of development time, the participants at UDC spent around 50 minutes

on average with this code. As stated during the session, many of them had reviewed

all the information about UPC that was given to them during the seminar in order

to develop their first UPC code, therefore part of this development time can be

assigned to a small learning curve. Nevertheless, some significant differences among

participants were appreciated here.

Table 2.4 presents the results for the Buffon-Laplace Needle code. All the de-

veloped codes achieve excellent speedup. The reason is that Buffon-Laplace Needle
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Speedup Num. Codes
Num. SLOCs Development Time

(average) (average)
Excellent 15 98 28’ 43”

Table 2.4: Buffon-Laplace Needle with 107 trials (UDC group)

presents few parallel alternatives: a correct parallel code is likely to obtain high

speedup, and the lack of a feature in the code (e.g., synchronization barriers, shared

array definition) tends to result in an incorrect program. It is also significant that

the development time for this second exercise is less than for the first one. This

happens because this code is based on the evaluation of trials similarly to the com-

putation of Pi using the Monte Carlo method, which was proposed as an example

in the UPC seminar. Thus, many participants probably found the analogy between

these two codes and they could obtain a correct code easily. Regarding the length of

the codes, the average number of additional SLOCs used here in order to parallelize

this code is 8 (the sequential version has 90 SLOCs).

Speedup Num. Codes
Num. SLOCs Development Time

(average) (average)
Excellent 4 75 1 h 1’ 34”
Bad 3 70 46’ 26”

Table 2.5: Minimum Distance Computation with 500 nodes (UDC group)

Table 2.5 shows the results of the correct Minimum Distance codes, where

the speedups are classified as “Excellent” (4) and “Bad” (3). The use of correct

upc forall loops and privatizations of variables is the reason why the best four

versions of this code obtained excellent speedup. In terms of SLOCs, it deserves to

be mentioned that privatization involves the inclusion of some additional code (in

the best four cases, 12 lines on average). Other improvements were implemented

with less SLOCs (on average, 6 extra lines were added in different parallelizations

using upc forall loops), but the benefits were slightly lower in terms of speedup.

The average development time for the best four codes is high (about 1 hour), prob-

ably because the correct implementation of privatizations for these codes may have

taken longer.
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Speedup Num. Codes
Num. SLOCs Development Time

(average) (average)
Quite good 7 24 40’ 19”
Bad 3 22 48’ 30”

Table 2.6: Stencil with 106 elements (CESGA group)

Table 2.6 presents the speedup qualification of the Stencil codes developed in

the classroom study at CESGA. Here there are only two types of codes: the ones

that achieved a quite good speedup and the ones that showed bad speedup. The

former used a correct upc forall loop and a suitable blocking of arrays, whereas the

latter used a wrong parameter of the affinity in upc forall, which did not match

the selected array blocking. The average number of SLOCs for these codes (24 and

22 SLOCs, respectively) is very close to the sequential code (21 SLOCs). However,

there are significant differences among the codes developed at CESGA, which are

due to the different profiles of the participants. The development time of this code

is also a bit lower than at UDC, because many participants did not spend too much

time testing this code, and some of them had a great ability to quickly develop the

required code.

Speedup Num. Codes
Num. SLOCs Development Time

(average) (average)
Excellent 9 101 46’ 20”

Table 2.7: Buffon-Laplace Needle with 107 trials (CESGA group)

The results shown in Table 2.7 are analogous to the ones obtained at UDC:

all the correct codes achieved the best possible speedup. Nevertheless, there are

significant differences in terms of SLOCs and development time, as the participants

at CESGA used, on average, more SLOCs and more time to develop the parallel

code. Once again, there are noticeable differences (high variability) among CESGA

programmers, because many of them did not realize quickly that this program was

analogous to the Pi computation presented in the seminar, and therefore they had

problems on deciding which was the best strategy to parallelize this code. This led

to a number of editions and compilations higher on average than in the UDC session.
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However, as for Stencil, some participants could get to parallelize this code quite

quickly.

The Minimum Distance code has posed a great challenge to CESGA program-

mers: this code was not familiar to any of them, unlike for the UDC session. There-

fore, its complexity and the time involved in developing a correct solution to the

previous codes were the reasons why only half of the participants in the session at

CESGA started developing the parallel version of this code. As shown in Table 2.8,

none of the two correct codes could get a good speedup. However, it can be seen

that one code obtained a slightly better speedup with a higher development time.

Speedup Num. Codes
Num. SLOCs Development Time

(average) (average)
Bad 1 90 1 h 10’ 53”
Very bad 1 66 30’ 31”

Table 2.8: Minimum Distance Computation with 500 nodes (CESGA group)

As commented before, some UDC students that attended this session had also

developed previously an MPI version of the Minimum Distance code, after a 12-hour

course on basic notions of parallel programming (4 hours) and MPI (8 hours). In

order to present a comparison between the MPI and UPC codes, Table 2.9 shows

the speedups (“+” means “Excellent”, “-” means “Bad”), number of SLOCs and

development time of pairs of MPI and UPC codes developed by the same students

(named S-xx). Five of the seven students that obtained a correct UPC version of

this code had previously developed an MPI implementation, thus these five students

are the ones included in the table. The MPI development times are an estimation of

the time consumed in the study and parallelization of this code, and it was reported

by the corresponding student.

The analysis of the MPI and UPC results clearly indicates that UPC allows

an easier and faster parallelization than MPI: compared to their MPI codes, three

students could get a similar speedup with UPC using less development time and

SLOCs (the sequential code has 63 SLOCs). Although MPI time measurements

have not been strictly controlled, the development time estimation and the SLOC

count suggest that there is a high difference in terms of programmability among both

approaches. In fact, other two students that had not developed the MPI version of
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ID
Speedup Num. SLOCs Development Time

MPI UPC MPI UPC MPI UPC
S-04 + - 136 68 24 h 35’
S-05 + + 139 73 36 h 1 h 21’
S-15 + - 158 76 15 h 1 h 6’
S-17 + + 159 87 15 h 1 h 31’
S-20 + + 174 66 18 h 1 h 24’

Table 2.9: Minimum Distance Computation - MPI vs. UPC

Minimum Distance were able to obtain a correct UPC parallel code during the

classroom study (one of them achieving an excellent speedup), which confirms that

the time necessary to understand the problem is not very high. Moreover, the

learning time for MPI was longer than for UPC, which confirms the effectiveness of

UPC for a quick parallelization. However, for most of the students, MPI was their

first approach to parallel programming, so this fact has to be taken into account as

the MPI learning curve perhaps was larger because of the lack of previous experience

in parallel programming. It is also important to note that the average development

time of the best UPC codes was near an hour and a half, therefore if the time for

the session were longer than the two hours scheduled probably more participants

could have developed the UPC version of this code.

2.2.3. Reported Comments on UPC

The comments of the participants of this study on UPC are presented in Fig-

ures 2.2 and 2.3. Figure 2.2 indicates that the most important benefit for many of

the participants is that UPC is an extension of C, which confirms the previous state-

ment commented in Section 2.1: a good knowledge of C simplifies the development

of parallel applications with UPC. Additionally, about half of the answers to the test

considered that the UPC memory model is a helpful way to develop codes, thus the

use of PGAS is also perceived as a potential advantage for UPC. Some differences

among the two groups of participants are stated when asked whether UPC allows

easy prototyping: more than 85% of the UDC students consider that UPC facilitates

prototyping, whereas less than 40% of the CESGA programmers have reported the
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same feature, which is probably due to the different profiles of both groups of par-

ticipants. More specifically, some CESGA programmers are used to working with

distributed applications that use object-oriented languages (e.g., Java), and even

though they appreciate the benefits of UPC as a PGAS language based on C, they

do not consider the development of prototypes for distributed applications using C,

according to their experience.
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Fig. 2.2: Reported benefits and drawbacks of UPC

The main drawbacks reported in Figure 2.2 (bottom graph) are also different

depending on the group of people studied. Both groups agree that one of the main
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difficulties in UPC is the management of pointers, which is related to the perception

that privatizations are necessary to obtain performance. Although this issue has

been reported by less than 40% of both groups, this has been a general perception

of most of the participants, which during the sessions have pointed out the need of

a compiler-based solution for the implementation of privatizations at low level and

transparently to the programmer. Additionally, the general impression at CESGA

is that UPC is a quite low-level language that may only be used in HPC, which is

related mainly to the unfair comparison with object-oriented languages. Participants

at UDC have found that the definition of block sizes was one of the most important

drawbacks in UPC, alongside with the perception of poor performance, also related

with the use of privatizations.

The opinions about the most urgent issue to solve in UPC, that are shown in

Figure 2.3, are similar to the previous ones: 30% of CESGA programmers reported

the need for language abstractions that help to obtain simpler codes. In fact, follow-

ing the same ideas reported in the questionnaire of benefits and drawbacks, many

of the CESGA programmers suggested that the language could provide libraries

with high-level constructs to abstract the parallelization of the codes. UDC stu-

dents’ complaints have focused on language performance, as well as on general data

distribution issues.
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These figures reveal that there are different opinions reported by UDC and

CESGA participants, and the trends extracted from the results shown in each fig-

ure are also consistent with the results presented in the rest of the figures. The

participants’ background knowledge, interests and motivation are determinant in

their opinions, but a wide variety of improvement areas can be detected. In general,

participants with some specific knowledge on parallel programming have seen some

advantages in terms of programmability in the use of UPC, but they have been

aware of performance drawbacks, and they reported about the high programming

effort required to solve them. Participants with less experience on parallel program-

ming have missed the use of high-level constructs, and consequently their feedback

is mainly related to the lack of programmability facilities.

2.3. Proposal of Programmability Improvements

The analysis of the UPC language in terms of programmability has given out

several conclusions, which have been confirmed and assessed in the classroom studies

developed with different programmers. In general, UPC has shown good potential in

order to provide programmability when programming HPC applications, but there

are some significant areas that have to be improved, especially regarding the im-

plementation of compilers and runtimes. The exploitation of PGAS features is an

important source of flexibility and simplicity for the language, but the use of priva-

tizations has shown to be very important when looking for performance, although

it does not favor the development of simple and readable codes. Additionally, the

language libraries provide very important features, such as collective communica-

tions, but their usability is restricted because of some efficiency problems and their

limited applicability, which is always restricted to the PGAS shared memory region

and fixed communication sizes. In fact, when applying the privatization on a shared

array, the privatized array cannot be used for collective communications with the

standard UPC functions.

The detected conflicts between the efficiency and the simplicity of UPC codes,

as well as the reported drawbacks of the language in the programmability session,

indicate that the UPC specification still needs some more improvements. Currently,

the draft for a new specification document (v1.3) [89] is being discussed by the UPC
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community, and the major changes proposed by the UPC Consortium will imply the

separation between language specifications and library specifications (where libraries

can be classified as “required” or “optional”). According to this context, a few

language-specific constructs could be included, but currently the main developments

of the UPC community should focus on the definition of new libraries and extended

versions of the existing ones.

At this point, the development of this Thesis has been conceived to contribute

to the development of UPC by promoting and extending the UPC standard collec-

tives library, giving a solution to all the detected limitations. This new extended

library will provide the necessary complement of the existing functions to obtain the

best programmability facilities in these communications for both expert and novice

parallel programmers. The following chapters of this dissertation will focus on pre-

senting the interfaces of different functions in the library, as well as the algorithms

and definitions that will facilitate its portable implementation (thus being applica-

ble to any specification-compliant UPC compiler). Very special stress will be put in

presenting the usability and applicability of the developed functions, and therefore

a wide variety of kernels and applications that can take advantage of the extended

collectives will be presented in order to illustrate the benefits of using this extended

library in terms of programmability and performance.





Chapter 3

Design and Implementation of

Extended Collectives in UPC

The limitations of the UPC collectives library discussed in the previous chap-

ter have motivated the development of a new library of extended UPC collective

functions [82]. The main goal of this library is to solve the shortcomings detected

in this area of the current standard UPC specification, and thereby improve the

programmability and productivity of UPC. The previously presented research on

performance and programmability for UPC, backed by the experimental data and

the proposals sketched by the UPC community, has been taken as a basis to develop

different sets of functions in the library (in-place, vector-variant, team-based), and

also new functions (get-put-priv) whose features are also combined with the previous

ones (e.g., get-put-priv vector-variant collectives). As a result, the developed library

covers most of the demands of the collective communications required by UPC pro-

grammers. Moreover, an implementation of UPC teams at library level has been

developed to support team-based collectives, thus alleviating the lack of a standard

implementation of teams in the UPC language specification. The main contributions

of this work are not only the definition of the interfaces and the operation of each

function, but also (1) the implementation using standard UPC constructs, thus mak-

ing the library completely portable to any compliant UPC compiler and runtime,

and (2) the design decisions taken to implement some operations using scalable and

efficient algorithms, which have been evaluated in terms of performance and pro-

41
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grammability through its application in the development of several representative

UPC codes.

The organization of this chapter is as follows. First, Section 3.1 comments the

most relevant design decisions and strategies that have driven the development of

this library, including its structure. After that, the signatures of the functions and

implementation details of the collectives are presented and explained in Section 3.2,

discussing different possibilities for their implementation on different computer ar-

chitectures, and some remarks about their optimization are given in Section 3.3.

Section 3.4 presents four kernels used as representative examples of application of

these collectives: matrix multiplication, both for dense and sparse computation,

Integer Sort and 3D Fast Fourier Transform. Finally, Section 3.5 comments the

measured microbenchmarking results of representative collectives, and Section 3.6

shows the performance results of the kernels, analyzing the impact of the use of the

developed collectives. Appendix A presents the complete API of the library.

3.1. Design of the Collectives Library

The functions included in the new extended UPC collectives library are dis-

tributed in four different groups, each of them focused on overcoming a specific

limitation of the standard UPC collectives. Figure 3.1 presents the four main limi-

tations of the standard collectives (left-hand side), and the groups of implemented

collective functions (right-hand side) that address the corresponding issue. Thus,

these groups of collectives provide different programmability improvements:

In-place collectives : overcome the need of using different buffers for source and

destination data.

Vector-variant collectives : allow the communication of a varying data size per

thread.

Team-based collectives : execute collective operations within a particular team

of threads.

Get-put-priv collectives : skip the limitation of using shared memory addresses

as function parameters.
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Fig. 3.1: Scheme of the Extended Collectives library

In general, the development of these extended collectives has been guided by the

following principles:

The operations implemented are those present in the standard UPC collectives

library (see Listing 2.2 for a full reference). Additionally, the allreduce collec-

tive has been included as a subject for extension, because of its usefulness in

different applications.

The arguments of all the extended collectives are always derived from their

standard counterparts, and new parameters are added to or removed from

their interface in order to implement the required extended functionality. The

main goal here is to keep interfaces simple, while providing enough flexibility.

Additional features can be introduced in some extended collective functions

included in this library, providing another collective with specific features. For

example, a significant subset of the implemented primitives provides the possi-

bility of defining a specific thread as the root of the communication operation:

these new functions are the rooted collectives of the developed library. The

supported additional features may differ depending on the extended collective.

The extended collectives library can be used in any UPC code by including

either its corresponding source file or the whole library. Several algorithms are
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implemented per collective operation, relying either on the default algorithm

or on the selection by the application programmer/user.

3.2. Implementation of Extended Collectives

According to the structure of the framework presented in the previous section,

a description of each group of collective functions is next given, presenting the

structure of its arguments and its processing, alongside with examples of use. The

algorithms and data movements presented in this section show the basic communi-

cations required to implement the corresponding collective operations, which focus

on minimizing the amount of data transfers, as well as their size. Besides this, some

common optimizations for all these functions implemented according to the execu-

tion environment will be commented in Section 3.3. For further information about

the interfaces of these functions, the reader is referred to Appendix A.

3.2.1. In-place Collectives

The in-place collectives use only one array as the source and destination of the

data involved in the operation. Listing 3.1 presents the signatures of two representa-

tive in-place collectives (broadcast and reduce). As shown here, only one argument

is used to specify the source/destination array, in order to provide a simpler syn-

tax. The rest of parameters of these functions are the same as for their standard

counterparts.

void u p c a l l b r o a d c a s t i n p l a c e (
shared void ∗ s r cds t , s ize t nbytes , upc flag t sync mode

) ;
void u p c a l l r e d u c e D i n p l a c e (

shared void ∗ s r cds t , upc op t op , s ize t nelems ,
s ize t b l k s i z e , double (∗ func ) ( double , double ) ,
upc flag t sync mode

) ;

List. 3.1: Signatures of representative in-place collectives
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The data movements required to execute these collectives are highly dependent

on the operation performed. For instance, an in-place broadcast presents a straight-

forward implementation, because in this case the source data is moved directly to

different locations in remote threads’ memory, without any potential risk of data

overwriting. This situation is analogous for scatter and gather. However, other

implemented collectives (e.g., permute, exchange, allgather) have to operate on the

source data locations, therefore it is necessary to implement different levels of syn-

chronization to perform correctly the collective operation.

Regarding the permute collective, its execution can potentially involve the over-

writing of all the data from all threads, therefore its algorithm has been implemented

using an auxiliary private array in each thread to perform the data exchanges be-

tween them, in order to perform a backup of the local data in each thread. The

reduce, prefix reduce and allreduce collectives also present a behavior similar to their

standard counterparts: first, the data stored on each thread’s memory is reduced

locally to produce a partial result per thread; after that, all threads are synchro-

nized, and finally the partial results are gathered by one thread (e.g., reduce) or by

all threads (e.g., allreduce) to produce the final result. Additionally, in the case of

the prefix reduce collective, the results are generated according to the established

processing order, thus involving synchronizations to send the partial results from

all threads. Regarding the allgather and exchange in-place algorithms, some opti-

mizations have been introduced to minimize the number of communications, thus

favoring a more efficient processing.

Figure 3.2 presents the data movements implemented for the in-place allgather

collective using 3 threads. Here the numbering at each arrow indicates the order

in which each communication is performed, thus the arrows with the same num-

bering represent parallel data movements. First, each thread moves its source data

chunk to its corresponding final location within the shared memory space. Then,

a synchronization is needed to make sure that all threads have performed this first

copy, otherwise source data could be overwritten. Finally, each thread sends its

corresponding chunk to the rest of threads without further synchronizations.

The in-place exchange algorithm is presented in Figure 3.3 using four threads.

It uses a concatenation-like procedure [5], including additional logic that avoids the

overwriting of source data and also balances the workload among threads. More-
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Fig. 3.3: Communications for upc all exchange in place (4 threads)

over, it only needs a single private array of nbytes (being this the value passed as

parameter to the collective) as extra memory space. This algorithm is performed,

at most, in THREADS/2 stages. Each stage always consists of three steps: (1)

a piece of local source data is moved from shared memory to an auxiliary private

array, (2) the corresponding remote data is copied to that source location, and (3)

the private memory copy of the source data is moved to the remote location used in

the previous step. In the first stage, each thread copies data from/to its right neigh-

bor (i.e., thread i and thread (i+ 1)%THREADS are associated), and in the next

stages data exchanges continue with the following neighbors (for thread i, it would

be thread (i+ s)%THREADS, where s is the number of stage). In order to avoid

data dependencies, all threads are synchronized after the execution of each stage.

When the number of threads is even, the last stage only needs to be performed by

half of the threads (in this implementation, the threads with an identifier less than
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THREADS/2). The arrow numbering of Figure 3.3 consists of two values, that

indicate the number of stage (left) and step (right) in which the data movement

is performed. No synchronizations are required between steps in the same stage,

and in the ideal scenario all communications with the same numbering would be

executed in parallel.

Additionally, a rooted version has been implemented for the four in-place col-

lectives where it is possible to define a root thread (broadcast, scatter, gather and

reduce). Listing 3.2 presents the signature of the rooted in-place broadcast collec-

tive as an example of them. As commented before, these functions take the same

arguments as the corresponding in-place collectives, but including the identifier of

the root thread (parameter root). Their internal implementation is also very similar

to their associated extended function, but changing the source (broadcast, scatter)

or the destination (gather, reduce) address according to the given root thread.

void u p c a l l b r o a d c a s t r o o t e d i n p l a c e (
shared void ∗ s r cds t , s ize t nbytes , int root ,
upc flag t sync mode

) ;

List. 3.2: Signature of a representative rooted in-place collective

The main advantage of in-place collectives is that they operate on a single array

without requiring the allocation of auxiliary arrays to implement data movements,

as this additional space is managed transparently to the user by the collective. To

illustrate their use, a common routine for time measuring is presented in Listing 3.3.

The use of the selected extended collective (upc all reduceD all in place) returns

the final result in UPC shared memory, accessible by all threads, using only a shared

array of THREADS elements (times).

shared double t imes [THREADS] ;
. . .
t imes [MYTHREAD] −= getCurrentTime ( ) ;
. . .
t imes [MYTHREAD] += getCurrentTime ( ) ;
u p c a l l r e d u c e D a l l i n p l a c e ( times , UPC MAX, THREADS, 1 , NULL,

sync mode ) ;

List. 3.3: Time measuring routine using in-place collectives
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3.2.2. Vector-variant Collectives

The vector-variant collectives allow the definition of a variant number of elements

communicating at each thread. The extended collectives library includes vector-

variant implementations for the eight standard UPC collectives plus allreduce, but it

additionally includes a general memory copy function named upc all vector copy.

This function performs a custom number of data movements between any pair of

threads, allowing the user to specify the displacement and number of elements for

each communication, thus supporting a high level of flexibility in the library. The

signatures of five representative vector-variant collectives are included in Listing 3.4.

void u p c a l l b r o a d c a s t v (
shared void ∗dst , shared const void ∗ src , shared int ∗ddisp ,
s ize t nelems , s ize t dst b lk , s ize t type s i z e ,
upc flag t sync mode

) ;
void u p c a l l g a t h e r v (

shared void ∗dst , shared const void ∗ src , shared int ∗ sd i sp ,
shared s ize t ∗nelems , s ize t dst b lk , s ize t s r c b l k ,
s ize t type s i z e , upc flag t sync mode

) ;
void u p c a l l g a t h e r a l l v (

shared void ∗dst , shared const void ∗ src , shared int ∗ddisp ,
shared int ∗ sd i sp , shared s ize t ∗nelems , s ize t dst b lk ,
s ize t s r c b l k , s ize t type s i z e , upc flag t sync mode

) ;
void u p c a l l r e d u c e I v (

shared void ∗dst , shared const void ∗ src , upc op t op ,
shared int ∗ sd i sp , shared s ize t ∗nelems , int nchunks ,
s ize t s r c b l k , int (∗ func ) ( int , int ) , upc flag t sync mode

) ;
void u p c a l l v e c t o r c o p y (

shared void ∗dst , shared const void ∗ src , shared int ∗ddisp ,
shared int ∗ sd i sp , shared s ize t ∗nelems , int nchunks ,
s ize t dst b lk , s ize t s r c b l k , s ize t type s i z e ,
upc flag t sync mode

) ;

List. 3.4: Signatures of representative vector-variant collectives
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These extended collectives present two main distinctive arguments: the number

of elements that are moved by each thread (nelems) and the size of the data type of

the elements in the arrays (typesize). The use of these two arguments is intended

to provide an intuitive interface for the collective, because the user does not need to

deal directly with data sizes in communication. Besides nelems and typesize, the

vector-variant collectives also include a variable number of arguments that are used

to define their associated data transfers, according to their type of processing. For

example, the block size of an array is necessary in order to perform the exact indexing

of a particular array position in terms of nelems and typesize following the UPC

pointer arithmetic. As a result, the vector-variant broadcast and scatter require the

definition of the block size of the destination array (dst blk in Listing 3.4), whereas

gather needs the value of the block size of the source array (src blk in Listing 3.4).

Additionally, other parameters related to displacements on source/destination arrays

(sdisp and ddisp, respectively) are also used by vector-variant collectives to define

an offset from the given starting position of the associated array. These arguments

are associated to the previous definitions of block sizes, i.e. if one of these collectives

requires the definition of the block size parameter for the source/destination array,

this function should also include a parameter to define an offset on it. In general, as

Listing 3.4 shows, additional array parameters are defined as shared in order to favor

a global view of their values, even though the access to these variables is internally

privatized for each thread to avoid performance bottlenecks.

Most of the standard data-movement collectives (scatter, gather, allgather, ex-

change and permute) present vector-variant implementations that follow a similar

structure: all the arrays that define the number of elements in each communication

(and also the displacements, when present) have THREADS elements. The broad-

cast collective simplifies the interface by using a single shared scalar value as the

size of communications. Nevertheless, the implementation of reduce, prefix reduce,

allreduce and vector copy differs significantly from the previous ones, because the

use of different size of communications per thread should also cover the possibility

of having more than one data movement per thread. In fact, the best option in

terms of programmability is to let the user define a custom number of chunks in the

source array to execute the collective regardless of their thread affinity, thus this

approach has been used for these four collectives. Figure 3.4 shows the operation of

a call to upc all reduceI v using three chunks, whose communications associated
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to the reduced data are labeled with the same number as in the arrays containing

displacements (sdisp) and elements per chunk (nelems).

 (1)
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upc_all_reduceI_v (&dst[2], src, UPC_ADD, sdisp, nelems, nchunks, 4, NULL, sync_mode)

     6

Fig. 3.4: Communications for upc all reduceI v (4 threads)

In addition to this, the extended library implements an optimized operation when

all threads define the same number of chunks. This algorithm is activated by multi-

plying the number of chunks by the predefined constant UPC EXTCOLLS VV CHUNKS,

and the only requirement is that the description of each chunk has to be specified

thread by thread following a cyclic order in the corresponding arguments (i.e., sdisp,

ndisp, nelems): the element i in these arguments must correspond to a chunk as-

sociated to thread i%THREADS. Listing 3.5 presents the definition of the function

call presented in Figure 3.4, but adding a chunk for thread 2 (thus processing one

element in position 9 of array src) in order to activate the optimized algorithm.

sd i sp = {3 , 6 , 9 , 12} ;
nelems = {1 , 2 , 1 , 1} ;
nchunks = UPC EXTCOLLS VV CHUNKS ∗ 4 ;
u p c a l l r e d u c e I v (&dst [ 2 ] , s rc , UPC ADD, sdi sp , nelems , nchunks ,

4 , NULL, sync mode ) ;
// The new r e s u l t in d s t [ 2 ] i s 64

List. 3.5: Activation of optimized processing for upc all reduceI v

Four additional versions of these functions have been included in the library (the

corresponding signatures for the vector-variant broadcast and allgather are shown

in Listing 3.6):
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void u p c a l l b r o a d c a s t v r o o t e d (
shared void ∗dst , shared const void ∗ src , shared int ∗ddisp ,
s ize t nelems , s ize t dst b lk , s ize t type s i z e , int root ,
upc flag t sync mode

) ;
void u p c a l l b r o a d c a s t v r a w (

shared void ∗dst , shared const void ∗ src , shared s ize t ∗ddisp raw ,
s ize t nbytes , s ize t dst b lk raw , upc flag t sync mode

) ;
void u p c a l l b r o a d c a s t v l o c a l (

shared void ∗dst , shared const void ∗ src , shared int ∗ d d i s p l o c a l ,
s ize t nelems , s ize t dst b lk , s ize t type s i z e ,
upc flag t sync mode

) ;
void u p c a l l g a t h e r a l l v r a w (

shared void ∗dst , shared const void ∗ src , shared int ∗ddisp raw ,
shared int ∗ sd isp raw , shared s ize t ∗nbytes , s ize t dst b lk raw ,
s ize t s r c b lk raw , upc flag t sync mode

) ;
void u p c a l l g a t h e r a l l v l o c a l (

shared void ∗dst , shared const void ∗ src , shared int ∗ d d i s p l o c a l ,
shared int ∗ s d i s p l o c a l , shared s ize t ∗nelems , s ize t dst b lk ,
s ize t s r c b l k , s ize t type s i z e , upc flag t sync mode

) ;
void u p c a l l g a t h e r a l l v p r i v p a r a m (

shared void ∗dst , shared const void ∗ src , int ∗ddisp ,
int ∗ s d i s p l o c a l , s ize t ∗nelems , s ize t dst b lk , s ize t s r c b l k ,
s ize t type s i z e , upc flag t sync mode

) ;

List. 3.6: Signatures of representative versions of vector-variant collectives

rooted : these versions (only available for broadcast, scatter and gather) include

the label rooted and an additional integer argument (the root thread).

raw : these versions (labeled with raw and available for all collectives except

for reduce and prefix reduce) allow the user to define the number of bytes trans-

ferred by each thread analogously to the standard collectives, instead of using

the number of elements and the element size. Therefore, they use a parameter

shared size t *nbytes instead of parameters nelems and typesize.
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local : these functions (with the label local at the end of their names) pro-

vide the possibility of defining array displacements as relative positions inside

a thread, instead of using the default absolute array values. They are avail-

able for broadcast, scatter, gather, allgather, exchange and permute, because

the extended function must perform only one communication per thread: the

reason is that each thread is assigned a value in arrays of THREADS elements

(e.g., sdisp, ddisp) whose index is equal to the identifier of the given thread.

In order to illustrate their behavior, Figure 3.5 presents three function calls

that perform the same data movements, but using different versions of the

vector-variant broadcast with the consequent changes in their arguments.

upc_all_broadcast_v (dst, &src[1], UPC_ADD, ddisp, nelems, 4, sizeof(int), sync_mode)

upc_all_broadcast_v_local (dst, &src[1], UPC_ADD, ddisp_local, nelems, 4, sizeof(int), sync_mode)

upc_all_broadcast_v_raw (dst, &src[1], UPC_ADD, ddisp_raw, nelems*sizeof(int), 4*sizeof(int), sync_mode)
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Fig. 3.5: Communications for different versions of upc all broadcast v (4 threads)

privparam: these versions (only available for allgather, exchange and vector

copy) take the parameters of source/destination displacements and number

of elements as private variables. As these three functions perform multiple

accesses to these arrays in order to obtain the source and destination locations

for each data chunk, performance and scalability can be improved by keeping

these data in private memory.
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Additionally, a merge version for the vector-variant exchange has been imple-

mented. The difference lies in the way the elements are gathered by each thread:

the upc all exchange v collective copies each chunk to the same relative position

in the destination array as in the source thread, whereas the merge version puts all

chunks in consecutive memory locations. It uses an additional array argument with

THREADS positions that indicates the location of the first element copied from

thread 0 to each thread, and the rest of the elements are copied consecutively using

that value as reference.

An example of use of the vector-variant collectives is the copy of an upper tri-

angular matrix from vector A to B, which is implemented in Listing 3.7. Here the

initialization consists in setting the displacement arrays for the source and destina-

tion addresses, as well as the number of elements for each of the N rows (chunks)

of the matrices. After that, a call to upc all vector copy is enough to perform all

necessary data movements.

shared [N∗N/THREADS] int A[N∗N] , B[N∗N ] ;
shared int sd i sp [N] , ddisp [N] , nelems [N ] ;
// I n i t i a l i z a t i o n o f shared argument arrays
upc forall ( i =0; i<N; i ++; &sd i sp [ i ] ) {

sd i sp [ i ]= i ∗N+i ; ddisp [ i ]= i ∗N+i ;
nelems [ i ]=N−i ;

}
upc barrier ;
u p c a l l v e c t o r c o p y (B, A, ddisp , sd i sp , nelems , N,

N∗N/THREADS, N∗N/THREADS, s izeof ( int ) , sync mode ) ;

List. 3.7: Copy of a triangular matrix using vector-variant collectives

3.2.3. Team-based Collectives

These collectives are based on teams, which are subsets of the UPC threads run-

ning an application. The use of teams has been addressed by the UPC community,

mainly focusing on an implementation at the language level [57, 70], although the

use of MPI has also been suggested [16]. However, up to now no standard UPC team

implementation has been defined. In order to overcome this limitation and support

the use of teams in collectives, this subsection presents a library-based support for
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UPC teams, which uses a structure to define the necessary variables to implement

them. After its introduction, the developed team-based collectives are described.

Library Support for Teams

Listing 3.8 presents the struct data type that defines a team. It uses an array of

THREADS boolean elements (isThreadInTeam) that indicate whether a thread is

included in the team or not. A team identifier (tid) for each thread is assigned in

increasing order of the UPC thread identifier. The variable numthreads indicates

the number of threads in the team. The counterBarrier and flagBarrier arrays

include two thread counters and two flags, respectively, that are used as auxiliary

variables for the implementation of synchronization barriers through an active-wait

algorithm. The lock variable lockTeam is used to implement atomic operations in the

team (e.g., in the execution of team barriers or team management operations, such

as thread insertions). Finally, the pointerArg variable is an auxiliary array used

for memory allocation within the team. Using these variables, this implementation

is able to provide full support for team-based collectives.

struct teamContent {
shared t boo l ean ∗ isThreadInTeam ; // THREADS elements
shared int ∗numthreads ;
shared int ∗ counte rBar r i e r ; // 2 e lements
shared int ∗ f l a g B a r r i e r ; // 2 e lements
upc lock t ∗ lockTeam ;
shared void ∗shared ∗pointerArg ; // THREADS elements

} ;
typedef struct teamContent team ;

List. 3.8: Structure for UPC teams support

Listing 3.9 presents the signatures of the auxiliary functions that have been im-

plemented to support teams handling. The main functions included in this interface

are the insertion of a thread in a team, tests for inclusion and a synchronization

barrier. Apart from these basic functionalities, memory allocation functions have

also been included to support the team management, because some of the stan-

dard UPC routines for memory allocation are collective (namely upc all alloc

and upc all lock alloc), and therefore cannot be used by a subset of threads.
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// I n i t i a l i z e team
void i n i t ( team ∗ t ) ;
// Get number o f th reads in a team
int numThreads ( team t ) ;
// In s e r t thread in team
void i n s e r t ( int thread , team t ) ;
// Implementation o f a b a r r i e r
void teamBarr ier ( team t ) ;
// Test i f the thread wi th the g iven i d e n t i f i e r
// i s inc luded in a team
int isThreadInTeam ( int threadID , team t ) ;
// Get t i d f o r a g iven thread ID
int getTeamID ( int threadID , team t ) ;
// Get thread ID fo r a g iven t i d
int getThreadID ( int teamID , team t ) ;
// Polymorphic func t i on to a l l o c a t e shared team v a r i a b l e s
shared void ∗ a l l o c a t e ( int numblocks , int b l k s i z e , team t ) ;
// Polymorphic func t i on to a l l o c a t e team l o c k s
upc lock t ∗ a l l o ca t eLock ( team t ) ;
// Dea l l o ca t e shared v a r i a b l e s de f ined us ing ” a l l o c a t e ”
void d e a l l o c a t e ( shared void ∗ pointer , team t ) ;
// Dea l l o ca t e l o c k s de f ined us ing ” a l l o ca t eLock ”
void dea l l o ca t eLock ( upc lock t ∗ pointer , team t ) ;

List. 3.9: Signatures of the team management auxiliary functions

It is important to note that the team-based collectives included in the developed

library do not depend on a specific definition of a team, because team manipulation

is always performed through calls to the functions in Listing 3.9. Therefore, any

underlying implementation of a team and its auxiliary functions can be used to

call the collectives, and the proposed signatures only represent a possible naming

convention for a team management interface. The team-based collectives have been

implemented independently from the underlying team library, by dealing with teams

through different management functions for basic team operations, such as barriers

or memory allocation routines. Using these functions as interface, the separation

between collectives and team libraries is achieved.

Description of Team-based Collectives

All team-based collectives (labeled with team) present the same arguments as

their standard counterparts, plus the private variable that represents the team de-
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scription. Listing 3.10 shows the signature of the team-based gather collective as

a representative example. The team-based implementation interprets the argument

that represents the size of communications (nbytes) as the total amount of data

that is transferred by all threads in the team. Thus, nbytes/numthreads bytes

are transferred by each thread, and the first chunk goes to the thread with tid 0

(being “tid” the identifier within a team, which may not be necessarily equal to

the associated thread’s identifier). Only the members of the team can invoke these

functions.

void upc a l l g a the r t eam (
shared void ∗dst , shared const void ∗ src , s ize t nbytes ,
team t , upc flag t sync mode

) ;

List. 3.10: Signature of a team-based collective

Additionally, the scatter, gather, allgather and exchange collectives admit the

implementation of a filter version (labeled with team allthr), in which the team

only prevents the threads that are not included in it from executing the operation.

Therefore, this version ignores team identifiers for communication, and the argument

nbytes is interpreted as the amount of data transferred by each thread. All these

filter operations have the same argument types as the team counterpart.

Figure 3.6 illustrates the behavior of both types of team-based collectives with

a scatter collective executed using 4 threads. Both functions have a source array of

12 KB, which is distributed according to the definition of each collective among the

three threads of team t (0, 1 and 3, that have tids 0, 1 and 2, respectively).

THREAD 0 THREAD 1 THREAD 3THREAD 2

4KB 4KB 4KB

TID 0 TID 1 TID 2

src

dst

upc_all_scatter_team (dst, src, 12*1024, t, sync_mode)

THREAD 0 THREAD 1 THREAD 3THREAD 2

TID 0 TID 1 TID 2

src

dst

3KB 3KB 3KB 3KB

upc_all_scatter_team_allthr (dst, src, 3*1024, t, sync_mode)

                  

Fig. 3.6: Communications for team-based scatter operations (4 threads)
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Finally, the piece of code in Listing 3.11 presents an example of the use of

team-based collectives: two teams execute the same function (computation of Pi

using the Monte Carlo method) in parallel in the same UPC program. This allows

the exploitation of heterogeneous architectures, supporting resources with different

computational power: a team could group different processors (even hardware ac-

celerators such as GPUs) according to their features, thus helping handle workload

imbalance.

void computePiMontecarlo ( int t r i a l s , team t ,
shared double ∗ e s t imat i on ) {

shared int g l o b a l h i t s [THREADS] ;
shared int l o c a l h i t s [THREADS] ;
double piEst imat ion ;
// F i l t e r a l l t h reads t ha t are not inc luded in the team
i f ( ! isThreadInTeam (MYTHREAD, t ) ) return ;
// Aux i l i a r y func t i on
int nth = getNumThreads ( t ) ;
// Compute l o c a l h i t s , put r e s u l t in l o c a l h i t s [MYTHREAD]
. . .
u p c a l l r e d u c e I a l l t e a m ( g l o b a l h i t s , l o c a l h i t s , UPC ADD,

nth , 1 , NULL, t , sync mode ) ;
// Compute p i e s t ima t ion
. . .
∗ e s t imat i on = piEst imat ion ;
return ;

}

int main ( ) {
team t1 , t2 ;
shared double est1 , e s t2 ;
// I n i t i a l i z e v a r i a b l e s and crea t e teams ( d i s j o i n t s e t s )
. . .
// Execute t a s k s
computePiMontecarlo ( t r i a l s 1 , t1 , &es t1 ) ;
computePiMontecarlo ( t r i a l s 2 , t2 , &es t2 ) ;
i f (MYTHREAD == 0) {

p r i n t f ( ” Est imation :% l f \n” ,
( e s t1 ∗ t r i a l s 1+es t2 ∗ t r i a l s 2 )/ ( t r i a l s 1+t r i a l s 2 ) ) ;

}
}

List. 3.11: Computation of Pi using team-based collectives
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3.2.4. Get-put-priv Collectives

The get-put-priv collectives allow the use of a private array as source and/or

destination parameter in all the previously discussed extended collectives (in-place,

vector-variant and team-based, alongside their own additional versions), and also

in the standard collectives plus allreduce. They represent the largest subset of

collectives included in the extended library, as the commented functionality can be

applied to the standard UPC collectives and also to the rest of extended collectives.

The get-put-priv functions are classified in three subgroups:

get collectives : shared source and private destination.

put collectives : private source and shared destination.

priv collectives : the source and destination are both private.

In-place collectives are the only subset that cannot implement all these three

variants, but only the priv one, as they have the same array as source and desti-

nation. The only change introduced in the arguments of these functions compared

to standard/extended collectives is the declaration of the source and/or destination

array(s) as private. For illustrative purposes, Listing 3.12 shows the signatures of

the allgather get-put-priv versions, both standard and vector-variant.

The algorithms implemented in these collectives minimize the number of com-

munications, avoiding unnecessary remote data transfers and maximizing parallel

processing among threads using as few synchronization points as possible. In gen-

eral, get and put collectives do not use any additional buffer in private or shared

memory to implement the necessary data copies: each thread uses its associated

shared memory space in the source (get) or the destination (put) for all communi-

cations. Only priv collectives require the allocation of additional shared memory to

allow the data transfers, at most the same size as the communications performed.

As an example, Figure 3.7 shows the priv version of a broadcast that uses 4 threads.

First, thread 0 stores its data in an auxiliary buffer in shared memory, then a syn-

chronization is necessary to make sure that the data has been made available, and

finally all threads copy the data to the final location. Here thread 0 copies its own

data in its private memory space using the memcpy system library routine.



3.2 Implementation of Extended Collectives 59

void u p c a l l g a t h e r a l l g e t (
void ∗dst , shared const void ∗ src , s ize t nbytes ,
upc flag t sync mode

) ;
void u p c a l l g a t h e r a l l p u t (

shared void ∗dst , const void ∗ src , s ize t nbytes ,
upc flag t sync mode

) ;
void u p c a l l g a t h e r a l l p r i v (

void ∗dst , const void ∗ src , s ize t nbytes , upc flag t sync mode
) ;
void u p c a l l g a t h e r a l l v g e t (

void ∗dst , shared const void ∗ src , shared int ∗ddisp ,
shared int ∗ sd i sp , shared s ize t ∗nelems , s ize t dst b lk ,
s ize t s r c b l k , s ize t type s i z e , upc flag t sync mode

) ;
void u p c a l l g a t h e r a l l v p u t (

shared void ∗dst , const void ∗ src , shared int ∗ddisp ,
shared int ∗ sd i sp , shared s ize t ∗nelems , s ize t dst b lk ,
s ize t s r c b l k , s ize t type s i z e , upc flag t sync mode

) ;
void u p c a l l g a t h e r a l l v p r i v (

void ∗dst , const void ∗ src , shared int ∗ddisp ,
shared int ∗ sd i sp , shared s ize t ∗nelems , s ize t dst b lk ,
s ize t s r c b l k , s ize t type s i z e , upc flag t sync mode

) ;

List. 3.12: Signatures of representative get-put-priv collectives

 SHARED

MEMORY

 PRIVATE

MEMORY

THREAD 0 THREAD 1 THREAD 2 THREAD 3

src

dst

tmp

                  (1) upc_memput

         (2) upc_memget x 3

 

                           (2) memcpy

Fig. 3.7: Data movements for upc all broadcast priv (4 threads)
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The usefulness of these functions can be assessed in a parallel image filtering

algorithm, presented in Listing 3.13. The input data, a matrix of N×N elements,

is stored in the private memory of thread 0 (in matrix img), and then the private

versions of the standard scatter and in-place broadcast perform the necessary data

movements to distribute the workload to the private memory spaces of all threads

(in matrix aux). The filtering algorithm is executed on private memory to favor

the efficient exploitation of data locality, because computing with private memory

is more efficient than dealing with shared memory [22]. Finally, the private version

of the standard gather collective returns the final result in the private memory of

thread 0 (in matrix filteredImg).

// I n i t i a l i z e ’ img ’ as the source N∗N image , ’ aux ’ as an
// a u x i l i a r y array o f (N/THREADS)∗N elements on each thread
// and ’ f i l t e r ’ as a 3x3 matrix .
// A l l p r i v a t e v a r i a b l e s are i n i t i a l i z e d on thread 0

u p c a l l s c a t t e r p r i v ( aux , img , (N/THREADS)∗N∗ s izeof (double ) ,
sync mode ) ;

u p c a l l b r o a d c a s t i n p l a c e p r i v ( f i l t e r , 3∗3∗ s izeof (double ) ,
sync mode ) ;

f i l t e r M a t r i x ( aux , f i l t e r , N, N, 3 , 3 ) ;

u p c a l l g a t h e r p r i v ( f i l t e r e d I m g , aux , (N/THREADS)∗N∗ s izeof (double ) ,
sync mode ) ;

List. 3.13: Image filtering algorithm using get-put-priv collectives

3.3. Optimization of Extended Collectives

The functions included in the extended collectives library have been implemented

efficiently, in order to take advantage of the underlying system architecture. As the

main goal of their development is to provide high programmability and flexibil-

ity, any improvement seeking better performance for these collectives has avoided

the introduction of restrictions in their applicability, i.e. no platform-specific or

implementation-specific code has been used. Therefore, the basis of these optimiza-

tions are always standard UPC and C functions, which have been used to implement

efficiently the collective algorithms.
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In general, the implemented optimizations focus on obtaining more efficient algo-

rithms for hybrid shared/distributed memory communications, in order to minimize

internode communications, mainly managing efficiently remote data transfers. The

use of straightforward communications in a minimum number of steps, as shown for

the algorithms in the previous section (e.g., the maximization of parallel operations

in Figure 3.7), is only reserved for pure shared memory communications: these

transfers benefit from the high memory capabilities of multicore systems, which

can handle efficiently multiple large-sized parallel memory copies (see Section 2.1.2

for more information). However, the interconnection networks present, in general, a

high start-up latency and have a limited bandwidth, demanding generally tree-based

algorithms to handle efficiently data movements and auxiliary memory storage. In

the extended library, three different tree implementations have been used.

Figure 3.8 shows a representative flat-tree algorithm for multicore systems using

upc all scatter priv, that illustrates the remote and local data movements per-

formed on 4 nodes with 4 threads on each node using 16 KB of source data. This

algorithm has been implemented to minimize remote data transfers on clusters of

multicore nodes, but also maximizing parallel communications. Here, thread 0 di-

vides the source data in equal parts for each node, and sends each part to a different

node, receiving the data a thread on behalf of all the threads of the node. After that,

the thread that receives the data performs an intranode scatter (in shared memory)

of the received 4 KB data chunks to the rest of threads in the node. The label “(i)”

marks the execution step in which the associated data movement is performed.

Figure 3.9 presents an alternative implementation of upc all scatter priv us-

ing a binomial tree, which is focused on NUMA node architectures. In this al-

gorithm, thread 0 begins the scatter of the first half of the total source data to

nodes 0 and 1 in the first step, similarly to the previous flat-tree algorithm, and

also sends the remaining source data to the root in node 2 (thread 8), which in

turn starts scattering these data to nodes 2 and 3 in the following step. It is

also important to note that a thread performing remote and private data move-

ments in the same execution step (e.g., thread 0 in step 1) will prioritize the re-

mote ones in order to favor the throughput of the algorithm. According to Fig-

ure 3.9, this algorithm is implemented in more time steps than the flat-tree one

for multicore systems, but it provides a more scalable implementation because of
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Fig. 3.8: Data movements for upc all scatter priv with flat-tree algorithm on 4 nodes
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the stepwise remote accesses to the source data on thread 0: when the number of

nodes is large, the flat-tree approach presents too many concurrent accesses to the

source data, and the binomial tree splits these accesses between different nodes, thus

favoring the use of different data paths.

A hybrid communication pattern between the two previous algorithms, called

binomial-flat-tree approach, is illustrated in Figure 3.10. Here all internode commu-

nications are performed following a binomial-tree approach, whereas all intranode

communications follow the flat-tree algorithm. This approach is useful on multicore

nodes with a UMA-like architecture, thus helping to exploit memory bandwidth

more efficiently and reducing synchronizations between threads.

In order to complement these algorithms, additional optimizations related to

memory handling and thread affinity have been implemented in the library. The

most relevant ones are: (1) the segmentation of large-sized internode communica-

tions, (2) the reutilization of shared auxiliary buffers for different collective functions,

and (3) the use of thread pinning in order to assign the processing of a given thread

to a selected core in the system. All these features are configurable by the library,

and can be activated on demand depending on the execution requirements.

3.4. Use of Extended Collectives: Case Studies

The extended collectives improve programmability for a wide variety of problems

by reducing the number of SLOCs and favoring code expressiveness. Nevertheless,

their adoption depends on the achievement of relevant benefits when compared to

their equivalent implementation in standard UPC. Thus, this section analyzes the

impact of extended collectives on different codes (dense and sparse matrix multipli-

cation, Integer Sort and 3D Fast Fourier Transform), justifying the benefits in terms

of programmability obtained from their use.

3.4.1. Dense Matrix Multiplication Kernel

Listing 3.14 presents an optimized standard UPC code that multiplies two dense

N×N matrices (C=A×B). The source matrices A and B are stored in the private mem-
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#define chunk s i z e N∗N/THREADS;
double ∗A, B[N∗N] , ∗C;
double l o ca l A [ chunk s i z e ] , l o c a l C [ chunk s i z e ] ;
shared [ chunk s i z e ] double temp A [N∗N] , temp C [N∗N ] ;
shared [ ] double temp B [N∗N ] ;
i f (MYTHREAD == 0) {

// A l l o ca t e and i n i t i a l i z e arrays A and C, i n i t i a l i z e B
. . .
memcpy( loca l A , A, chunk s i z e ∗ s izeof (double ) ) ;
for ( i =1; i<THREADS; i++) {

upc memput(&temp A [ i ∗ chunk s i z e ] , &A[ i ∗ chunk s i z e ] ,
chunk s i z e ∗ s izeof (double ) ) ;

}
}
upc barrier ;
i f (MYTHREAD != 0) {

upc memget ( loca l A , &temp A [MYTHREAD∗ chunk s i z e ] ,
chunk s i z e ∗ s izeof (double ) ) ;

}
i f (MYTHREAD == 0) {

upc memput ( temp B , B, N∗N∗ s izeof (double ) ) ;
}
upc barrier ;
i f (MYTHREAD != 0) {

upc memget (B, temp B , N∗N∗ s izeof (double ) ) ;
}

computeSubmatrix ( loca l A , B, loca l C , N/THREADS, N, N) ;

i f (MYTHREAD != 0) {
upc memput(&temp C [MYTHREAD∗ chunk s i z e ] , l oca l C ,

chunk s i z e ∗ s izeof (double ) ) ;
}
upc barrier ;
i f (MYTHREAD == 0) {

memcpy(C, loca l C , chunk s i z e ∗ s izeof (double ) ) ;
for ( i =1; i<THREADS; i++) {

upc memget(&C[ i ∗ chunk s i z e ] , &temp C [ i ∗ chunk s i z e ] ,
chunk s i z e ∗ s izeof (double ) ) ;

}
}

List. 3.14: Original UPC dense matrix multiplication code
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ory of thread 0. All matrices are stored in a linearized form (1D) according to the

UPC standard. To parallelize the operation, matrix A is split in chunks, distributed

evenly among all threads and stored in their private memory spaces together with

a copy of matrix B, which is broadcast from thread 0. After the local multipli-

cation, the result matrix is finally gathered in thread 0. All the data movements

between threads are performed using multiple one-sided communications with mem-

ory copy functions, because of the lack of collectives support for operating with

different private memory spaces as source and destination addresses, and thus aux-

iliary shared arrays (temp A, temp B and temp C) and synchronizations (three calls

to upc barrier) are necessary to perform the data transfers between threads.

The use of extended collective functions can reduce significantly the complexity

of the UPC implementation of this kernel, as presented in Listing 3.15. Here all the

data movements associated to the source and destination arrays are implemented

using extended collective functions with private arguments. Matrix A is evenly

distributed to all threads using a priv scatter collective, whereas a priv in-place

broadcast transfers the whole matrix B to all threads. Finally, the result matrix C is

obtained using a priv gather collective. It is important to note that the programmer

does not need to deal with any temporary buffer to perform the communications,

as the extended collectives handle the auxiliary memory space transparently to the

user. Therefore, extended collectives allow the parallelization of this code without

requiring the user to deal with shared memory addresses or temporary buffers, and

additionally the user takes advantage of efficient communication algorithms for data

transfers transparently.

double l o ca l A [ chunk s i z e ] , l o c a l C [ chunk s i z e ] ;
u p c a l l s c a t t e r p r i v ( loca l A , A, (N∗N/THREADS)∗ s izeof (double ) ,

sync mode ) ;
u p c a l l b r o a d c a s t i n p l a c e p r i v (B, N∗N∗ s izeof (double ) ,

sync mode ) ;

computeSubmatrix ( loca l A , B, loca l C , N∗N/THREADS, N, N) ;

u p c a l l g a t h e r p r i v (C, loca l C , (N∗N/THREADS)∗ s izeof (double ) ,
sync mode ) ;

List. 3.15: UPC dense matrix multiplication code with extended collectives
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3.4.2. Sparse Matrix Multiplication Kernel

This kernel performs the multiplication of a sparse matrix, stored in Compressed

Sparse Row (CSR) format, by a dense matrix. Here the work distribution is done by

subdividing the different arrays that define the compressed sparse matrix (values,

column index and row pointer), selecting the number of rows that each thread should

process to obtain balanced workloads. As the number of elements in each array can

be different for each thread, the scatter and gather operations are performed using

vector-variant collectives.

// I n i t i a l i z e v a r i a b l e s : ’ v a l ’ , ’ c o l i n d ’ , ’ row ptr ’ ( va lues ,
// column index and row po in t e r arrays in CSR format ) , ’B ’
// ( ’ k ’∗ ’ n ’ dense source matrix ) , ’C ’ , ’ C d i s t ’ ( f i n a l
// ’m’∗ ’ n ’ and p a r t i a l r e s u l t matr ices ) , ’ nz ’ ( number o f
// non−zero va l u e s ) , ’ d i sp . . . ’ ( some disp lacement v e c t o r s ) ,
// ’ nelems ’ , ’ nrows ’ ( e lement s i z e parameters )
. . .
u p c a l l s c a t t e r v p r i v ( v a l d i s t , val , disp , nelems , nz ,

s izeof (double ) , sync mode ) ;

u p c a l l s c a t t e r v p r i v ( c o l i n d d i s t , c o l i nd , disp , nelems , nz ,
s izeof ( int ) , sync mode ) ;

u p c a l l v e c t o r c o p y p r i v ( r ow pt r d i s t , row ptr , d i sp rows ds t ,
d i sp rows s r c , nrows , THREADS, m+1, m+1, s izeof ( int ) , sync mode ) ;

u p c a l l b r o a d c a s t i n p l a c e p r i v (B, k∗n∗ s izeof (double ) , sync mode ) ;

// Modify ’ nrows ’ to a l l ow separa t e c a l l s to the mu l t i p l i c a t i o n
// a l gor i thm on each thread
. . .
computeMMSparse ( v a l d i s t , c o l i n d d i s t , r ow pt r d i s t , B, C dist ,

nrows [MYTHREAD] , k , n ) ;

// Modify v a r i a b l e s to ga ther the computed submatr ices
. . .
u p c a l l g a t h e r v p r i v (C, C dist , disp , numvalues , m∗n ,

s izeof (double ) , sync mode ) ;

List. 3.16: UPC sparse matrix multiplication code with extended collectives

Listing 3.16 shows the most relevant parts of the sparse matrix multiplication

code that use extended collectives. The multiplication is performed by calling the

sequential multiplication routine separately on each thread, and therefore this in-
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volves some small modifications to the CSR arrays (both for standard UPC and

using the extended library): each sparse matrix chunk is processed by the corre-

sponding thread as an independent matrix. Once the results of each submatrix are

calculated, the displacements are updated accordingly to gather all chunks correctly

in the private memory of thread 0.

The equivalent standard UPC implementation requires a significantly higher

number of SLOCs in order to support the vector-variant data transfers using loops

and array subscripts. Therefore, this code is not shown for clarity purposes.

3.4.3. Integer Sort Kernel

The Integer Sort (IS) kernel [56] from the NAS Parallel Benchmark (NPB) suite

for UPC [32] has been traditionally used in UPC benchmarking [20, 46, 104]. The

core of the kernel is the rank function, which performs the bucket sort of a set of

integer keys, and a piece of its code consists in redistributing the keys by means of

an all-to-all operation with data chunks of different sizes.

Listing 3.17 presents the original implementation of the data exchange performed

in the rank function of IS. The keys are stored in a shared array (key buff1 shd),

and the information about the data chunks that correspond to each thread is stored

in a private array of THREADS structures (infos). Each structure in this auxiliary

array contains the number of elements and the offset of the first element for each

data chunk. The chunks received by a thread after the all-to-all communication are

stored consecutively in its private memory (array key buff2).

Listing 3.18 shows the implementation of the all-to-all communications of rank

in IS using the get version of the upc all exchange v merge local extended col-

lective. As the displacements used are relative array positions, a local version is

required, and the get variant is necessary to use the same source and destination

arrays as in the original code. However, the extended collective handles the displace-

ments (send displ shd) and element counts (send count shd) separately, thus the

array of structs is split in two separate shared arrays. Additionally, a displace-

ment vector (disp) is required by the collective call to indicate the offset for the

first element received at the destination (set to 0 for all threads in this code) as
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// I n i t i a l i z a t i o n o f v a r i a b l e s and data t ype s
// . . .
upc barrier ;
for ( i =0; i<THREADS; i++) {

upc memget(& i n f o s [ i ] , &s e n d i n f o s s h d [MYTHREAD] [ i ] ,
s izeof ( s e n d i n f o ) ) ;

}
for ( i =0; i<THREADS; i++) {

i f ( i == MYTHREAD)
memcpy( key bu f f 2 + t o t a l d i s p l , k ey bu f f 1 + i n f o s [ i ] . d i sp l ,

i n f o s [ i ] . count ∗ s izeof (INT TYPE ) ) ;
else

upc memget ( key bu f f 2 + t o t a l d i s p l ,
k ey bu f f 1 shd+i+i n f o s [ i ] . d i s p l ∗THREADS,
i n f o s [ i ] . count ∗ s izeof (INT TYPE ) ) ;

t o t a l d i s p l += i n f o s [ i ] . count ;
}
upc barrier ;

List. 3.17: Original UPC code in Integer Sort

// I n i t i a l i z a t i o n o f v a r i a b l e s and data t ype s
. . .
u p c a l l e x c h a n g e v m e r g e l o c a l g e t (

key buf f2 , key buf f1 shd , s end d i sp l shd , send count shd ,
disp , SIZE OF BUFFERS , SIZE OF BUFFERS , s izeof ( int ) , sync mode ) ;

List. 3.18: UPC code in Integer Sort using extended collectives

well as the block size of the source array (SIZE OF BUFFERS), which is a predefined

constant in the code. For illustrative purposes, a sample code using the function

upc all exchange v merge local in a 2-thread scenario is shown in Figure 3.11.

3.4.4. 3D Fast Fourier Transform Kernel

The 3D Fast Fourier Transform (FFT) is another kernel from the UPC NPB

suite. It computes the Fourier transform algorithm on a three-dimensional matrix

using different domain decompositions, representing a widely extended code in sci-

entific and engineering computing. This UPC kernel has been derived from the

OpenMP FFT NPB implementation, and thus includes some significant changes on

the variables with respect to the original Fortran code, in order to allow a better

adaptation to the UPC syntax (e.g., user-defined data types are used to facilitate
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upc_all_exchange_v_merge_local (dst, src, exchange, nelems, disp, 8, 8, sizeof(int), sync_mode)
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Fig. 3.11: Communications for upc all exchange v merge local (2 threads)

the storage of complex values on each thread). The main computations of this ker-

nel are performed in private memory using an array of structs (u0) that stores the

initial conditions of the system in a linearized way analogously to the matrices of

Section 3.4.1, and two working arrays (u1 and u2) that assist the computation of the

Fourier transform by storing intermediate calculations. The key part of this code

is the computation of the transpose of the linearized matrix (stored in array u1) in

u2, which is performed using a heavy all-to-all communication. Listing 3.19 shows

the implementation of the remote communications used for the matrix transposition

in the UPC FFT code, using upc memget to obtain the corresponding array chunk

from each thread: the data associated to a thread is stored in an array of complex

values included as a member of a struct, which is defined for each thread in an array

of shared structs with THREADS elements. This technique is used to avoid the

definition of an array with a very large block size, which would affect performance.

for ( i = 0 ; i < THREADS; i++) {
upc memget (

( dcomplex ∗)&u2 [MYTHREAD] . c e l l [ chunk∗ i ] ,
&u1 [ i ] . c e l l [ chunk∗MYTHREAD] , s izeof ( dcomplex ) ∗ chunk ) ;

}

List. 3.19: Original UPC code in 3D FFT
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Here the introduction of an extended exchange collective represents a better solu-

tion to implement all-to-all communications. However, the definition of the array of

shared structs to store the data does not allow a direct application of this collective,

as the source data is split. Therefore, some small changes are performed: the shared

source array is referenced by a private pointer for each thread, and the priv variant

of the exchange collective is applied here to obtain higher performance, as stated

in Listing 3.20. Considering that the copy from u1 to u2 in this transposition is

performed just to simplify the code, a second in-place solution is proposed, in which

the all-to-all communication is performed on the same array u1. This approach only

involves that the results of the communication are stored in u1 instead of u2, which

does not affect the final results of the FFT because the source data in u1 is not

reused after this communication. Both implementations with extended collectives,

alongside with the standard approach, will be evaluated and tested in Section 3.6.

// F i r s t approach : u1 as src and u2 as d s t
u p c a l l e x c h a n g e p r i v (

( dcomplex ∗)my u2−>c e l l , ( dcomplex ∗)my u1−>c e l l ,
s izeof ( dcomplex ) ∗ chunk , sync mode ) ;

// Second approach : in−p lace comms in u1
u p c a l l e x c h a n g e i n p l a c e p r i v (

( dcomplex ∗)my u1−>c e l l , s izeof ( dcomplex ) ∗ chunk , sync mode ) ;

List. 3.20: UPC code in 3D FFT using extended collectives

3.5. Microbenchmarking of UPC Collectives

The performance evaluation of the extended collectives library consisted of a mi-

crobenchmarking of representative collectives and an analysis of the impact of their

performance on UPC kernels. Figures 3.12 to 3.14 show the microbenchmarking re-

sults for three extended collectives on two representative hybrid shared/distributed

memory architectures. The selected collectives (or a variant of them) are used in

the kernels presented in Section 3.4, therefore the analysis of their performance will

help to illustrate the improvements that can be obtained in these codes by means

of extended collectives.

The performance results have been obtained on two systems. The first one is the
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JuRoPa supercomputer (from now on JRP) at Forschungszentrum Jülich (ranked

89th in the TOP500 List of November 2012), which consists of 2208 compute nodes,

each of them with 2 Intel Xeon X5570 (Nehalem-EP) quad-core processors at 2.93

GHz and 24 GB of DDR3 memory at 1066 MHz, and also an InfiniBand HCA

(32 Gbps of theoretical effective bandwidth) with non-blocking Fat Tree topology.

The second system is the Finis Terrae supercomputer (from now on FT) at the

Galicia Supercomputing Center (CESGA), which consists of 142 HP Integrity RX

7640 nodes, each of them with 8 Montvale Itanium 2 (IA-64) dual-core processors at

1.6 GHz, 128 GB of memory and InfiniBand as interconnection network (4X DDR,

16 Gbps of theoretical effective bandwidth). On both systems, the UPC compiler

is Berkeley UPC [3] v2.14.2 (with Intel icc v11.1 as backend C compiler) using its

InfiniBand Verbs conduit for communications on InfiniBand. The Intel Math Kernel

Library (MKL) v10.2 has also been used in the matrix multiplication kernels that

will be evaluated in Section 3.6.

All the results shown here have been obtained using the UPC Operations Mi-

crobenchmarking Suite [45, 94]. Each figure presents data associated to a given

extended collective, which has been executed using 32 threads on 8 nodes (4 threads

per node). The message sizes considered for each collective range between 4 KB and

8 MB, showing aggregated bandwidth results for a clearer comparison against the

bandwidth provided by the interconnection network (4 GB/s per link for JRP and 2

GB/s per link for FT). The identifiers for each entry in the legends have two parts:

(1) the identifier for the implementation of the collective function, and (2) optional

tags that identify a variant of the given implementation. The following list describes

all the identifiers and tags that are used in the microbenchmarking figures:

Identifiers:

• Original: the corresponding standard implementation of the given ex-

tended collective (i.e., the one included in the standard UPC collectives

library).

• Base UPC: the implementation of the same functionality as the target

extended collective using standard UPC facilities.

• Extended: the actual function included in the extended collectives library,

considering the optimizations presented in Section 3.3 in order to obtain
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the best performance.

Tags:

• priv: the priv variant of the given extended collective (see Section 3.2.4).

• pvpr: an implementation of a standard collective functionality that uses

privatizations of shared variables whenever possible (see Section 2.1.1).

Figure 3.12 shows the performance results of the upc all broadcast in place

collective, which has been used to implement the dense matrix multiplication pre-

sented in Section 3.4.1. In both test environments the best results correspond to

the implementation of the extended collectives library. The priv version presents

lower bandwidth because of the additional copy of the data from the private space

to shared memory for each thread, which reduces around 12% the performance on

JRP and 7% the performance on FT for 8 MB. In this latter scenario, the network

communication is the main bottleneck, so this copy does not impact performance

significantly. In both test environments the tree-based communications using a

binomial-flat-tree algorithm (see Figure 3.10 for a reference) are playing the most

important role in the optimization, as well as the efficient memory handling of the

buffers for the priv case. As a result, the implementation with standard UPC fa-

cilities (Base UPC) generally presents the worst performance, except for message

sizes larger than 256 KB in the FT testbed, where it outperforms the priv version

because of the commented additional data copy. Regarding both testbed systems,

the results of JRP clearly outperform those of FT, mainly because of the higher

network bandwidth, thus in the following graphs only the results of JRP are shown

for clarity purposes.

Figure 3.13 presents the bandwidth results of the upc all scatter v collective,

which is included in the implementation of the sparse matrix multiplication (see

Section 3.4.2). The implementation of a vector-variant collective notably increases

the complexity of the base collectives, therefore the bandwidth results are lower when

compared to those in Figure 3.12. Regarding the comparison between algorithms,

the extended collective outperforms the base UPC implementation in all cases. It

is also important to remark the benefits of the privatization of array parameters

when using the base UPC collective: using this feature, its implementation can

obtain very important benefits, especially for large message sizes. However, the
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Fig. 3.12: Performance of upc all broadcast in place

tree-based algorithm is once again making the difference between the standard and

the extended collective implementation.

Figure 3.14 shows the results of the upc all exchange in place collective, whose

variants are used in the implementation of the Integer Sort and 3D FFT kernels (in

Sections 3.4.3 and 3.4.4, respectively). Unlike the previous cases, the results of the

original UPC exchange collective from the standard library is shown here, because

its relatively low performance helps to illustrate how the extended in-place version

is able to obtain higher bandwidth. Even the results of its priv version are signifi-

cantly better than those of the original collective for message sizes between 128 KB

and 1 MB, which indicates that not only the optimizations play an important role,

but also a good algorithm is a key factor to obtain high performance (see Figure 3.3

for a graphical description). However, it is also significant that the Base UPC im-

plementation (which uses the Original UPC exchange collective as a basis) obtains

higher performance for message sizes smaller than 64 KB; therefore, the benefits of

the new algorithm are effective when large messages are used.
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3.6. Performance Evaluation of UPC Kernels

This section presents a performance analysis of the representative collective-

based UPC kernels discussed in Section 3.4 on the two testbed systems (FT and

JRP) described in Section 3.5. The experimental results of the evaluated codes have

been obtained using two different configurations of number of threads per node: (1)

one thread per node, and (2) the maximum number of cores per node in each testbed

system (fill-up policy), i.e. 16 threads for FT and 8 for JRP. In both configurations,

the optimizations presented in Section 3.3 have been applied conveniently on both

systems according to their requirements. Each of the analyzed codes has one im-

plementation using standard UPC operations and an alternative version using the

extended collectives library (see Section 3.4 for further details about its application

to these codes). The standard UPC versions of NPB IS and FFT are available at [32],

whereas the other codes that use standard UPC operations have been implemented

following general guidelines for UPC hand-optimized codes [22].

Figure 3.15 shows the performance in terms of execution times and GFLOPS

for the dense matrix multiplication of two 4480×4480 matrices of double precision

floating-point elements, using a standard UPC code (labeled as “Standard UPC”)

and the extended collectives (“Extended Colls”). Here each UPC thread calls a

sequential MKL matrix multiplication function, and all data movements associated

to the workload distribution are performed by the collective functions. The results

indicate that the use of extended collectives helps achieving the best results of this

code in nearly all test cases, being specially advantageous for the worst scenario

in the standard UPC code: when a single thread per node is used and thus the

network overhead represents the main performance penalty. More precisely, the use

of binomial-tree algorithms in executions with one thread per node favors a suitable

exploitation of the internode bandwidth, whereas the use of intranode communica-

tions on shared memory with 8 (JRP) or 16 threads (FT) per node requires the

binomial-flat-tree approach. In this latter case, the difference between the standard

code and the extended collectives is smaller because of the maximization of flat-tree

intranode communications. In general, the benefits of the use of extended collectives

are noticeable especially when using 32 threads or more in both testbeds, where also

the message segmentation improves cache data locality.
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Figure 3.16 displays the performance of the sparse matrix multiplication code.

The sparse matrix is a symmetric 16614×16614 matrix with 1,091,362 non-zero en-

tries (0.4% of non-zero elements) generated by the FIDAP package in the SPARSKIT

Collection [59], and the dense matrix has 16614×4480 double precision elements.

Once again, the extended collectives provide better performance than the standard

UPC code, especially as the number of threads increases. This improvement is a

bit higher than in the dense case because of the larger amount of communications

involved. As a result, the use of more efficient communication algorithms, which

take advantage of hybrid shared/distributed memory architectures favoring data lo-

cality, is also a key factor in this scenario. Here the execution times are higher (the

GFLOPS smaller) than for the dense case, which is due to the overhead of accessing

the sparse matrix, in CSR format, as well as the communication penalty introduced

by the data transfers required for this kernel (based on the vector-variant collectives),

which makes the optimizations depend on a balanced workload distribution.

Figure 3.17 presents the performance of the standard version of NPB UPC IS in

terms of execution times and millions of operations per second (Mop/s), compared to

a version using the extended exchange collective (merge-local-get vector-variant, see

Figure 3.11 for a similar example). For a small number of threads, the standard NPB

code obtains similar results to the version using the extended collectives, although

the difference grows as the number of threads increases, because of the positive effect

of using binomial-tree algorithms for the extended collectives. It is also important

to note that this kernel exploits intranode communications when using a single node

on FT (up to 16 threads for a 16-thread configuration), whereas when using 32 or

more threads the best results are obtained using a single thread per node, which

is also the most efficient configuration for all tests in JRP. The IS kernel performs

several all-to-all operations that exchange a significant number of messages between

threads, and FT can take advantage of the use of intranode communications, but

the contention in the access to the InfiniBand adapter on internode communications

with 16 threads per node (in executions with multiple nodes) causes a significant

performance drop. Regarding JRP, the use of a maximum of 8 threads per node

and a better access to the network adapters allow better communication scalability.

Figures 3.18 and 3.19 show the performance results of different implementations

of the 3D FFT kernel in terms of execution times and billions (109) of operations
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per second (Gop/s) for 1 and 8 threads per node, respectively. In addition to

the UPC codes described in Section 3.4.4 (the original standard UPC code, the

one using a priv extended collective and the one using the priv in-place function),

two more codes that use the C MPI library have been implemented in order to

have a traditional parallel programming approach as a reference implementation

for the UPC results: one code uses the standard MPI Alltoall collective and the

other uses the same collective with the MPI IN PLACE option, thus the array u1 (see

Section 3.4.4) is used both as source and destination. These MPI codes follow an

analogous approach to the original UPC kernel to show a fair comparison with the

UPC codes. As a result of the inclusion of the MPI code, and in order to favor

the simplicity and readability of the graphs, Figures 3.18 and 3.19 only include the

results obtained in the JRP system (where ParaStation MPI 5.0.27-1 [61] has been

used as MPI compiler in the corresponding tests).

The comparison of these five codes gives out that MPI obtains slightly better

performance up to 32 threads, but from then on the UPC in-place collective clearly

presents the best results. The main reason is the use of the efficient algorithm that

provides the best performance for large messages, as commented in Section 3.5 (see

Figure 3.14), which is able to maximize the parallelism at a lower computational

cost. Moreover, the higher the communication cost of the all-to-all, the better the

priv in-place collective is able to perform, thus an execution with a high number

of threads highlights the benefits of this implementation. Regarding the number of

threads per node, the use of all cores in a node is worse than using only one for all

UPC and MPI codes, which is due to the contention of InfiniBand communications

similarly to the IS case.

3.7. Conclusions to Chapter 3

This chapter has presented the design, implementation, optimization and eval-

uation of a library of extended UPC collectives focused on providing higher pro-

grammability and overcoming the limitations of the standard UPC collectives li-

brary by enabling: (1) communications from/to private memory, (2) customized

message sizes on each thread, and (3) the use of teams, among other features. The

library consists of about 50 in-place, vector-variant and team-based collective func-
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tions (not including the type variations of reduce, prefix reduce and allreduce),

alongside versions of many of them (e.g., rooted) and get-put-priv functions, adding

a total of more than 15,000 SLOCs (see Appendix A for the complete API). The

algorithms implemented for these collectives are intended to maximize parallelism

and efficiency by exploiting one-sided communications with standard memory copy

functions. Moreover, an implementation at library level of teams has been devel-

oped to support team-based collectives, providing a general functionality that can

be applied to any UPC code.

Four representative codes have been used for a comparative evaluation of the

implemented library, and the results have shown that the use of the extended collec-

tives has provided good solutions for all tested cases in terms of both performance

and programmability. The extended collectives have been able to provide a more

compact implementation of different communication patterns for the selected ker-

nels. Moreover, the use of efficient collective algorithms enhanced performance for

all the tests, especially for the 3D FFT code, in which the results have outperformed

even the MPI counterpart (the UPC in-place collective obtained up to 28% of per-

formance improvement for 256 threads). As a general outcome of the evaluation,

these functions are able to obtain a better exploitation of computational resources

as the number of threads and the amount of data to be transferred increases. In

summary, these collectives provide a powerful and productive way for inexperienced

parallel programmers to implement custom data transfers and parallelize sequential

codes, as well as a wide variety of resources for expert UPC programmers, that can

transparently take advantage of the optimizations implemented in this library.

After presenting some examples of computational kernels that use collective func-

tions, the next chapters of the Thesis will focus on large-scale applications: (1) a

UPC MapReduce framework and (2) a Brownian dynamics simulation.





Chapter 4

MapReduce for UPC: UPC-MR

This chapter presents the analysis, design, implementation and evaluation of a

UPC MapReduce framework: UPC-MR [81]. The implementation of coarse-grain

parallelism to process large data sets in a distributed environment has become a

very relevant issue nowadays, and here the use of the MapReduce paradigm has

proved to be a suitable solution in a wide variety of environments and applications.

For example, MapReduce processing approaches are being applied to information

retrieval [51], pattern recognition [42] or processing of medical information [50].

The motivation of this implementation is to put together the processing power

required by MapReduce workloads and the programmability and efficiency of PGAS

languages in order to manage current and upcoming hardware architectures. This

framework will present the applicability of the PGAS UPC syntax in the develop-

ment of a high-level data structure that facilitates abstract processing and a specific

syntax for code parallelization with UPC, which will give an answer to the require-

ments detected in the programmability sessions of Section 2.2. Additionally, this

code will show the application of some collective functions from the extended library

described in Chapter 3, presenting performance results up to 2048 cores.

The following sections begin with a brief description of the state of the art in

MapReduce (Section 4.1). The design and implementation of the UPC-MR frame-

work is presented in Section 4.2, and the performance results using four represen-

tative applications are analyzed in Section 4.3, studying the impact of different

processing approaches and the use of extended collectives.

87
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4.1. Introduction to MapReduce

The MapReduce processing consists of two stages: the “Map” stage, in which a

function is applied in parallel to a set of input elements to generate another set of

intermediate key/value pairs, and the “Reduce” stage, in which all the intermedi-

ate pairs with the same key are combined to obtain the final output. These ideas

were originally implemented in functional programming languages, but currently,

following the guidelines of the MapReduce framework published by Google [12, 13],

many other implementations of this framework using different languages have been

developed. The use of MapReduce has been generally applied to large data-parallel

problems that deal with the processing of large sets of files, and this kind of problems

have also been used as testbed for performance evaluations [66]. As these tasks are

usually integrated in applications written in object-oriented languages, most of the

existing MapReduce implementations have been written using those languages, such

as Google MapReduce (C++) or Apache Hadoop (Java) [33]. Additionally, there

is also a recent work on the implementation of MapReduce for the X10 program-

ming language [18], which uses the PGAS model as basis for parallelism, focusing

specifically on exploiting programmability.

Nevertheless, there is still very little work on MapReduce applied to HPC. There

are some interesting proposals of MapReduce for HPC, implemented in C on shared

memory, such as the Phoenix project [102] and Metis [48], or using MPI C (linked

to a C++ library) for distributed memory environments, like MapReduce-MPI [63].

Additionally, a study of the possibilities of implementing an optimized version of

MapReduce with MPI [36] concluded that it is feasible, but additional features to

favor productivity and performance in MPI, such as improved collective communi-

cations, are needed. At this point, UPC-MR has been developed aiming to provide

a useful HPC implementation of this processing, favoring its integration on existing

applications and offering good performance on multicore systems.

4.2. Design and Implementation of UPC-MR

The UPC-MR code is structured in two types of functions: the generic manage-

ment functions and the user-defined functions. Management functions are used to
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support the MapReduce functionality, that is, they initialize the framework and per-

form the necessary communications between threads for work distribution at “Map”

and data collection at “Reduce”. User-defined functions include the processing that

should be performed on each element at the map stage and on the intermediate

elements at the reduction stage. In order to maximize simplicity and usability, some

basic ideas have guided the implementation of the UPC-MR framework:

No parallel code development is needed: the management functions can per-

form all the parallel work, thus the user can simply write the sequential C

code for the map and reduce functions that will be applied to the input and

intermediate elements, respectively. However, if more control on the work dis-

tribution at the “Map” stage is desired, the framework also allows the user

to disable all these mechanisms and define a custom parallelization routine

within the map function.

Simplicity in management: the generic management functions for MapReduce

should also be written in an expressive and simple way. If the user needs

to modify them, the use of a clear coding favors a better understanding of

the processing of the management functions. Traditionally, UPC code has

always tried to exploit performance by using privatizations and direct data

movements using bulk memory copies (see Section 2.1.1 and reference [22]),

but here the UPC-MR management codes tend to use higher-level constructs,

such as collective functions, that encapsulate data movements between threads.

Reusability and flexibility: the tasks implemented by the management func-

tions are kept as generic as possible. Thus, the parameters to these functions

are treated as a homogeneous set of values, in which each value has to be pro-

cessed in the same way, regardless of its type. This generic typing is obtained

by means of arrays of void type (void *), and the correct interpretation of

input and output data to these functions is left to the user, because it can

vary depending on the application in which MapReduce is used.

The piece of code included in Listing 4.1 presents the signatures of the two user-

defined map and reduce functions in this framework (mapfunc and reducefunc,

respectively), as well as the MapReduce management functions that perform the
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mapping (ApplyMap) and the reduction (ApplyReduce). The next subsections give

a more detailed description of the implementation process of the latter two, and also

some general remarks on the UPC implementation of the framework.

void ∗mapfunc (void ∗ input , void ∗key , void ∗ value ) ;
void ∗ reduce func (void ∗key , void ∗value , int nelems , void ∗ r e s u l t ) ;
int ApplyMap(

int (∗mapfunc ) ( void ∗ ,void ∗ ,void ∗ ) , void ∗ inputElems ,
int nelems , int userDefDist rFlag , int algor ithm , int ∗weights

) ;
void ∗ApplyReduce (

int (∗ reduce func ) ( void ∗ ,void ∗ , int , void ∗ ) , int nelems ,
int gathFlag , int co l lF l ag , int sizeKey , int s i z eVa lue

) ;

List. 4.1: Signatures of the basic functions in UPC-MR

4.2.1. Function ApplyMap

As can be seen in Listing 4.1, this function receives six input parameters: (1)

the function that should be used for the “Map” stage, (2) the list of elements

to which it has to be applied, (3) the number of elements in that list, (4) a flag

(userDefDistrFlag) that indicates whether the work distribution is performed by

ApplyMap or the user defines a custom distribution, (5) an integer that identifies the

distribution algorithm, and (6) an array of weights that indicates the workload as-

signed to each input element in the list. According to this interface, first each thread

must have the whole list of input elements stored in its private memory before calling

ApplyMap, and then the list is split in subsets of elements that should be processed

by each thread. The work distribution flag determines the type of processing used

in ApplyMap. If this flag is not enabled, ApplyMap distributes the input elements be-

tween threads according to the algorithm selector passed as parameter, and the map

function provided by the user is applied to each single element to generate an inter-

mediate key/value pair (from now on, this will be referred to as “element-by-element

map”). If the flag is enabled, the following two parameters in ApplyMap are ignored,

and the work distribution routine is performed inside mapfunc for the whole set of

input elements (“array-based map”), thus returning a set of intermediate elements.

As a result of this, the implementation of mapfunc (defined by the user) must be

consistent with the work distribution selected in ApplyMap. When an element-by-
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element processing is chosen, ApplyMap implements four different algorithms, that

are selected using the following values for the algorithm parameter:

UPC MR BLOCK : this algorithm divides the number of input elements ac-

cording to a block distribution.

UPC MR CYCLIC : this option assigns each input element to a thread in a

cyclic (round-robin) way, according to the element position in the input array

and the thread identifier. The block and cyclic algorithms do not require the

definition of the weights parameter.

UPC MR BALANCED : this algorithm implements a heuristic to obtain a load

balanced distribution of input elements between threads according to the val-

ues passed as parameter in the weights array (positive integer values). A

high value for a weight indicates that the associated input element presents

a high workload, thus each element in the input vector is assigned to the

thread whose current associated workload (according to the value defined in a

counter) presents the lowest value of all threads.

UPC MR BEST FIT : this option indicates the selection of the most efficient

algorithm among the three previous candidates. To do this in a compact way,

the first element in the array of weights represents here a threshold value, and

the weights associated to the input elements are stored in the following array

positions. The threshold value indicates the maximum difference between

workloads for different threads that may be considered as acceptable in order

to have a load balanced execution. The workloads for the block and cyclic

algorithms are computed, and if the highest workload difference is below the

threshold for one of them, that algorithm is selected for work distribution (if

both pass the test, the block distribution is selected by default). If none of

these is suitable, the balanced algorithm is selected.

Figure 4.1 presents an example of work distribution among three threads using

a set of 9 input elements with different computational weights, with the maximum

difference of workload between threads. Here the BALANCED algorithm obtains a

more similar distribution of workload between threads than the BLOCK or CYCLIC
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ones, because it takes advantage of the implemented heuristic. Consequently, for

this input set the BEST FIT algorithm would select the BALANCED distribution.

9 32 1 8 7 9 8 8

9 32 1 8 7 9 8 8

1 92 9 8 8 3 7 8

1 82 9 98 3 7 8

ARRAY OF WEIGHTS FOR 9 INPUT ELEMENTS

TH. 0 TH. 1 TH. 2

BLOCK

CYCLIC

BALANCED

MAX DIFF

11

13

1

Fig. 4.1: Examples of BLOCK, CYCLIC and BALANCED work distributions

It is important to remark that after the execution of ApplyMap each thread keeps

its own sublist of intermediate elements stored in the private memory space, which

is completely independent from the rest of the threads. These intermediate elements

are managed by the MapReduce framework transparently to the user, thus they do

not need to be returned by ApplyMap.

4.2.2. Function ApplyReduce

This function takes six parameters (see Listing 4.1): (1) the function that will

be used to combine the elements produced by each thread in the “Map” stage, (2)

the number of intermediate key/value pairs per thread, (3) the gathering flag, (4)

the collective communications flag (collFlag), (5) the size of each intermediate

key, and (6) the size of each intermediate value. The gathering flag (gathFlag)

plays an important role in deciding the necessary communications between threads

at the beginning of ApplyReduce. If its value is UPC MR NOCOMM, it indicates

that each thread only requires its intermediate values to return the final result, thus

no communications are performed. When set to UPC MR ALLCOMM, all threads

should gather the intermediate data from the rest of the threads in order to compute
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the reduction. Otherwise, a positive integer value from 0 to THREADS -1 indicates

the identifier of the only thread that gathers the intermediate data and computes

the final result.

The communications required here by ApplyReduce are performed at the same

time by all threads, so collective functions can be used. However, UPC-MR cannot

apply here directly the standard UPC collective primitives, for two major reasons:

(1) MapReduce operates on each thread’s private memory space, but standard UPC

collectives must use shared arrays as source and destination, and (2) some collective

communications, such as the gathering of intermediate elements, generally have a

different number of elements per thread, which is not supported by the standard

UPC collectives. Thus, extended collectives are necessary at this point.

The use of extended collectives in ApplyReduce is controlled using the collective

communications flag (collFlag parameter in Listing 4.1). If this flag is enabled,

collective functions are used for communications, and the user should indicate the

size of each key and value in the set of intermediate elements as parameters to

ApplyReduce. The collective call used here is the priv version of the vector-variant

allgather collective (see Section 3.2.2). However, if all intermediate elements are

not equal in size, the sizeKey and sizeValue parameters are ignored and the raw

version of the previous collective is used in order to indicate the amount of raw data

that is transferred to each thread. In this case, the MapReduce framework detects

this situation internally when generating the output of ApplyMap, and therefore the

system builds indexes to keep track of the start position of every intermediate ele-

ment to reconstruct them and perform the reduction. The memory consumption of

this procedure can be high but, in general, this is not the most common situation, as

all intermediate keys and values typically have the same size. When collFlag is not

enabled, the intermediate elements are transferred one by one to their destination(s).

After the data communication step in ApplyReduce (if required), the reduce

function defined by the user (reducefunc) is applied to the set of intermediate

elements stored in the private memory space of each thread. This user-defined

function receives as input parameters two arrays of keys and values (that represent

the set of intermediate elements) and the number of elements. The combination of

all these intermediate elements is considered as the final result of MapReduce, and

it is returned by one or all threads. If no communications between threads took
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place in the previous step, each thread returns a portion of the final result, and if

communications were performed, all threads (or only the selected thread) return the

complete final result.

The implemented approach establishes that reducefunc must always process all

the intermediate elements associated to each thread in a single call, analogously to

the definition of the array-based map in ApplyMap commented in Section 4.2.1. This

design decision allows a more flexible definition of customized reduction functions

for the user. An alternative design for ApplyReduce could have also allowed the

use of an element-by-element reduction, but this type of processing would only be

useful for a restricted set of reduction operations on basic datatypes (e.g., a sum

of integers or a logical AND operation), and it would be difficult to perform many

other operations. For example, the computation of the average value in a list of

integers would imply either the definition of a variable number of parameters for the

element-by-element reduction (which would complicate the design of the function

and thus cause unnecessary trouble to the user), or the transfer of the essential part

of the processing to the ApplyReduce function (which would not be acceptable for

abstraction purposes). Therefore, the definition of the reduction on the complete

set of intermediate elements has been considered here as the best choice.

4.3. Performance Evaluation

This section includes performance results for UPC-MR on shared memory (us-

ing the Phoenix system [86] as reference for comparison) and distributed memory

(compared to the MapReduce-MPI framework [49]). Both frameworks rely on C++

libraries, but the MapReduce codes developed with them can be written in C (using

the MPI library for MapReduce-MPI), therefore they can offer better performance

than other approaches that use Java codes, as stated in previous evaluations [66].

4.3.1. Experimental Conditions

In order to evaluate the MapReduce framework, four applications have been

selected: (1) Histogram (Hist), (2) Linear Regression (LinReg), (3) Word Count
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(WordC ) and (4) Spam Count (SpamC ). Hist obtains the values of the pixels in

a bitmap image (values for RGB colors, ranging from 0 to 255) and computes the

histogram of the image, that is, it counts the number of pixels that have the same

value for a color. LinReg takes two lists of double precision paired values that repre-

sent coordinates, and computes the line that fits best for them. WordC processes a

set of input text files in order to count the number of occurrences of distinct words.

SpamC is similar to WordC, but it processes a set of email spam in plain text and

counts the occurrences of 256 words related to malware.

The UPC codes for Hist and LinReg are based on the ones included in the

Phoenix distribution, and although some changes have been made in order to per-

form representative tests (e.g., the input values to LinReg used for this performance

evaluation are double precision numbers), the codes are designed to provide a fair

comparison for UPC, C and MPI. It is important to note that, according to the

approaches at the “Map” stage described in Section 4.2.1, Phoenix always performs

an array-based map, whereas MapReduce-MPI always uses an element-by-element

map; thus, the UPC code has been adapted to have a fair comparison with both

approaches. Additionally, the work distribution for all tests has been implemented

using a block algorithm, and collectives are used for all codes. The input images

for Hist were obtained from the Phoenix web, whereas the LinReg coordinates were

randomly generated. Regarding the files for WordC, they were taken from the SPAM

Corpus in the TREC Conference collection [75], and the set of email spam for SpamC

was obtained from the Webb Spam Corpus [98]. Both corpora are widely used in

tests with similar codes, especially in the area of information retrieval.

The UPC-MR implementation has been evaluated using three different testbeds.

The first one (named SMP) is a multicore system with 2 Intel Xeon E5520 proces-

sors with Simultaneous Multithreading (SMT) enabled (8 cores per node which are

able to run 16 threads simultaneously) and 8 GB of memory. The second one is

FT, the Finis Terrae supercomputer installed at the Galicia Supercomputing Cen-

ter (CESGA), and the third system is JRP, the JuRoPa supercomputer at Jülich

Supercomputing Centre, which has been used in order to obtain results up to 2048

cores. See Section 3.5 for more details on the latter two systems. The UPC com-

piler used was BUPC (v2.12.1 of December 2010 was used in SMP and FT, whereas

v2.14.0 of November 2011 was used in JRP), with Intel icc v11.1 as C background
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compiler for all environments. BUPC uses threads for intranode communications

and InfiniBand Verbs transfers for internode communications. The HP MPI 3.3-005

library was used in FT by MapReduce-MPI, and ParaStation MPI 5.0.27-1 [61] was

used in JRP. All executions on distributed memory maximize the number of UPC

threads (or MPI processes) per node, i.e. using up to 16 and 8 cores per node in FT

and JRP, respectively.

4.3.2. Performance Results

Figure 4.2 presents the execution times on distributed memory (for InfiniBand

communications) using UPC and MPI for Hist and WordC. The top graph shows

that the execution times of UPC are clearly lower than those of MPI for Hist using

104.53 millions of input values, but in the bottom graph the WordC execution times

with 75,419 input files are very similar for UPC and MPI, achieving both implemen-

tations a speedup of about 75 for 128 threads. The reasons for this behavior are

the amount of input elements used in each code and the implementation of MapRe-

duce support on MPI using C++ libraries. A profile of MapReduce-MPI indicates

that 90% of the sequential execution time of Hist is spent in handling the C++

library structures associated to every input element, whereas the percentage falls to

an 8% for the presented WordC problem size (values obtained from a performance

profiling). Therefore, when there is a very large number of input elements with

little computation (value testing and clustering in Hist), the element-by-element

map processing performed by MapReduce-MPI involves much more overhead (and

hence a significant impact on the overall performance) than processing a reduced

number of input elements with more intensive computation for each one (as for

WordC ). Nevertheless, the element-by-element map in UPC-MR is not affected by

this circumstance because the commented C++ library calls are not used. As a

consequence of this, MPI results are not shown in the following figures for Hist and

LinReg, because they process a large number of input elements and MapReduce-MPI

performs poorly in these scenarios.

Additionally, the top graph of Figure 4.2 shows that the use of an array-based

map with UPC obtains better results for Hist than the default element-by-element

map in ApplyMap, because the array-based approach allows the user to define an
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optimized map implementation for the whole set of input data, and not just for

every single element separately. Regarding the WordC code, these differences are

negligible, therefore the results obtained using an array-based map are not shown in

the bottom graph. The possibility of implementing an optimized array-based map

for a given code greatly depends on the nature of the input data. For instance,

the optimization performed here for the Hist code consists in reading all input data

as a single array of characters, distributing it in THREADS balanced chunks (one

chunk per thread) and classifying the elements using bytewise comparison. This

procedure can be implemented because all input elements in Hist have the same size

(sizeof(int)), but it is impossible to do the same optimization for WordC because

the words have different length. As a result of this, when the use of an optimized

array-based map is possible, it is the best option to obtain the best performance.

However, for a low or medium number of elements to be processed, such as in WordC,

the programmers can safely rely on the default element-by-element map, which does

not require the implementation of UPC routines for data distribution.

Figure 4.3 shows performance results for Hist using 468.75 millions of input val-

ues. In the shared memory graph, both testbeds are using SMT for executions up to

16 threads (which limits the speedup of the codes), and in general the UPC imple-

mentation of Hist has better performance on shared memory than Phoenix. This is

related to the amount of input elements processed and the use of shared C++ ob-

jects in Phoenix to process the intermediate data, which involves a higher overhead

than the UPC processing. Unlike MapReduce-MPI, Phoenix has similar execution

times than UPC-MR, mainly because of the use of an array-based approach at

the “Map” stage. Regarding distributed memory (InfiniBand communications), the

bottom graph presents the execution times for the UPC implementation in order to

show that the array-based approach is very relevant to obtain lower execution times,

because of the use of the optimizations commented for the top graph in Figure 4.2.

Figure 4.4 presents the results of the LinReg code using 60 millions of input val-

ues. The top graph confirms that UPC presents slightly better results than Phoenix

for LinReg on shared memory. Here the differences between implementations are

smaller than in the Hist graphs because the amount of input elements is also smaller

and thus the Phoenix C++ library overhead is reduced. The execution times for

WordC on shared memory (not shown for simplicity) follow the same trend: they
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are almost similar for Phoenix and UPC (tested with the whole TREC corpus,

75,419 files). Once again, the bottom graph of Figure 4.4 shows that the use of an

array-based map is a key factor to obtain better performance.

Figure 4.5 presents the performance results of UPC-MR (execution times and

speedups) with a large number of threads for the SpamC application using 100,000

input files from the Webb Spam Corpus, and for LinReg using 1 billion (109) of paired

values. These results are intended to show that both implementations are able to

scale up to a large number of threads: the large computational power and high scal-

ability provided by the JRP system, as well as the small weight of ApplyReduce in

the total execution time of both applications, provide a favorable scenario. However,

similarly to the previous codes, the size of communications in ApplyReduce for both

applications increases proportionally with the number of threads. Therefore, the

speedup tends to decrease for a large number of threads when the execution time

of the reduction part becomes relevant when compared to ApplyMap (i.e., generally

when dealing with reduced workloads).

Additionally, these codes have been used to study the impact of the use of ex-

tended collectives in the UPC-MR framework: an analogous standard code to im-

plement these collectives is compared to the corresponding extended collective call,

both when using 1 and 8 threads per node. As a result of the low time consump-

tion of ApplyReduce, the differences between the standard communications and the

extended collectives are only noticeable for more than 64 threads in SpamC, and

even for more threads in LinReg. In both cases, the extended collectives have been

able to exploit the use of hybrid shared/distributed memory communications, with a

slightly larger benefit for the SpamC code than for LinReg. The differences between

the use of 1 and 8 threads are also remarkable, and analogous explanations to those

of the IS and 3D FFT kernels in Section 3.6 apply here: the use of intensive Infini-

Band communications by several threads in the same node limits the scalability of

the applications when using more than 512 threads.
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4.4. Conclusions to Chapter 4

This chapter has presented the UPC-MR implementation, which has been de-

veloped to process MapReduce workloads taking advantage of the productive pro-

gramming of the PGAS memory model. This framework consists of two management

functions for each stage of processing (ApplyMap and ApplyReduce) that can manip-

ulate any kind of input elements in a generic way, using two sequential user-defined

map and reduce functions and allowing flexible control on the workload distribution

at the “Map” stage, either automatically or user-defined. The goals of abstraction

and usability are obtained by the generic definition of the functions, in order to be

used as a template for any kind of input and output elements. However, all the

developed codes have always sought good performance by using the necessary opti-

mizations at low level, such as some extended collective functions for the design of

communications at the “Reduce” stage.

UPC-MR has been evaluated on shared and distributed memory environments

using four representative applications, comparing its performance with two MapRe-

duce frameworks oriented to HPC workloads, Phoenix and MapReduce-MPI. Ac-

cording to the evaluations accomplished, UPC-MR has obtained similar or better

results than those frameworks on all shared and distributed memory executions,

because of the use of a generic and simple UPC framework that is based only on its

own language constructs, without calling external libraries, and also relying on the

efficient extended collectives library.

As a result, UPC has proved to be a good and feasible solution for implementing

a MapReduce framework in order to execute codes on different HPC environments,

offering programmability without performance penalties, even being able to achieve

performance advantages.





Chapter 5

Parallel Simulation of Brownian

Dynamics

This chapter presents the parallelization of a computationally-intensive scientific

application in order to assess the programmability of UPC compared to alternative

parallel approaches (MPI and OpenMP) and the benefits of the use of the extended

collectives library, while also characterizing its impact on performance. The selected

code is the simulation of particles in a fluid based on Brownian dynamics. This type

of simulations are a very useful tool in many areas of biology and physics in order to

determine the evolution of a system over the time. The target systems in Brownian

dynamics are defined as a set of particles in a fluid, in which the simulation calculates

the movement of the particles in a period of time by considering the interactions

between particles and the interaction of particles with the surrounding medium,

which are described by statistical properties. The calculation of interactions is a

highly parallelizable process, but there are several dependencies in the system that

have to be considered to obtain a correct simulation. As a result, the workload

distribution and the achievement of high scalability from these simulations represent

a challenging problem.

In the following sections, the Brownian dynamics simulation will be described and

studied in computational terms taking an optimized sequential C code as reference.

After defining the basis of the simulation, different possibilities of parallelization will

be analyzed in terms of programmability and performance on shared and distributed
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memory using three approaches: UPC, MPI and OpenMP. Finally, the benefits and

drawbacks of every implementation in different testbed systems will be evaluated,

and the lessons learned from this study will be commented.

5.1. Introduction to the Simulation of Brownian

Dynamics

Particle-based simulation methods have been continuously used in physics and bi-

ology to model the behavior of different elements (e.g., molecules, cells) in a medium

(e.g., fluid, gas) under thermodynamical conditions (e.g., temperature, density).

These methods represent a simplification of the real-world scenario but often pro-

vide enough details to model and predict the state and evolution of a system on

a given time and length scale. At this point, Brownian dynamics simulations de-

scribe the movement of particles in a solvent medium in a determined period of

time, using several assumptions: for example, the size of the simulated particles is

considered as significantly larger than the particles that make up the fluid, so that

their individual interactions can be reduced to statistical fluctuations, which are

modeled using a mobility tensor that contains information about the velocity field

in the system. More technically, a finite difference scheme is applied to calculate

the trajectory for each particle as a succession of short displacements ∆t in time.

In a system, containing N particles, the trajectory {ri(t); t ∈ [0, tmax]} of particle i

is calculated as a succession of small and fixed time step increments ∆t. The time

step is selected thereby: (1) large enough with ∆t � mi/6πηai, with η the solvent

viscosity, ai the radius and mi the mass of the solute particle i, so that the interac-

tion between individual fluid particles and the solutes can be averaged and coupled

to the solutes via the diffusion tensor; and (2) small enough so that the forces and

gradients of the diffusion tensor can be considered constant within ∆t. According

to these conditions, the simulation can be performed by calculating the forces that

act on every particle in a time step, determining new positions for all particles and

continuing this process in the following time step.

Brownian dynamics simulations are nowadays used to perform many studies in

different areas of physics and biology [103], and there are several software tools
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that help implementing these simulations, such as BrownDye [37] and the BROWN-

FLEX program included in the SIMUFLEX suite [30]. Some relevant work has also

been published on parallel implementations of these simulations on GPUs [14], also

including a simulation suite called BD BOX [17]. However, there is still little in-

formation on parallelization methods for these simulations, especially about their

performance and scalability in high performance computer systems.

The next sections provide an accurate description of the parallelization of a Brow-

nian dynamics simulation in order to build a suitable implementation for HPC using

different approaches. Section 5.2 presents the formal description of the simulation,

and then Section 5.3 contains a more detailed description of its code implementa-

tion. In Section 5.4 details about the parallelization are outlined and Section 5.5

presents performance results of the parallel codes using different workloads and com-

putational resources. Finally, Section 5.6 extracts the main conclusions from this

work.

5.2. Theoretical Basis of Brownian Dynamics

The equation of motion, governing Brownian dynamics for N solvated molecules

in a fluid, has been stated by Ermak and McCammon [23] (based on the Fokker-

Planck and Langevin descriptions):

ri(t+ ∆t) = ri(t) +
N∑

j=1

∂Dij(t)

∂rj

∆t+
N∑

j=1

1

kBT
Dij(t)Fj(t)∆t+ Ri(t+ ∆t) (5.1)

This one-step propagation scheme takes into account the coupling of the par-

ticles to the flow field via the diffusion tensor D ∈ R3N×3N and the systematic

forces F, acting onto the particles with the global property
∑

j Fj = 0. The vec-

tor R ∈ R3N contains correlated Gaussian random numbers with zero mean, which

are constructed according to the fluctuation-dissipation theorem, with Ri ∈ R3 and

Dij ∈ R3×3, being sub-vectors and block-matrices corresponding to particle i and

particle pairs i, j, respectively. kBT is the thermal energy of the system, where T is

the temperature and kB the Boltzmann constant.
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The systematic interactions between particles are modeled by a Lennard-Jones

type potential, from which the forces are obtained via the negative gradient:

V (rij) = 4ε

( σ

rij

)12

−
(
σ

rij

)6
 (5.2a)

Fij = −∇rij
V (rij) = 24ε

2

(
σ

rij

)12

−
(
σ

rij

)6
 r̂ij

r2
ij

(5.2b)

where σ is the diameter of the particles and ε is the depth of the potential minimum.

This potential has a short range character and practically interactions between par-

ticles are neglected for mutual distances rij > Rc, where Rc is the radius of a so

called cutoff sphere, which is chosen as Rc = 2.5σ. The distance rij is chosen accord-

ing to the minimum image convention, i.e. the shortest distance between particle i

(located in the central simulation box) and particle j or one of its periodic images is

taken into account (see Figure 5.1). In the code, the diffusion tensor D is calculated

in periodic images, which implies a summation of particle pair contributions over

all periodic images.

Fig. 5.1: Example of the short range interaction model with periodic boundary conditions

Depending on the approximation for the diffusion tensor, the partial derivative

on the right-hand side of Eq. 5.1 might drop out. Thus, to obtain this result, the
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regularized version of the Rotne-Prager tensor [67, 72] is selected. Applying this

form of the diffusion tensor, the displacement vector of the Brownian particles,

∆r = r(t+ ∆t)− r(t), can be rewritten in a more simple way:

∆r =
1

kT
DF∆t+

√
2∆tZξξξ (5.3)

where ξξξ is a vector of independent Gaussian random numbers. According to the

previous simplifications, Z may be calculated via a Cholesky decomposition or via

the square root of D. Both approaches are very CPU-time consuming with a com-

putational complexity of O(N3) and impose a large computational load. Therefore

the development of faster and more efficient and scalable methods with smaller

complexity is an important task, and here Fixman [26] applied an expansion of

the random displacement vector R in terms of Chebyshev polynomials, approxi-

mating its values without constructing Z explicitly and reducing the computational

complexity to O(N2.25). Both methods for the construction of correlated random

variates, based on the Cholesky decomposition and the Chebyshev approximation,

will be considered for the present simulation code.

5.3. Implementation of the Simulation Code

The parallelization of the Brownian dynamics simulation has taken an existing

optimized sequential C code as basis. The system under study consists of a cubic

box where periodic boundary conditions are applied, and the propagation of Brow-

nian particles is performed by evaluating Eq. 5.3. The main component of the code

is a for loop. Each iteration of this loop corresponds to a time step in the simula-

tion, which calls several functions, being calc force() and covar() the most time

consuming and thus the main targets of the parallelization. Function calc force()

includes: (1) the propagation of particles (with O(N) complexity, where N is the

number of particles in the system), (2) the force computation, for which a linked-cell

technique [2] is used (O(N)), and (3) the setup of the diffusion tensor (O(N2)). The

correlated random displacements are calculated in function covar() via a Cholesky

decomposition (O(N3)) and alternatively via the Fixman’s approximation method,

with complexity O(N2.25) [26].
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The values of the diffusion tensor D are computed in calc force() for every pair

of particles in the system according to the distance between them in every dimension

following the Rotne-Prager tensor description, and then stored using double preci-

sion floating point values in matrix D, which is declared as a square pNDIM×pNDIM
matrix, where pNDIM is the product of the total number of particles (N ) and the

system dimensions (3). Thus, each row/column in D is associated to a particle and

a dimension (for example, value D[3*4+2][3*8+2] contains the diffusion tensor be-

tween particles 4 and 8 in the third dimension z ). The interaction values in D[a][b]

are also stored in D[b][a], being D symmetric, i.e. the values of the upper trian-

gular part of D are computed and they are copied to the corresponding positions in

the lower triangular part. This data replication has several advantages for the se-

quential algorithm because it helps simplifying the implementation of the operations

with matrix D, allowing more straightforward computations on this matrix.

After the initialization of D in calc force(), function covar() calculates the

random displacement vector R, which requires the construction of correlated Gaus-

sian random numbers with given covariance values. As stated in Section 5.2 (see

Eq. 5.3), the random vector is written as:

R =
√

2∆tZξξξ (5.4)

where the random values ξξξ are obtained using the pseudo-random generator rand(),

and Z can be obtained either as a lower triangular matrix L from a Cholesky de-

composition or as the matrix square root S. To obtain the entries of matrix L, the

following procedure is applied:

Lii =

√√√√Dii −
i−1∑
k=1

L2
ik , for diagonal values in L (5.5a)

Lij =
1

Ljj

Dij −
j−1∑
k=1

LikLjk

 , where i > j (5.5b)

Ri =
√

2∆t
i∑

j=1

Lij ξj (5.5c)
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i.e. having calculated the diffusion tensor matrix D, a Cholesky decomposition gen-

erates the lower triangular matrix L, from where R is generated via a matrix-vector

product between L and ξξξ.

The alternative to this method is the use of Fixman’s algorithm, which imple-

ments a fast procedure to approximate the matrix square root S using Chebyshev

polynomial series. The degree of the polynomial is fixed depending on the desired

accuracy for the computed values. The advantage of this method is that it does not

need to build the matrix S explicitly, but constructs directly an approximation to

the product Sξξξ in an iterative way. The computations performed here represent a

generalization of known series to obtain the scalar square root to the case of vectors:

SM =
M∑

m=0

amCm (5.6a)

where M is the degree of the polynomial, which controls the accuracy of the ap-

proximation. In the limit it holds that limM→∞ SM = S. Accordingly, the vector of

correlated Gaussian variates becomes:

ZM = SMξξξ =
M∑

m=0

amCmξξξ =
M∑

m=0

amzm (5.6b)

The coefficients am can be pre-computed [7] and the vectors zm are computed within

an iterative procedure:

z0 = ξξξ ; z1 = (daD + dbI)ξξξ ; zm+1 = 2 (daD + dbI)zm − zm−1 (5.7a)

with

da =
2

λmax − λmin

; db =
λmax + λmin

λmax − λmin

(5.7b)

where λmin, λmax are the upper and lower limits for the eigenvalues of D [40, 73].

The approximation vectors zm, as well as the maximum and minimum eigenval-

ues of D, are computed analogously using two separate iterative algorithms. These

algorithms apply the technique of double buffering, i.e. use a pair of arrays that are

read or written alternatively on each iteration: every approximation (associated to

a particle in a dimension) is computed using all the approximated values from the
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previous iteration, therefore the use of two arrays avoids additional data copies and

data overwriting. This procedure will be illustrated in Section 5.4.4.

After computing the random displacements in an iteration, the function move()

performs the matrix-vector product between the diffusion matrix and the force vector

F, and adds all the computed contributions to obtain the new positions of the

particles (reduction operation). The matrix-vector product has O(N2) complexity

for this function. Some additional physical values (e.g., pressure) are also computed

here to monitor and control the progress of the simulation.

Table 5.1 presents the breakdown of the execution time of the sequential program

using a node of the JuRoPa supercomputer (which is also used in Section 5.5 for the

performance evaluation) in terms of the previously discussed functions, using 256

and 1024 input particles for 50 time steps of simulation. The diffusion tensor matrix

D has (3×N)2 elements, thus its construction takes at least a complexity of O(N2).

This is true for the real space contributions of the Ewald sum as the cutoff radius is of

the order of half the system size (or even larger), in order to keep the reciprocal space

contribution, i.e. the number of k-values, small for a given error tolerance. Since the

mutual distances between particles are calculated in the real space contribution, it

is natural to integrate the construction of matrix D in the calculation of short range

direct interactions between particles (whose complexity is O(N)), thus giving out

the O(N2) complexity stated in row “short range contributions” of Table 5.1.

Code Part Complexity N = 256 N = 1024
calc force() - short range contributions O(N2) 4.733 s 75.966 s
calc force() - long range contributions O(N2.5) 7.095 s 181.103 s

covar() - option 1: Cholesky O(N3) 3.733 s 250.578 s
covar() - option 2: Fixman O(N2.25) 0.762 s 17.735 s

move() O(N2) 0.019 s 0.341 s
Total time (with Cholesky) O(N3) 15.580 s 507.988 s
Total time (with Fixman) O(N2.5) 12.609 s 275.145 s

Table 5.1: Breakdown of the execution time of the sequential code

The long range contribution to the diffusion tensor also has to be calculated for

every matrix element, i.e. for each particle pair, which also imposes a computational

complexity of O(N2). However, there is an additional contribution to the long range

part, giving rise to a larger complexity, since a set of reciprocal vectors has to be
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considered to fulfill a prescribed error tolerance in the Ewald sum, increasing the

complexity to approximately O(N2.5). The execution times of covar() also tend to

reveal the complexities of the algorithms, commented in Section 5.2.

5.4. Development of the Parallel Implementation

The exponential increase of the total execution time with the number of particles

is the main motivation for the development of a parallel implementation of this

code. Three different approaches have been used: (1) a directive-based approach for

shared memory with OpenMP, (2) a message-passing programming model with the

MPI C library, and (3) the PGAS model using UPC. OpenMP and MPI represent

traditional and widely used approaches for parallel programming on shared and

distributed memory, whereas UPC focuses on providing an efficient approach for

hybrid shared/distributed memory environments. Here all these approaches are

analyzed in different environments, in order to obtain the best solutions for them.

5.4.1. Parallel Workload Decomposition

A preliminary analysis of the structure of the simulation code reveals that each

iteration of the main loop, i.e. each time step, has a strong dependency on the

previous iteration, because the position of a particle depends on the computations

of previous time steps. Therefore, these iterations cannot be executed concurrently,

so the work distribution is only possible within each iteration. At this point, the

main parallelization efforts have to be focused on the workload decomposition of

calc force(), according to Table 5.1, but also considering the performance bottle-

necks that might arise when performing communications, especially in covar().

In order to facilitate the parallel computations needed to update the diffusion

tensor values and random displacements, all processes require to have access to the

coordinates for every particle in the system (for simplicity, the term “processes” will

be used to denote both processes in MPI and threads in UPC or OpenMP). Thus, all

processes store all the initial coordinates of the particles to avoid continuous remote

calls to obtain the necessary coordinate values. After each iteration, all coordinates
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are updated for every process by means of function move(), thus minimizing commu-

nications. Moreover, this assumption allows the parallel computation of short and

long range contributions without communications in MPI and UPC: each process

can compute any element of matrix D independently from the rest, and therefore

the parallelization of calc force() becomes straightforward. The tradeoff of this

approach in MPI and UPC is a slightly higher memory consumption (approximately

pNDIM double precision additional values), whereas the OpenMP code is not affected:

the parallel regions are only defined after the initial coordinates are read.

The calculation of each random displacement in covar() depends on many of the

elements of matrix D, whose computation has been previously performed by different

processes in calc force(), and consequently communications are unavoidable here.

Therefore, it is necessary to find a suitable workload distribution of diffusion tensor

values in matrix D to favor the scalability of the code by minimizing the amount of

communications required by covar(). The following subsections present different

approaches to increase the scalability of the code taking advantage of the specific

features of OpenMP, MPI and UPC.

5.4.2. Shared Memory Parallelization (UPC & OpenMP)

The use of the shared memory space in UPC to store matrix D allows a straight-

forward shared memory parallelization which is comparable in terms of programma-

bility with OpenMP. Figure 5.2 shows the distribution of D for 4 threads using a

sample matrix, divided in four chunks of equal size (one per thread). Each element

on it represents the diffusion tensor values associated to a pair of particles in every

combination of their dimensions, that is, a 3×3 submatrix. In UPC, all threads are

able to access all the data stored in the shared memory region, so this paralleliza-

tion only requires changes in the matrix indexing to support the access in parallel by

UPC threads. Here, the matrix is distributed in blocks of N /THREADS elements

(i.e., 3×3 submatrices) among threads. Each diffusion tensor value from the upper

triangular part of the matrix is computed by the thread to which it has affinity (see

left graph). After that, the upper triangular part is copied into the lower triangular

part (see right graph), as described in Section 5.3, using implicit one-sided transfers

initiated by the thread that has the source data by means of assignments.
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THREAD 0

THREAD 1

THREAD 2

THREAD 3

Local data movement
Remote data movementshared [ pNDIM*pNDIM / THREADS ] double D [pNDIM*pNDIM]

Fig. 5.2: Work and data distribution with D as a shared matrix in UPC

This approach has allowed the quick implementation of a prototype of the parallel

code, providing a straightforward solution also for distributed memory architectures

thanks to the shared memory view provided by UPC. This represents a significant

advantage over MPI, where the development of an equivalent version of this paral-

lelization on distributed memory would require a significantly higher programming

effort because of the lack of a shared memory view (data have to be transferred

explicitly among processes), showing poorer productivity.

However, there are two drawbacks in this parallelization. The first one is its

poor load balancing: thread 0 performs much more work than the last thread

(THREADS -1). This workload imbalance can be partly alleviated through the

distribution of rows in a cyclic way, but this will not be enough when the number

of threads is large and few rows are assigned to each thread. The second issue of

this work distribution is the inefficiency of single-valued remote memory copies [22],

which is due to the use of virtual memory addresses to map the shared variables in

UPC. While private variables have addresses that are directly translated to physical

positions in memory, shared variables use an identifier that defines the affinity of

the variable, the data block to which it belongs and the offset of the variable inside

the data block (see Section 2.1.1). As a result, the computational cost of handling

these shared address translations is not acceptable when simulating large systems

for a long period of time.

Regarding the OpenMP code, the simulation is parallelized only by inserting

directives in the code, without further changes. However, the original sequential
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algorithm for Cholesky decomposition of matrix D calculates the first three values

of the lower triangular result matrix (that is, the elements of the first two rows),

and then the remaining values are computed row by row in a loop. Here the data

dependencies between the values in L computed in each iteration and the ones com-

puted in previous iterations prevent the direct parallelization of the loop. Thus, an

alternative iterative algorithm is proposed: the first column of the result matrix is

calculated by dividing the values of the first row in the source matrix by its diago-

nal value (parallelizable for loop), then these values are used to compute a partial

contribution to the rest of elements in the matrix (also parallelizable for loop). Fi-

nally, these two steps are repeated to obtain the rest of columns in the result matrix.

Listing 5.1 shows the source code of the iterative algorithm: a static scheduling is

used in the first two loops, whereas the last two use a dynamic one because of the

different workload associated to their iterations.

L [ 0 ] [ 0 ] = s q r t (D [ 0 ] [ 0 ] ) ;
#pragma omp paral le l p r i v a t e ( i , j , k )
{
#pragma omp for schedule ( stat ic )

for ( j =1; j<N∗DIM; j++)
L [ j ] [ 0 ] = D[ 0 ] [ j ] /L [ 0 ] [ 0 ] ;

#pragma omp for schedule ( stat ic )
for ( j =1; j<N∗DIM; j++)

for ( k=1; k<=j ; k++)
L [ j ] [ k ] = D[ k ] [ j ]−L [ 0 ] [ j ]∗L [ 0 ] [ k ] ;

for ( i =1; i<N∗DIM; i++) {
L [ i ] [ i ] = s q r t (L [ i ] [ i ] ) ;

#pragma omp for schedule (dynamic)
for ( j=i +1; j<N∗DIM; j++)

L [ j ] [ i ] = L [ i ] [ j ] /L [ i ] [ i ] ;

#pragma omp for schedule (dynamic)
for ( j=i +1; j<N∗DIM; j++)

for ( k=i +1; k<=j ; k++)
L [ j ] [ k ] −= L [ i ] [ j ]∗L [ i ] [ k ] ;

}
}

List. 5.1: Iterative Cholesky decomposition with OpenMP

Two iterative approximation methods are used for Fixman’s algorithm: (1) the

calculation of the minimum and maximum eigenvalues of matrix D, which uses a

variant of the power method, and (2) the computation of coefficients following the



5.4 Development of the Parallel Implementation 117

formulae in Eq. 5.7. In both cases, the core of the algorithm consists of two for

loops that operate on every row of matrix D independently (thus fully parallelizable)

until the predefined accuracy is reached. Each iteration of these methods requires

all the approximations computed for every particle in all dimensions (pNDIM values)

in the previous iteration, thus both codes use two arrays that are read or written al-

ternatively on each iteration to avoid extra data copies, as mentioned in Section 5.3.

When using Fixman’s algorithm, the OpenMP code includes omp for directives

for each loop to parallelize all iterative approximation methods, using a critical

directive to obtain the maximum/minimum eigenvalues of D and a reduction clause

to compute the total error value for the final approximated coefficients. Listing 5.2

presents the pseudocode of the loop that computes the maximum eigenvalue of D,

using x and x d as working arrays for the iterative method. Here a reduction clause

with a maximum operator could be used instead of the critical directive, but in

this case the experimental analysis showed better performance using critical.

#pragma omp paral le l
{
while the r equ i r ed accuracy in ’ eigmax ’ i s not reached
do

i f the i t e r a t i o n number i s even
// read from ’ x ’ , wr i t e to ’ x d ’

#pragma omp for schedule ( stat ic ) \
default ( shared ) p r i v a t e ( i , j , . . . )
for every p a r t i c l e ’ i ’ in the system

x d [ i ] = 0 ;
for every p a r t i c l e ’ j ’ in the system

x d [ i ] += D[ i ] [ j ]∗ x [ j ] / eigmax ;
endfor

#pragma omp cr i t i ca l
i f i t i s the maximum value

s e l e c t i t in ’ eigmax ’
endif

endfor
else

// The same code as above , but swapping ’ x ’ and ’ x d ’
endif

endwhile
}

List. 5.2: OpenMP pseudocode that computes the maximum eigenvalue of D in Fixman’s
algorithm
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The efficiency of the OpenMP algorithms is significantly better than the com-

mented UPC approach, even though the differences in programmability are not

significant. However, in both cases the implemented codes cannot obtain reasonable

performance when distributed memory communications are involved. The shared

address translations and the implicit remote data movements are not able to pro-

vide scalability for internode communications, because of the high number of data

dependencies for the calculation of random displacements. Therefore, a different

approach is required for executions on more than one node.

5.4.3. Distributed Memory Parallelization (UPC & MPI)

Figure 5.3 presents the distribution of matrix D and its associated data move-

ments for a balanced workload decomposition on private distributed memory, where

each process is assigned a set of particles in the system in order to compute their

corresponding diffusion tensor values. Here the number of particles associated to

a process is not evenly divided, but instead follows an analogous approach to the

force-stripped row decomposition scheme proposed by Murty and Okunbor [55], with

the goal of achieving a more balanced number of computations and remote copies in

matrix D. This workload/domain decomposition consists in distributing the number

of elements in the upper triangular part of matrix D (pNDIM×(pNDIM+1)/2, defined

as nelems in the code) between the number of processes in the program by assigning

consecutive rows to process i until the total number of assigned diffusion tensor val-

ues is equal to or higher than nlocalelems*(i+1), where nlocalelems is nelems

divided by the number of processes.

PROCESS 0

PROCESS 1

PROCESS 2

PROCESS 3

Local data movements Remote data movements

Fig. 5.3: Balanced workload decomposition of D on distributed memory
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This approach has been implemented both in MPI and UPC. In both scenarios,

first all computations of diffusion tensor values are performed locally by each pro-

cess, and then the values are moved to the corresponding destination in the lower

triangular part of matrix D. Sometimes the destination position is local to the process

which has the source data (see local data movements in the middle graph of Fig-

ure 5.3), whereas on the remaining cases there are data transfers between processes

(see remote data movements in the rightmost graph of Figure 5.3). Regarding the

UPC parallelization, matrix D has been defined as a private memory region (local

to each process) for each submatrix. The reason for this decision is that the UPC

standard does not allow the allocation of a different number of elements per process

in the shared memory region, i.e. the block size of a shared array must be the same

for all processes.

Despite the relatively good balancing of this distribution, its main drawback is

the significant overhead associated to the communications needed to achieve the

symmetry in matrix D. After obtaining the symmetric matrix, the next step in the

simulation (function covar()) involves either a Cholesky decomposition or a Fixman

approximation. The Cholesky decomposition can take advantage of the previous

matrix distribution, minimizing the number of remote communications. Regarding

Fixman’s algorithm, it is really convenient to fill the lower triangular part of matrix

D in order to avoid smaller element-by-element data movements in covar(), but

the communication time may become too high even when few processes are used.

This is also confirmed by the results of Table 5.1: the sequential computation of the

interactions for 1024 particles takes less than 5 minutes for 50 time steps, being the

average calculation time of each tensor value of about 0.6 microseconds in each iter-

ation, and after that a large percentage of these computed values is remotely copied

(about 68% in the example of Figure 5.3). As a result, the cost of communications

can easily represent a significant percentage of the total execution time.

5.4.4. Optimizations for Distributed Memory

An analysis of the previously presented parallel implementations has shown dif-

ferent matrix decomposition options for D, as well as their associated drawbacks,

which have a significant impact on the random displacement generation method
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considered in covar() (Cholesky or Fixman). Thus, the optimization of these im-

plementations has taken into account different factors depending on the random

displacement algorithm, especially for Fixman’s method, in order to exploit data

locality and achieve higher performance with MPI and UPC. The next subsections

present the optimized parallel algorithms for the computation of random displace-

ments in covar().

Optimized Parallel Cholesky Decomposition

The optimized parallel Cholesky decomposition is based on the balanced dis-

tribution presented in Section 5.4.3 (see left graph of Figure 5.3), and minimizes

communications by introducing some changes with respect to the sequential algo-

rithm; more specifically, this parallel code does not fill the lower triangular part

of D, and performs an efficient workload partitioning that maximizes data locality.

Listing 5.3 presents the pseudocode of the algorithm. Initially, process 0 computes

the first column of the result matrix L using its first row in D, calculates the random

displacement associated to this first row, and then broadcasts to the other processes

the computed values of L, that are stored in an auxiliary array of pNDIM elements

(L row). In the UPC code, as all variables are private, the broadcast function used

here is the priv variant of the broadcast collective (whose behavior was illustrated in

Figure 3.7). Once all processes have the auxiliary array values, two partial calcula-

tions are performed in parallel: (1) a contribution to obtain the elements of matrix L

in the positions of their assigned elements of matrix D, and (2) a contribution to the

random displacement associated to each of their rows. These steps are also applied

to the rest of rows in matrix D.

This algorithm reduces the data dependencies by breaking down the computa-

tions of the elements in L and the final random displacements: both sets of values

are computed as sums of product terms (cf. Listing 5.3 and Eq. 5.5 in Section 5.3),

thus a process can compute these sums partially as soon as it obtains one of their

associated terms. As a result, the random displacements of every particle in every

dimension are calculated step by step, showing a fine-grain workload decomposition

that maximizes the scalability of the code. Moreover, this algorithm takes advan-

tage of a distribution of matrix L between processes similar to that of matrix D,

where each process builds only the submatrix associated to its particles, and the
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only additional storage required is the L row array that receives the values of the

processed row in each iteration.

for every row ’ k ’ in matrix D
i f the row i s l o c a l to t h i s p roc e s s

i f i t i s the f i r s t row in D ( row 0)
L [ 0 ] [ 0 ] = s q r t (D [ 0 ] [ 0 ] ) ;
for every element ’ i ’ in t h i s row

L [ 0 ] [ i ] = D[ 0 ] [ i ] /L [ 0 ] [ 0 ] ;
endfor

else
L [ k ] [ k ] = s q r t (L [ k ] [ k ] ) ;
for every element ’ i ’ in t h i s row

L [ k ] [ i ] = L [ k ] [ i ] /L [ k ] [ k ] ;
endfor

endif
disp lacement [ k ] += L [ k ] [ k ]∗ random displ [ k ] ;

endif

broadcast va lue s L [ k ] [ k :pNDIM−1] to ’ L row ’

for every row ’ j ’ > ’ k ’ in matrix D
i f the row i s l o c a l to t h i s p roc e s s

for every element ’ i ’ >= ’ j ’ in t h i s row
i f i t i s the f i r s t row in D ( row 0)

L [ j ] [ i ] = D[ j ] [ i ] − L row [ j ]∗ L row [ i ] ;
else

L [ j ] [ i ] −= L row [ j−k ]∗ L row [ i−k ] ;
endif

endfor
disp lacement [ j ] += L row [ j−k ]∗ random displ [ k ] ;

endif
endfor

endfor

List. 5.3: Pseudocode for the computation of displacements with Cholesky decomposition
(distributed memory)

Fixman’s Algorithm with Balanced Communications

Figure 5.4 presents a domain decomposition and hence a workload distribution,

both for MPI and UPC, focused on maximizing load balancing and exploiting local

computations to reduce communications for Fixman’s algorithm. Matrix D consists

of diagonal and non-diagonal elements (where each element is a 3×3 submatrix that
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contains the interaction values for two particles for each combination of its dimen-

sions), and the distribution of D assigns to each process a balanced number of con-

secutive elements of each type, regardless of the particles to which they correspond.

Thus, in Figure 5.4 the 16 diagonal elements are distributed among the 4 processes

(each one receives 4 diagonal elements), and the 120 remaining elements are scat-

tered (30 elements per process). Finally, every chunk is linearized in arrayDiag

(diagonal chunks) and arrayD (non-diagonal chunks) following the flattening pro-

cess shown at the bottom of the figure for every 3×3 submatrix. This distribution

favors local processing for diagonal values, as well as the balanced distribution of

data and communications for non-diagonal values.

Listing 5.4 presents the pseudocode that implements the parallel computation

of the maximum eigenvalue in matrix D through an iterative method, which can be

analogously applied to the subsequent approximation of the minimum eigenvalue and

the elements of matrix S, as commented for the sequential code in Section 5.3. Each

process calculates locally a partial result for the approximated eigenvalue using its

assigned diffusion tensor values, and then an all-to-all collective communication (in

UPC, the priv in-place exchange from the extended collectives library) is invoked by

every process to get all the partial results of its assigned rows. Finally, each process

computes the total approximation of its associated eigenvalues, an allgather collec-

tive operation (in UPC, the priv in-place allgather from the extended collectives) is

used to provide all processes with all the approximations, and an allreduce collective

(in UPC, the extended priv allreduce version) obtains the maximum eigenvalue of

all processes in order to start a new iteration of the method. The computed eigen-

values are here assigned alternatively to arrays eigenx and eigenx d with the goal

of avoiding unnecessary data copies because of the iterative method, as commented

in Section 5.3. As the distribution of particles is initially balanced, as well as the

amount of communications performed by each process, there is no relevant workload

difference among the processes, regardless of the number of iterations.

Besides load balancing, another benefit of this distribution is the optimized mem-

ory storage of variables, because it only considers the minimum number of elements

that are necessary for the simulation instead of using the whole square matrix. Ad-

ditionally, this implementation requires the use of indexes that mark, for example,

the starting position of the values associated to each particle in a dimension, which
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in turn increases slightly the complexity of the source code. However, these indexes

are computed only once before the simulation loop begins, and therefore they do

not have a significant influence on performance.

i n i t i a l i z e maximum e igenva lue ’ eigmax ’ to 1
i n i t i a l i z e ’ e igenx ’ ( e i g enva lue approximations per row ) to 1
while the d e s i r e d accuracy o f ’ eigmax ’ i s not reached

i f the i t e r a t i o n number i s even
for every l o c a l element in ’ arrayD ’

compute p a r t i a l approximation o f ’ eigmax ’ \
in ’ Dcopy ’ us ing ’ e igenx ’

endfor
for every l o c a l element in ’ arrayDiag ’

compute p a r t i a l approximation d i r e c t l y \
in ’ e i genx d ’ us ing ’ e igenx ’

endfor
a l l−to−a l l c o l l e c t i v e to get a l l p a r t i a l

approximations from ’ Dcopy ’
for every l o c a l element ’ i ’ in ’ e i genx d ’

for every proce s s ’ j ’
sum the p a r t i a l r e s u l t o f p roc e s s ’ j ’ in ’ Dcopy ’ \

to get the f i n a l approximation o f ’ e i genx d [ i ] ’
endfor
i f ’ e i genx d [ i ] ’ i s the maximum value

update ’ eigmax ’
endif

endfor
a l l g a t h e r the computed va lues in ’ e igenx d ’
a l l r e d u c e the maximum value o f ’ eigmax ’ from a l l p r o c e s s e s

else
the same code as above , but swapping ’ e igenx ’ and ’ e igenx d ’

endif
endwhile

List. 5.4: Pseudocode for the parallel computation of the maximum eigenvalue with Fix-
man’s algorithm (distributed memory)

Fixman’s Algorithm with Minimum Communications

The previous algorithm for Fixman’s method has limited its scalability because

of the overhead derived from the communications required at each iteration. In order

to reduce the amount of communications, a block distribution of matrix D by rows

is proposed in Figure 5.5, both for MPI and UPC. This distribution considers that

the particles in the system are evenly distributed between processes, and each of
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them computes all the diffusion tensor values of its associated particles. As a result,

Fixman’s algorithm can be implemented using a minimum number of communica-

tions: the approximations of the correlation coefficients for every particle in every

dimension are always computed locally by the corresponding process, and only an

extended priv allgather collective is necessary at the end of each iteration. The main

drawback of this implementation is its higher computational cost, because it has to

compute roughly double the number of elements, as it does not take full advantage

of the symmetry of D (only locally to each process). However, the scalability of

this approach is significantly higher than that of the previous algorithms, because

of the reduced number of communications required, which allows to outperform the

previous approaches as the number of processes increases.

PROCESS 0

PROCESS 1

PROCESS 2

PROCESS 3

Figure 5.5: Work distribution with D as a full-size private matrix

5.5. Performance Evaluation

The evaluation of the developed parallel Brownian dynamics codes has been

accomplished mainly on JRP, the JuRoPa supercomputer at Jülich Supercomput-

ing Centre (see Section 3.5 for more details). Additionally, a second system has

been used for shared memory executions: a node of the SVG supercomputer at

CESGA [76], which is an HP ProLiant SL165z G7 node with 2 dodeca-core AMD

Opteron processors 6174 (Magny-Cours) at 2.2 GHz with 32 GB of memory, and

from now on is referred to as “MGC”. The Intel C Compiler (icc) v12.1 and the

Open64 Compiler Suite (opencc) v4.2.5.2 have been used as OpenMP compilers

in JRP and MGC, respectively, with the environment variable OMP STACKSIZE set



126 Chapter 5. Parallel Simulation of Brownian Dynamics

to a small value (128 KB) for OpenMP executions in order to obtain the highest

efficiency. The UPC compiler used on both systems was Berkeley UPC v2.14.2 (re-

leased in May 2012) with the Intel C Compiler v12.1 as backend C compiler on both

systems, and relying on the IBV conduit on JRP. ParaStation MPI 5.0.27-1 [61] has

been used by the MPI code. All the executions in this evaluation were compiled

with the optimization flag -O3, and periodic boundary conditions (3×3 boxes per

dimension) were considered for all simulations.

In order to perform a fair comparison, all speedup results have been calculated

taking the execution times of the original sequential C code as baseline, as it repre-

sents the fastest approach. The problem size considered for each graph (Figures 5.6-

5.10) is fixed for a varying number of cores, thus showing strong scaling, and all tests

on distributed memory use a fill-up policy for process scheduling in the nodes of the

testbed system, i.e. always with one process per physical core. Different versions of

the simulations are shown depending on the algorithm and work distribution used

for the computation of random displacements: (1) using Cholesky decomposition

(see Section 5.4.2 for OpenMP and Section 5.4.4 for MPI and UPC), (2) using Fix-

man’s algorithm for OpenMP according to the algorithm in Section 5.4.2, (3) using

Fixman’s algorithm with the distribution presented in Section 5.4.4 that balances

workload and communications for MPI and UPC (referred to as bal-comms from

now on), and (4) using Fixman’s algorithm with matrix D distributed to minimize

communications for MPI and UPC, as described in Section 5.4.4 (referred to as min-

comms). Figures 5.6 and 5.7 present the performance results of the simulations on

shared memory for OpenMP and UPC, and Figures 5.8 to 5.10 present the results

on distributed memory for MPI and UPC.

Figure 5.6 shows the execution times and speedups of the whole simulation with

256 particles and 100 time steps (double the workload used in Table 5.1). The ex-

ecution times of JRP are better than those of MGC for both random displacement

generation codes, even though each JRP node has only 8 physical cores which are

able to run 16 simultaneous threads thanks to the use of Simultaneous Multithread-

ing (SMT), but taking little advantage compared to the use of a single thread per

core (8 threads per node). This is mainly due to the higher processor power of JRP.

The reduced problem size involves a low average workload per thread, thus the

bottlenecks of the code (e.g., OpenMP atomic directives and UPC collective com-
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munications) are more noticeable. Nevertheless, the UPC implementation even ob-

tains superlinear speedup for 2 and 4 threads with Fixman on JRP. Regarding

the covar() function, the use of Fixman’s method clearly helps to obtain higher

performance when compared to Cholesky decomposition, as stated in the previous

sections.

Figure 5.7 shows the simulation results for a large number of particles (4096)

and 50 time steps. Only the results of covar() with Fixman’s algorithm are shown,

because of its higher performance. The larger problem size provides higher speedups

than those of Figure 5.6 for both systems. The algorithmic complexity of calculat-

ing the diffusion tensor D is O(N2), whereas Fixman’s algorithm is O(N2.25); thus,

when the problem size increases, the generation of random displacements represents

a larger percentage of the total simulation time. As a result of this, and also given

the parallelization issues commented in Section 5.4.2, the speedup is slightly lim-

ited for 16 or more threads, mainly for OpenMP (also due to the use of SMT in

JRP). However, considering the distance to the ideal speedup, both systems present

reasonably good speedups for this code.

Figure 5.8 shows the execution times and speedups of the parallel simulation of

256 particles over 100 time steps (as in Figure 5.6) for distributed memory on JRP.

The results show that, on the one hand, the best performance up to 16 cores is ob-

tained by the version that uses Fixman with balanced workload and optimized stor-

age (bal-comms), with very similar results for MPI and UPC. However, the weight

of allgather and all-to-all communications in covar() limits heavily the scalability

with this approach from 32 cores onward, as the ratio computation/communication

time is low. On the other hand, Fixman min-comms presents the opposite situation:

the redundant computations cause poor performance for a small number of cores,

but the minimization of communications provides good scalability as the number

of cores increases, even for 128 cores (that is, when only 2 particles per core are

processed). The codes based on Cholesky are able to scale up to 32 cores, but

performance decreases for 64 and 128 cores because of the significant weight of the

communication overhead in the total execution time. These results also show that

codes relying on Fixman’s algorithm outperform Cholesky-based codes, either using

the bal-comms version (except for a large number of cores) or the min-comms one.

Additionally, the execution times when using Cholesky show a higher increase with
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the number of particles than in the codes based on Fixman (see Table 5.1), confirm-

ing that Fixman is the best choice for the generation of random displacements, hence

discarding the use of Cholesky for the larger problem sizes of Figures 5.9 and 5.10.

Comparing MPI and UPC bal-comms codes when using 32 or more cores, it can

be observed that the overhead of the all-to-all communications, which is due both

to memory requirements for internal buffering and synchronization costs, becomes

an important performance bottleneck, in particular for MPI. Regarding UPC, the

implementation of the extended priv in-place exchange function (see Section 3.2.1)

manages memory and synchronizations more efficiently.

Figures 5.9 and 5.10 present the performance results with 50 time steps using

1024 and 4096 particles, respectively. In general, the results of the simulations

are very similar to those of Figure 5.8, so an analogous interpretation can also be

applied here: on the one hand, the bal-comms version obtains an almost linear

speedup up to 32 cores for 1024 particles, and up to 64 cores for 4096 particles.

Additionally, bal-comms obtains the best results up to the number of cores for

which the computation time is still higher than the communication time (i.e., up to

32 cores for 1024 particles, and up to 64 cores with MPI and 128 cores with UPC

for 4096 particles), and again UPC all-to-all communications represent a better

choice than MPI in the simulation. On the other hand, min-comms shows the

highest scalability, both for MPI and UPC, achieving in general a speedup of about

half of the number of cores being used (i.e., a parallel efficiency of around 50%).

Taking into account that this implementation requires almost double the number

of computations of the original sequential code (hence its speedup with one core is

around 0.6), this represents a significant scalability. Furthermore, the min-comms

results in Figure 5.10 show a slight difference between MPI and UPC for 1024 and

2048 cores, mainly caused by the shared memory cache coherence mechanisms of the

UPC runtime, whose implementation presents a significant overhead when handling

thousands of cores.

Another factor to be considered is the number of particles handled per core,

which limits the exploitation of each parallel solution. For example, according to

the UPC performance results of Figures 5.8-5.10 and assuming that all time steps

in a simulation have the same workload, the bal-comms version generally obtains

the best results when 16 or more particles per core are simulated in a system with
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256 particles (that is, when 16 or less cores are used); for simulations of 1024 and

4096 particles, bal-comms obtains the best results with 32 or more particles per core.

This situation is illustrated in Figure 5.11 in the range of 16–256 cores, where the

efficiency of the bal-comms algorithm for all problem sizes can be seen in relative

terms compared to the performance of the min-comms counterpart: the higher the

percentage is, the more efficient the algorithm is for the corresponding problem size.

These results indicate that the bal-comms approach is overall a good choice when

using more than 16-32 particles per core, i.e. scenarios where the memory is limited

(because of the optimized storage of matrix D commented in Section 5.4.4) and the

ratio computation/communication time is high, regardless of the actual number of

cores or particles used in the simulation.
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5.6. Conclusions to Chapter 5

Brownian dynamics simulations are a very relevant tool to analyze particle inter-

actions under certain conditions, and also represent a computationally-intensive task

that requires an efficient and scalable parallelization, in order to study large parti-

cle systems on high performance supercomputers under representative constraints.

Thus, this chapter has presented the design and implementation of a parallel Brown-

ian dynamics simulation using different approaches for shared and distributed mem-

ory environments using OpenMP, MPI and UPC. The main contributions of this

parallelization are: (1) the analysis of data dependencies in the simulation codes

and the domain decompositions for different environments, (2) the assessment of

the alternatives in the work distributions to maximize performance and manage

memory requirements efficiently, and (3) the performance evaluation of different

versions of the parallel code on representative supercomputers with a large number

of cores.

The experimental results have shown that codes using Fixman’s algorithm out-

perform codes with Cholesky decomposition for all scenarios, and that there is no

single optimal approach on distributed memory: the balanced communications ver-

sion (bal-comms) presents the best performance when computation time is higher

than communication time, whereas a more scalable approach (min-comms) can take

advantage of a higher number of cores. Thus, the implemented approaches, both

with MPI and UPC, are able to scale performance up to thousands of cores (us-

ing min-comms) while providing an alternative implementation with less memory

requirements for a reduced number of cores (using bal-comms). Regarding the pro-

gramming models considered, significant differences have been found. The higher

maturity of MPI routines has provided high performance (showing the best re-

sults when using more than 1024 cores) at the cost of a higher programming effort.

OpenMP has provided the lowest time to solution, providing a good approach for in-

tranode communications on shared memory. Finally, UPC allowed the development

of a quick parallel prototype thanks to its PGAS model, but required additional

efforts to obtain higher performance. Nevertheless, UPC has been able to merge the

shared and distributed memory approaches on a single code, outperforming signifi-

cantly the scalability obtained with the OpenMP approach and being able to rival

MPI in performance (and even beating its MPI bal-comms counterpart code when
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communications are the main bottleneck). These UPC results have also been re-

lated to the use of extended collective functions, which take advantage of the use of

one-sided operations on a hybrid shared/distributed memory architecture and help

to minimize the communication overhead.



Conclusions

This PhD Thesis, “Extended Collectives Library for Unified Parallel C”, has an-

alyzed the current developments and features provided by the UPC language, an

extension of ANSI C designed for parallel programming, focusing on the develop-

ment of libraries to enhance the productivity of UPC programming. The PGAS

memory model has been proved to provide programmability for HPC applications,

thus the focus of the Thesis has been put on assessing the usefulness of PGAS facil-

ities in UPC, and providing additional libraries for an efficient and productive code

development.

In order to assess the tradeoffs between benefits and drawbacks of the actions

that have to be carried out in the improvement of UPC productivity, the first stage

in the development of this Thesis has been the analysis of the UPC language in

terms of performance and programmability. The main sources of information in

these areas have been the microbenchmarking of UPC functions and the evalua-

tion of programmability using classroom studies with two heterogeneous groups of

programmers. The analysis of the codes developed by the participants in the pro-

grammability sessions and their feedback about the language, as well as a general

evaluation of UPC language facilities, have reported different facts about UPC that

have helped to define some areas of improvement:

The achievement of the highest performance tends to conflict with the use of

programmable constructs: some language facilities for parallel programming,

such as direct assignments to shared variables, do not obtain an optimal perfor-

mance, and they are substituted by more efficient workarounds (e.g., variable

privatizations), which introduce higher complexity in the code. The most con-

venient solution to this would be an efficient compiler-based implementation

137
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of these data transfers, but the use of small remote data transfers is generally

difficult to optimize.

Some of the functions in the standard language libraries, namely the collective

primitives, present low flexibility, as there are multiple restrictions in their

applicability to parallel codes. For example, all collective functions in the

UPC specification can only be used with shared variables, and the amount

of data involved has to be the same for all threads. An additional side effect

is that privatized arrays cannot be used on collective communications, thus

performance implications are also present here.

There is a general lack of developments focusing on programmability: the

improvement of language implementations at low level has been the main

target for UPC developments in the last years, and programmability has been

assumed as an implicit factor in the language. Even though this fact applies

when UPC is compared to other parallel programming approaches (e.g., MPI),

UPC developments have not explored the possibilities of providing additional

language libraries or high-level frameworks to simplify code writing.

As a result of these facts, this Thesis has focused on giving a solution to these

problems in terms of programmability, while not disregarding performance. Conse-

quently, the second stage of this Thesis has been the improvement of the existing

UPC programmability facilities, specifically the extension of the UPC collectives

library. This extended library has overcome the most relevant limitations by pro-

viding the following additional features:

The use of the same array as source and destination of communications (in-

place collectives).

The support of arrays of variable size as source and destination of the com-

munications in each thread (vector-variant collectives).

The selection of a subset of all threads in a UPC program in order to execute

a specific task (team-based collectives).

The use of private arrays as source and/or destination of communications

(get-put-priv collectives).
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In total, the library includes about 200 extended collective primitives that imple-

ment the previous features, including several variations and combinations of func-

tionalities, aiming to give a complete support that maximizes the flexibility of the

standard UPC collectives library. Internally, the algorithms for these functions are

implemented efficiently. The main features of the functions in this library are:

Implementation adapted to the execution on multicore architectures: the avail-

ability of different algorithms for collective communications allows the selec-

tion of the optimal one for each architecture configuration. Shared memory

communications are exploited efficiently using data transfer schemes based on

flat trees, whereas internode communications take advantage of binomial trees

for data transfers. Different mixed approaches are also provided in order to

adapt to the target environment, using thread pinning whenever possible and

memory usage optimizations.

Internal privatization of arguments to extended collectives: the definition of

source and destination arrays, as well as other auxiliary arguments, in the

interface of many collective functions uses shared variables; for efficiency pur-

poses, the implemented functions privatize the access to these data.

Development of a library-based support for teams: the use of team-based col-

lectives has to be built on top of an implementation of teams, but no standard

implementation has been built yet. In order to solve this issue, an interface

for the management of teams has been defined, including functions to create

and destroy teams, as well as for thread insertion and removal. A reference

implementation for these functions is given in order to provide the required

functionality for extended collectives.

The use of the extended collectives library has been initially tested using four

representative kernel codes, which perform common operations such as matrix mul-

tiplication (dense and sparse), integer sort or a 3D Fast Fourier Transform (FFT).

The flexibility of the developed library has allowed the introduction of collective

communications in these codes replacing the original raw data memory copies and

the explicit privatization of variables, thus giving out simpler codes. Additionally,
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the multicore-aware algorithms and optimizations included in the library have im-

proved the performance of UPC codes, which in some cases have shown to be clearly

more efficient than the MPI counterparts, such as in the case of the 3D FFT.

The third stage in the development of the Thesis has been the implementation

of a new functionality focused on programmability in UPC, which has led to the

development of the UPC MapReduce (UPC-MR) framework. UPC-MR represents

the adaptation of a popular framework for coarse-grain parallelism to the PGAS

paradigm, and it has been conceived for programmability by assuming some basic

principles:

The user does not need to deal with parallel processing: two template manage-

ment functions for the “Map” and the “Reduce” stages, respectively, are de-

fined as user interface, performing all communications between threads trans-

parently to the user.

The implementation is generic: all the parameters of the management func-

tions are processed analogously, regardless of their data type. The only neces-

sary requirement is that the functions defined by the user for the “Map” and

the “Reduce” stages have to match the given input elements.

The processing is optimized according to the communication requirements: if

some fine tuning is required, UPC-MR provides enough flexibility to configure

its operation. The use of different configuration flags and the extended collec-

tives library improves the data management and the communications between

threads, respectively.

Finally, the last stage in the development of this Thesis has been the analysis and

evaluation of large applications that take advantage of the previous implementations

(UPC extended collectives and the UPC-MR framework) in high-end computer sys-

tems, in order to test their scalability with a large number of threads (up to 2048).

This evaluation has included: (1) different MapReduce codes, and (2) the paral-

lelization of a Brownian dynamics simulation.

The applications used to test the UPC-MR framework present different compu-

tational weights for the “Map” and “Reduce” stages, as well as a different number of
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input elements, in order to analyze the impact of these features on the performance

of the test codes and compare them with the MapReduce counterparts on shared and

distributed memory using C (Phoenix) and MPI (MapReduce-MPI), respectively.

The main conclusions extracted from the evaluation are:

The amount of processing associated to each input element at the “Map”

stage is a key factor for the overall performance: if it is too small, the element-

by-element processing in the MPI implementation becomes significantly more

inefficient than the UPC approach on distributed memory, especially when the

number of input elements is very large. The shared memory code with Phoenix

obtains better results, but also lower than UPC because of the repeated use

of C++ library calls.

The use of extended collectives can help to optimize performance. This applies

especially for a large number of threads (i.e., when the number of communica-

tions at the “Reduce” stage becomes large), with the possibility of providing

scalability up to thousands of cores depending on the relative time consump-

tion of this stage with respect to the corresponding mapping function.

Regarding the simulation of Brownian dynamics, three implementations have

been developed for comparison purposes, using OpenMP, MPI and UPC. As a gen-

eral fact, the OpenMP implementation offers the highest programmability through

the use of directives, although its performance is limited to the computational power

of a single node, not taking advantage of distributed memory systems, similarly to

the direct shared memory parallelization with UPC. Nevertheless, a fine tuning of

the data distribution allows MPI and UPC to obtain quite good performance and

scalability. The main outcomes of this work are:

The analysis of the sequential code and its data dependencies, which helped

to detect the core parts of the simulation algorithm and guided the domain

decomposition process on each execution environment.

The use of the developed extended collective functions, which have improved

UPC performance scaling up to thousands of cores.
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A single UPC implementation has been able to achieve high performance on

both shared and distributed memory environments, obtaining generally similar

or even higher performance than OpenMP and MPI, respectively.

The contributions of this Thesis have been published in several peer-reviewed

journals and conferences. The initial evaluations of UPC performance [44, 46, 77]

and programmability [83] have led to the design and implementation of the extended

collectives library [82], whose functions have been successfully applied to an efficient

UPC implementation of the MapReduce framework [81] and to the parallelization

of the Brownian dynamics simulation [78, 79, 80].

Among the main research lines to extend this work, the integration of the pro-

posed functionalities in the currently available compilers deserves to be mentioned

as a first step for its acceptance and spread in the UPC community. The forthcom-

ing UPC standard specifications will provide a new framework for the development

of new facilities for the UPC language, and at this point the implemented extended

collectives can be used as a reference implementation that illustrates the benefits of

a wider range of collective functions. As a result, and also having proved the high

performance of the codes developed and evaluated in this Thesis, it will be possible

to discuss the integration of the library (or a subset of it) as a required or optional

library in future UPC specifications.
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API of the UPC Extended

Collectives Library

This appendix shows the complete description of the extended collectives li-

brary presented in Chapter 3, showing the details of all the functions following a

man-page-like approach, with a similar format to the UPC language specification

documents [93]. As a result, each subsection of this chapter is not directly related

with the other subsections, and could be read independently.

The descriptions are structured in four main groups according to their function-

ality: in-place, vector-variant, team-based and get-put-priv functions. The latter

group provides a wide variety of combinations for the other groups of functions

(e.g., priv in-place or put vector-variant functions), therefore these operations are

referenced in the same subsection as the corresponding base function, alongside

with other possible variants (see the description of the library in Section 3.2 for

more details).

All extended collectives are described using references to the eight functions

in the standard UPC library and to a new allreduce collective (as mentioned in

Section 3.1). This collective presents the same arguments as the standard UPC

reduce, but here all threads get the final result.

143
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A.1. In-place Collectives

A.1.1. The upc all broadcast in place Collective

Synopsis

#include <upc.h>

void upc_all_broadcast_in_place (

shared void *buffer, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_broadcast_in_place_priv (

void *buffer, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_broadcast_rooted_in_place (

shared void *buffer, size_t nbytes, int root, upc_flag_t sync_mode

);

void upc_all_broadcast_rooted_in_place_priv (

void *buffer, size_t nbytes, int root, upc_flag_t sync_mode

);

Description

This is a UPC broadcast collective that uses the same array as source and destination
of communications.

The upc all broadcast in place function copies a block of shared memory with
affinity to a thread to another block of shared memory on each thread using the
same array as source and destination. The number of bytes in each block is nbytes,
and it must be strictly greater than zero.

The upc all broadcast rooted in place is analogous to the previous one, but
includes a parameter called root to indicate the thread that is used as source for
communications. Additionally, pointer buffer must have affinity to thread 0.

Both functions treat the buffer pointer as if it pointed to a shared memory area
with type:

shared [nbytes] char [nbytes*THREADS]
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Priv Variants

A variant called priv is defined by using a private pointer as target for communica-
tion. The name of this variant is the same as the base collective, but adding priv at
the end, as shown in the synopsis. Thread 0 is considered as the root thread, there-
fore the private buffer associated to it is considered as source for communications
with this collective.

A priv variant is also defined for the rooted in place function. Analogously to the
base collective, the private array associated to thread root is considered as source
for communications with this collective.

Apart from the commented parameters, all of these variants present the same addi-
tional arguments as the base collective.

Examples

In the next piece of code, the whole shared memory block associated to thread 0 in
array A is copied to the rest of blocks associated to all threads in the same array. After
that, the block associated to thread 1 is copied to the rest of threads.

#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

upc_all_broadcast_in_place(A, NELEMS*sizeof(int),

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

upc_all_broadcast_rooted_in_place(A, NELEMS*sizeof(int), 1,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.1.2. The upc all scatter in place Collective

Synopsis

#include <upc.h>
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void upc_all_scatter_in_place (

shared void *buffer, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_scatter_in_place_priv (

void *buffer, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_scatter_rooted_in_place (

shared void *buffer, size_t nbytes, int root, upc_flag_t sync_mode

);

void upc_all_scatter_rooted_in_place_priv (

void *buffer, size_t nbytes, int root, upc_flag_t sync_mode

);

Description

This is a UPC scatter collective that uses the same array as source and destination
of communications.

The upc all scatter in place function copies the ith portion of a block of shared
memory with affinity to a thread to another block of shared memory with affinity
to the ith thread in the same array. The number of bytes in each block is nbytes,
and it must be strictly greater than zero.

The upc all scatter rooted in place is analogous to the previous one, but in-
cludes a parameter called root to indicate the thread that is used as source for
communications. Additionally, pointer buffer must have affinity to thread 0.

Both functions treat the buffer pointer as if it pointed to a shared memory area
with type:

shared [nbytes*THREADS] char [nbytes*THREADS*THREADS]

Priv Variants

A variant called priv is defined by using a private pointer as target for communica-
tion. The name of this variant is the same as the base collective, but adding priv at
the end, as shown in the synopsis. Thread 0 is considered as the root thread, there-
fore the private buffer associated to it is considered as source for communications
with this collective.
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A priv variant is also defined for the rooted in place function. Analogously to the
base collective, the private array associated to thread root is considered as source
for communications with this collective.

Apart from the commented parameters, all of these variants present the same addi-
tional arguments as the base collective.

Examples

In the next piece of code, the shared memory block associated to thread 0 in array A

is scattered to the rest of threads. After that, the memory block associated to thread 1 is
scattered.

#define NELEMS 10

shared [NELEMS*THREADS] int A[NELEMS*THREADS*THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS*THREADS; i<(MYTHREAD+1)*NELEMS*THREADS; i++) {

A[i]=i;

}

upc_all_scatter_in_place(A, NELEMS*sizeof(int), UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

upc_all_scatter_rooted_in_place(A, NELEMS*sizeof(int), 1,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.1.3. The upc all gather in place Collective

Synopsis

#include <upc.h>

void upc_all_gather_in_place (

shared void *buffer, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_gather_in_place_priv (

void *buffer, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_gather_rooted_in_place (

shared void *buffer, size_t nbytes, int root, upc_flag_t sync_mode

);
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void upc_all_gather_rooted_in_place_priv (

void *buffer, size_t nbytes, int root, upc_flag_t sync_mode

);

Description

This is a UPC gather collective that uses the same array as source and destination
of communications.

The upc all gather in place function copies a block of shared memory with affin-
ity to the ith thread to the ith portion of a block of shared memory with affinity
to a thread in the same array. The number of bytes in each block is nbytes, and it
must be strictly greater than zero.

The upc all gather rooted in place is analogous to the previous one, but in-
cludes a parameter called root to indicate the thread that is used as source for
communications. Additionally, pointer buffer must have affinity to thread 0.

Both functions treat the buffer pointer as if it pointed to a shared memory area
with type:

shared [nbytes*THREADS] char [nbytes*THREADS*THREADS]

Priv Variants

A variant called priv is defined by using a private pointer as target for commu-
nication. The name of this variant is the same as the base collective, but adding
priv at the end, as shown in the synopsis. Thread 0 is considered as the root

thread, therefore the private buffer associated to it is considered as destination for
communications with this collective.

A priv variant is also defined for the rooted in place function. Analogously to
the base collective, the private array associated to thread root is considered as
destination for communications with this collective.

Apart from the commented parameters, all of these variants present the same addi-
tional arguments as the base collective.
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Examples

In the next piece of code, the shared memory blocks in array A are gathered in the
memory block with affinity to thread 0 in the same array. After that, the same blocks are
gathered in the shared memory of thread 1.

#define NELEMS 10

shared [NELEMS*THREADS] int A[NELEMS*THREADS*THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS*THREADS; i<(MYTHREAD+1)*NELEMS*THREADS; i++) {

A[i]=i;

}

upc_all_gather_in_place(A, NELEMS*sizeof(int), UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

upc_all_gather_rooted_in_place(A, NELEMS*sizeof(int), 1,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.1.4. The upc all gather all in place Collective

Synopsis

#include <upc.h>

void upc_all_gather_all_in_place (

shared void *buffer, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_gather_all_in_place_priv (

void *buffer, size_t nbytes, upc_flag_t sync_mode

);

Description

This is a UPC allgather collective that uses the same array as source and destination
of communications.

The upc all gather all in place function copies a block of shared memory with
affinity to the ith thread to the ith portion of a shared memory area on each thread
in the same array. The number of bytes in each block is nbytes, and it must be
strictly greater than zero.
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The upc all gather all in place function treats the buffer pointer as if it pointed
to a shared memory area with type:

shared [nbytes*THREADS] char [nbytes*THREADS*THREADS]

The target of the buffer pointer must have affinity to thread 0. Additionally, this
pointer is treated as if it had phase 0.

Priv Variants

A variant called priv is defined by using a private pointer as target for communica-
tion. The name of this variant is the same as the base collective, but adding priv

at the end, as shown in the synopsis.

Apart from the source/destination pointer, this variant presents the same additional
arguments as the base collective.

Example

In the next piece of code, the shared memory blocks in array A are gathered in the
memory blocks with affinity to every thread using the same array.

#define NELEMS 10

shared [NELEMS*THREADS] int A[NELEMS*THREADS*THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS*THREADS; i<(MYTHREAD+1)*NELEMS*THREADS; i++) {

A[i]=i;

}

upc_all_gather_all_in_place(A, NELEMS*sizeof(int),

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.1.5. The upc all exchange in place Collective

Synopsis

#include <upc.h>
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void upc_all_exchange_in_place (

shared void *buffer, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_exchange_in_place_priv (

void *buffer, size_t nbytes, upc_flag_t sync_mode

);

Description

This is a UPC exchange collective that uses the same array as source and destination
of communications.

The upc all exchange in place function copies the ith block of shared memory
with affinity to the jth thread to the jth portion of a shared memory area associated
to the ith thread in the same array. The number of bytes in each block is nbytes,
and it must be strictly greater than zero.

The upc all exchange in place function treats the buffer pointer as if it pointed
to a shared memory area with type:

shared [nbytes*THREADS] char [nbytes*THREADS*THREADS]

The target of the buffer pointer must have affinity to thread 0. Additionally, this
pointer is treated as if it had phase 0.

Priv Variants

A variant called priv is defined by using a private pointer as target for communica-
tion. The name of this variant is the same as the base collective, but adding priv

at the end, as shown in the synopsis.

Apart from the source/destination pointer, this variant presents the same additional
arguments as the base collective.

Example

In the next piece of code, the shared memory blocks in array A are exchanged between
threads using the same array.
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#define NELEMS 10

shared [NELEMS*THREADS] int A[NELEMS*THREADS*THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS*THREADS; i<(MYTHREAD+1)*NELEMS*THREADS; i++) {

A[i]=i;

}

upc_all_exchange_in_place(A, NELEMS*sizeof(int),

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.1.6. The upc all permute in place Collective

Synopsis

#include <upc.h>

void upc_all_permute_in_place (

shared void *buffer, shared const int *perm, size_t nbytes,

upc_flag_t sync_mode

);

void upc_all_permute_in_place_priv (

void *buffer, shared const int *perm, size_t nbytes,

upc_flag_t sync_mode

);

Description

This is a UPC permute collective that uses the same array as source and destination
of communications.

The upc all permute in place function copies a block of shared memory with
affinity to the ith thread to a portion of a shared memory area associated to thread
perm[i] in the same array. The number of bytes in each block is nbytes, and it
must be strictly greater than zero.

The values stored in perm[0...THREADS-1] must define a permutation of the integer
values between 0 and THREADS-1.

The upc all permute in place function treats the buffer pointer as if it pointed
to a shared memory area with type:
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shared [nbytes] char [nbytes*THREADS]

The targets of the buffer and perm pointers must have affinity to thread 0. Addi-
tionally, the buffer pointer is treated as if it had phase 0.

Priv Variants

A variant called priv is defined by using a private pointer as target for communica-
tion. The name of this variant is the same as the base collective, but adding priv

at the end, as shown in the synopsis.

Apart from the source/destination pointer, this variant presents the same additional
arguments as the base collective.

Example

In the next piece of code, the shared memory blocks in array A are permuted in the
same array according to the values in perm. This code is specifically designed for 4 threads.

#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

shared int perm[THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

// Define the desired permutation

perm[0]=3;

perm[1]=2;

perm[2]=0;

perm[3]=1;

upc_all_permute_in_place(A, perm, NELEMS*sizeof(int),

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);
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A.1.7. Computational In-place Collectives

Synopsis

#include <upc.h>

#include <upc_collective.h>

/**

* REDUCE

*/

void upc_all_reduce<<T>>_in_place (

shared void *buffer, upc_op_t op, size_t nelems, size_t blk_size,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_in_place_priv (

void *buffer, upc_op_t op, size_t nelems, size_t blk_size,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_rooted_in_place (

shared void *buffer, upc_op_t op, size_t nelems, size_t blk_size,

int root, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_rooted_in_place_priv (

void *buffer, upc_op_t op, size_t nelems, size_t blk_size,

int root, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

/**

* ALLREDUCE

*/

void upc_all_reduce<<T>>_all_in_place (

shared void *buffer, upc_op_t op, size_t nelems, size_t blk_size,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_all_in_place_priv (

void *buffer, upc_op_t op, size_t nelems, size_t blk_size,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

/**

* PREFIX REDUCE

*/

void upc_all_prefix_reduce<<T>>_in_place (

shared void *buffer, upc_op_t op, size_t nelems, size_t blk_size,
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<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_prefix_reduce<<T>>_in_place_priv (

void *buffer, upc_op_t op, size_t nelems, size_t blk_size,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

Description

These functions define a set of UPC computational operations that use the same
array as source and destination of communications.

The prototypes above represent 88 computational extended collectives, where T and
TYPE have the following correspondences:

T TYPE T TYPE

C signed char L signed long

UC unsigned char UL unsigned long

S signed short F float

US unsigned short D double

I signed int LD long double

UI unsigned int

For example, if T is C, TYPE must be signed char

The reduce and allreduce functions present the same arguments as the standard UPC
reduction operation, but using a single array as source and destination (buffer).
The upc all reduceT rooted in place function also presents the parameter that
determines the root thread for communications (root).

The prefix reduce function presents the same arguments as the standard UPC prefix
reduction operation, but using a single array as source and destination (buffer).

On completion of the upc all reduceT in place functions, the value of the TYPE

shared variable referenced by buffer is set to buffer[0] ⊕ buffer[1] ⊕ · · · ⊕
buffer[nelems-1], where “⊕” is the operator specified by the op parameter.

On completion of the upc all reduceT all in place functions, the value of the
TYPE shared variable referenced by buffer[i*blk size] for each thread i is set to
buffer[0] ⊕ buffer[1] ⊕ · · · ⊕ buffer[nelems-1], where “⊕” is the operator
specified by the op parameter.
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On completion of the upc all prefix reduceT in place functions, the value of the
TYPE shared variable referenced by buffer[i] is set to buffer[0] ⊕ buffer[1] ⊕
· · · ⊕ buffer[i] for 0≤i≤nelems-1, where “⊕” is the operator specified by the op

parameter.

The argument op can have the following values:

• UPC ADD: addition.

• UPC MULT: multiplication.

• UPC AND: bitwise AND for integer and character variables. Results are undefined
for floating point numbers.

• UPC OR: bitwise OR for integer and character variables. Results are undefined
for floating point numbers.

• UPC XOR: bitwise XOR for integer and character variables. Results are undefined
for floating point numbers.

• UPC LOGAND: logical AND for all variable types.

• UPC LOGOR: logical OR for all variable types.

• UPC MIN: for all data types, find the minimum value.

• UPC MAX: for all data types, find the maximum value.

• UPC FUNC: use the specified commutative function func to operate on the data
in the buffer array.

• UPC NONCOMM FUNC: use the specified non-commutative function func to oper-
ate on the data in the buffer array.

The operations represented by op are assumed to be associative and commuta-
tive (except those provided using UPC NONCOMM FUNC). An operation whose result
is dependent on the operator evaluation or on the order of the operands will have
undefined results.

If the value of blk size passed to these functions is greater than zero, they treat
the buffer pointer as if it pointed to a shared memory area of nelems elements of
type TYPE and blocking factor blk size, and therefore with type:

shared [nbytes] <<TYPE>> [nelems]
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If the value of blk size passed to these functions is zero, they treat the buffer

pointer as if it pointed to a shared memory area of nelems elements of type TYPE

with an indefinite layout qualifier, and therefore with type:

shared [] <<TYPE>> [nelems]

It is important to note that these functions overwrite one of the values used to
perform the computation in order to store the final result of each function call.
Therefore, if two consecutive calls to these functions are performed, their results are
not likely to be the same.

Priv Variants

The priv variant is defined for these collectives by using a private pointer as target
for communication. The name of this variant is the same as the base collective, but
adding priv at the end, as shown in the synopsis. Thread 0 is considered as the
root thread, therefore the private buffer associated to it is considered as source for
communications with this collective.

A priv variant is also defined for the rooted in place reduction. Analogously
to the base collective, the private array associated to thread root is considered as
source for communications with this collective.

Apart from the commented parameters, all of these variants present the same addi-
tional arguments as the base collective.

Examples

In the next piece of code, four examples of the presented collectives are shown, consid-
ering the use of two or more threads. First, the sum of all the integer elements in array A

is computed and stored in the element with affinity to thread 0 in the same array. Next,
the sum of elements [1000...1999] in A is stored in the shared memory associated to
thread 1. After that, the sum of the first 1000 elements in A is computed and sent to all
threads. Finally, the accumulative sum of all the elements in A is stored in the same array.

#define NELEMS 1000

shared [NELEMS] int A[NELEMS*THREADS];
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// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

upc_all_reduceI_in_place(A, UPC_ADD, NELEMS*THREADS, THREADS, NULL,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

upc_all_reduceI_rooted_in_place(A, UPC_ADD, NELEMS, THREADS, 1, NULL,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

upc_all_reduceI_all_in_place(A, UPC_ADD, NELEMS, THREADS, NULL,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

upc_all_prefix_reduceI_in_place(A, UPC_ADD, NELEMS*THREADS, THREADS, NULL,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.2. Vector-variant Collectives

A.2.1. The upc all broadcast v Collective

Synopsis

#include <upc.h>

void upc_all_broadcast_v (

shared void *dst, shared const void *src, shared int *ddisp,

size_t nelems, size_t dst_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_broadcast_v_local (

shared void *dst, shared const void *src, shared int *ddisp_local,

size_t nelems, size_t dst_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_broadcast_v_raw (

shared void *dst, shared const void *src, shared size_t *ddisp_raw,

size_t nbytes, size_t dst_blk_raw, upc_flag_t sync_mode

);

void upc_all_broadcast_v_rooted (

shared void *dst, shared const void *src, shared int *ddisp,

size_t nelems, size_t dst_blk, size_t typesize, int root,

upc_flag_t sync_mode

);
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/**

* GET VERSIONS

*/

void upc_all_broadcast_v_get (

void *dst, shared const void *src, shared int *ddisp,

size_t nelems, size_t dst_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_broadcast_v_local_get (

void *dst, shared const void *src, shared int *ddisp_local,

size_t nelems, size_t typesize, upc_flag_t sync_mode

);

void upc_all_broadcast_v_raw_get (

void *dst, shared const void *src, shared size_t *ddisp_raw,

size_t nbytes, size_t dst_blk_raw, upc_flag_t sync_mode

);

void upc_all_broadcast_v_rooted_get (

void *dst, shared const void *src, shared int *ddisp,

size_t nelems, size_t dst_blk, size_t typesize, int root,

upc_flag_t sync_mode

);

/**

* PUT VERSIONS

*/

void upc_all_broadcast_v_put (

shared void *dst, const void *src, shared int *ddisp,

size_t nelems, size_t dst_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_broadcast_v_local_put (

shared void *dst, const void *src, shared int *ddisp_local,

size_t nelems, size_t dst_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_broadcast_v_raw_put (

shared void *dst, const void *src, shared size_t *ddisp_raw,

size_t nbytes, size_t dst_blk_raw, upc_flag_t sync_mode

);

void upc_all_broadcast_v_rooted_put (

shared void *dst, const void *src, shared int *ddisp,

size_t nelems, size_t dst_blk, size_t typesize, int root,

upc_flag_t sync_mode

);

/**
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* PRIV VERSIONS

*/

void upc_all_broadcast_v_priv (

void *dst, const void *src, shared int *ddisp,

size_t nelems, size_t dst_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_broadcast_v_local_priv (

void *dst, const void *src, shared int *ddisp_local,

size_t nelems, size_t typesize, upc_flag_t sync_mode

);

void upc_all_broadcast_v_raw_priv (

void *dst, const void *src, shared size_t *ddisp_raw,

size_t nbytes, size_t dst_blk_raw, upc_flag_t sync_mode

);

void upc_all_broadcast_v_rooted_priv (

void *dst, const void *src, shared int *ddisp,

size_t nelems, size_t dst_blk, size_t typesize, int root,

upc_flag_t sync_mode

);

Description

This is a UPC broadcast collective that uses a configurable amount of source and
destination data per thread.

The upc all broadcast v function copies a piece of shared memory pointed by src

to the different locations of the dst shared array on each thread indicated in ddisp.
The ddisp array contains THREADS integers that correspond to the array indexes in
dst (one per thread) to which each chunk of nelems elements of size typesize is
copied. The parameter nelems must be strictly greater than zero. The number of
elements in each block of the dst array is dst blk.

The upc all broadcast v local function is analogous to the previous one, but
here the ddisp local array should contain block phases to each thread instead
of absolute array indexes in order to indicate a value for a thread. For example,
if ddisp local[i] is 1 in a call to upc all broadcast v local, the function will
have the same behavior as with a call to upc all broadcast v with ddisp[i] equal
to i*dst blk+1.

The upc all broadcast v raw function indicates the amount of data for commu-
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nications on each thread as a chunk of bytes of size nbytes. The displacements in
the destination array are consequently described in terms of bytes in the parameter
ddisp raw, as well as in the block size parameter dst blk raw.

The upc all broadcast v rooted function takes an extra argument (root) that
indicates the thread used as root for communications.

The chunk of shared memory that is broadcast must have affinity to only one
thread. Analogously, the destination position for all threads must be less than
or equal to the difference of dst blk and nelems (dst blk raw and nbytes for
upc all broadcast v raw). If any of these conditions is not fulfilled, the chunks
received in array dst may be truncated.

The upc all broadcast v and upc all broadcast v local functions treat the src
pointer as if it pointed to a shared memory area with type:

shared [] char [dst_blk*typesize]

the upc all broadcast v raw function treats src as a pointer to a shared memory
area with type:

shared [] char [dst_blk_raw]

and the upc all broadcast v rooted function treats src as a pointer to shared
memory with type:

shared [dst_blk*typesize] char [dst_blk*typesize*THREADS]

The dst pointer in all functions is considered as if it pointed to a shared memory
area with type:

shared [dst_blk*typesize] char [dst_blk*typesize*THREADS]

with dst blk*typesize = dst blk raw for upc all broadcast v raw.



162 Appendix A. API of the UPC Extended Collectives Library

Get-put-priv Variants

A variant called get is defined by using a private pointer as destination for commu-
nications. The name of this variant is the same as the base collective, but adding
get at the end, as shown in the synopsis. The shared source pointers in each of

these functions are treated the same way as in the corresponding base collective.
The dst blk and dst blk raw arguments, where present, represent a limit for the
number of elements in each private destination array. It is important to note that
in these functions the displacements in ddisp/ddisp raw should be defined as if the
destination array was a shared array with type:

shared [dst_blk*typesize] char [dst_blk*typesize*THREADS]

with dst blk*typesize = dst blk raw for the raw function.

A variant called put is defined by using a private pointer as source for communica-
tions. The name of this variant is the same as the base collective, but adding put

at the end, as shown in the synopsis. The shared destination pointers in each of
these functions are treated the same way as in the corresponding base collective.

A variant called priv is defined by using private pointers as source and destination
for communications. The name of this variant is the same as the base collective, but
adding priv at the end, as shown in the synopsis. The dst blk and dst blk raw

arguments, where present, represent a limit for the number of elements in each
private destination array, and the block phases in ddisp/ddisp raw are defined
analogously to the get variant.

Apart from the commented parameters, all the arguments in common with the base
collectives are analogously defined.

Example

In the next piece of code, a chunk of memory associated to thread 1 in array A is copied
to the selected positions in array B.

#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

shared [NELEMS] int B[NELEMS*THREADS];



A.2 Vector-variant Collectives 163

shared int ddisp[THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

ddisp[MYTHREAD] = MYTHREAD*NELEMS + (MYTHREAD % (NELEMS/2));

upc_all_broadcast_v(B, &A[NELEMS+1], ddisp, 3, NELEMS, sizeof(int),

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.2.2. The upc all scatter v Collective

Synopsis

#include <upc.h>

void upc_all_scatter_v (

shared void *dst, shared const void *src, shared int *ddisp,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_scatter_v_local (

shared void *dst, shared const void *src, shared int *ddisp_local,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_scatter_v_raw (

shared void *dst, shared const void *src, shared size_t *ddisp_raw,

shared size_t *nbytes, size_t dst_blk_raw, size_t src_blk_raw,

upc_flag_t sync_mode

);

void upc_all_scatter_v_rooted (

shared void *dst, shared const void *src, shared int *ddisp,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

int root, upc_flag_t sync_mode

);

/**

* GET VERSIONS

*/

void upc_all_scatter_v_get (
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void *dst, shared const void *src, shared int *ddisp,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_scatter_v_local_get (

void *dst, shared const void *src, shared int *ddisp_local,

shared size_t *nelems, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_scatter_v_raw_get (

void *dst, shared const void *src, shared size_t *ddisp_raw,

shared size_t *nbytes, size_t dst_blk_raw, size_t src_blk_raw,

upc_flag_t sync_mode

);

void upc_all_scatter_v_rooted_get (

void *dst, shared const void *src, shared int *ddisp,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

int root, upc_flag_t sync_mode

);

/**

* PUT VERSIONS

*/

void upc_all_scatter_v_put (

shared void *dst, const void *src, shared int *ddisp,

shared size_t *nelems, size_t dst_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_scatter_v_local_put (

shared void *dst, const void *src, shared int *ddisp_local,

shared size_t *nelems, size_t dst_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_scatter_v_raw_put (

shared void *dst, const void *src, shared size_t *ddisp_raw,

shared size_t *nbytes, size_t dst_blk_raw,

upc_flag_t sync_mode

);

void upc_all_scatter_v_rooted_put (

shared void *dst, const void *src, shared int *ddisp,

shared size_t *nelems, size_t dst_blk, size_t typesize,

int root, upc_flag_t sync_mode
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);

/**

* PRIV VERSIONS

*/

void upc_all_scatter_v_priv (

void *dst, const void *src, shared int *ddisp,

shared size_t *nelems, size_t dst_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_scatter_v_local_priv (

void *dst, const void *src, shared int *ddisp_local,

shared size_t *nelems, size_t dst_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_scatter_v_raw_priv (

void *dst, const void *src, shared size_t *ddisp_raw,

shared size_t *nbytes, size_t dst_blk_raw,

upc_flag_t sync_mode

);

void upc_all_scatter_v_rooted_priv (

void *dst, const void *src, shared int *ddisp,

shared size_t *nelems, size_t dst_blk, size_t typesize,

int root, upc_flag_t sync_mode

);

Description

This is a UPC scatter collective that uses a configurable amount of source and
destination data per thread.

The upc all scatter v function copies THREADS chunks of shared memory from
the address indicated in src to each of the THREADS array indexes in dst contained
in ddisp. Each index in ddisp determines a destination position for a chunk of
nelems[i] elements of size typesize for each thread i, which are obtained con-
secutively from src. The number of elements in a block in arrays src and dst is
src blk and dst blk, respectively. All indexes in ddisp are absolute array indexes.
All values in array nelems must be strictly greater than zero.

The upc all scatter v local function is analogous to upc all scatter v, but
here the ddisp local array should contain block phases to each thread instead of
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absolute array indexes in order to indicate a value for a thread. For example, if
ddisp local[i] is 1 in a call to upc all scatter v local, the function will have
the same behavior as with a call to upc all scatter v with ddisp[i] equal to
i*dst blk+1.

The upc all scatter v raw function indicates the amount of data for communi-
cations on each thread as a chunk of bytes following the sizes indicated by array
nbytes. The displacements in the destination array are consequently described in
terms of bytes in the parameter ddisp raw, as well as in the block size parameters
dst blk raw and src blk raw.

The upc all scatter v rooted function takes an additional argument (root) that
indicates the thread used as root for communications.

The chunk of shared memory that is scattered must have affinity to only one
thread. Analogously, the destination position for thread i must be less than or
equal to the difference of dst blk and nelems[i] (dst blk raw and nbytes[i]

for upc all scatter v raw). If any of these conditions is not fulfilled, the chunks
received in array dst may be truncated.

The src pointer in upc all scatter v and upc all scatter v local is interpreted
as a pointer to a shared memory area with type:

shared [] char [src_blk*typesize]

the upc all scatter v raw function treats src as a pointer to a shared memory
area with type:

shared [] char [src_blk_raw]

and the upc all scatter v rooted function treats src as a pointer to shared mem-
ory with type:

shared [src_blk*typesize] char [src_blk*typesize*THREADS]

The dst pointer in all functions is considered as if it pointed to a shared memory
area with type:

shared [dst_blk*typesize] char [dst_blk*typesize*THREADS]

with dst blk*typesize = dst blk raw for upc all scatter v raw.
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Get-put-priv Variants

A variant called get is defined by using a private pointer as destination for commu-
nications. The name of this variant is the same as the base collective, but adding
get at the end, as shown in the synopsis. The shared source pointers in each of

these functions are treated the same way as in the corresponding base collective.
The dst blk and dst blk raw arguments, where present, represent a limit for the
number of elements in each private destination array. It is important to note that
in these functions the displacements in ddisp/ddisp raw should be defined as if the
destination array was a shared array with type:

shared [dst_blk*typesize] char [dst_blk*typesize*THREADS]

with dst blk*typesize = dst blk raw for the raw function.

A variant called put is defined by using a private pointer as source for communica-
tions. The name of this variant is the same as the base collective, but adding put

at the end, as shown in the synopsis. The shared destination pointers in each of
these functions are treated the same way as in the corresponding base collective.

A variant called priv is defined by using private pointers as source and destination
for communications. The name of this variant is the same as the base collective, but
adding priv at the end, as shown in the synopsis. The dst blk and dst blk raw

arguments, where present, represent a limit for the number of elements in each
private destination array, and the block phases in ddisp/ddisp raw are defined
analogously to the get variant.

Apart from the commented parameters, all the arguments in common with the base
collectives are analogously defined.

Example

In the next piece of code, the shared memory block associated to thread 1 in array A

is scattered to the locations indicated in array B.

#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

shared [NELEMS] int B[NELEMS*THREADS];
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shared int ddisp[THREADS];

shared int nelems[THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

ddisp[MYTHREAD] = MYTHREAD*NELEMS + (MYTHREAD % (NELEMS/2));

nelems[MYTHREAD] = MYTHREAD % (NELEMS/2) + 1;

upc_all_scatter_v(B, &A[NELEMS+1], ddisp, nelems, NELEMS, NELEMS, sizeof(int),

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.2.3. The upc all gather v Collective

Synopsis

#include <upc.h>

void upc_all_gather_v (

shared void *dst, shared const void *src, shared int *sdisp,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_gather_v_local (

shared void *dst, shared const void *src, shared int *sdisp_local,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_gather_v_raw (

shared void *dst, shared const void *src, shared size_t *sdisp_raw,

shared size_t *nbytes, size_t dst_blk_raw, size_t src_blk_raw,

upc_flag_t sync_mode

);

void upc_all_gather_v_rooted (

shared void *dst, shared const void *src, shared int *sdisp,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

int root, upc_flag_t sync_mode

);

/**

* GET VERSIONS
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*/

void upc_all_gather_v_get (

void *dst, shared const void *src, shared int *sdisp,

shared size_t *nelems, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_gather_v_local_get (

void *dst, shared const void *src, shared int *sdisp_local,

shared size_t *nelems, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_gather_v_raw_get (

void *dst, shared const void *src, shared size_t *sdisp_raw,

shared size_t *nbytes, size_t src_blk_raw,

upc_flag_t sync_mode

);

void upc_all_gather_v_rooted_get (

void *dst, shared const void *src, shared int *sdisp,

shared size_t *nelems, size_t src_blk, size_t typesize,

int root, upc_flag_t sync_mode

);

/**

* PUT VERSIONS

*/

void upc_all_gather_v_put (

shared void *dst, const void *src, shared int *sdisp,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_gather_v_local_put (

shared void *dst, const void *src, shared int *sdisp_local,

shared size_t *nelems, size_t dst_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_gather_v_raw_put (

shared void *dst, const void *src, shared size_t *sdisp_raw,

shared size_t *nbytes, size_t dst_blk_raw, size_t src_blk_raw,

upc_flag_t sync_mode

);

void upc_all_gather_v_rooted_put (

shared void *dst, const void *src, shared int *sdisp,
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shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

int root, upc_flag_t sync_mode

);

/**

* PRIV VERSIONS

*/

void upc_all_gather_v_priv (

void *dst, const void *src, shared int *sdisp,

shared size_t *nelems, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_gather_v_local_priv (

void *dst, const void *src, shared int *sdisp_local,

shared size_t *nelems, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_gather_v_raw_priv (

void *dst, const void *src, shared size_t *sdisp_raw,

shared size_t *nbytes, size_t src_blk_raw,

upc_flag_t sync_mode

);

void upc_all_gather_v_rooted_priv (

void *dst, const void *src, shared int *sdisp,

shared size_t *nelems, size_t src_blk, size_t typesize,

int root, upc_flag_t sync_mode

);

Description

This is a UPC gather collective that uses a configurable amount of source and
destination data per thread.

The upc all gather v function copies THREADS chunks of shared memory from each
of the array indexes in src contained in sdisp to the address pointed by dst. Each
index in sdisp determines a source position for a chunk of nelems[i] elements
of size typesize for each thread i, which are merged consecutively from address
dst on. The number of elements in a block in arrays src and dst is src blk and
dst blk, respectively. All indexes in sdisp are absolute array indexes. All values
in array nelems must be strictly greater than zero.



A.2 Vector-variant Collectives 171

The upc all gather v local function is analogous to upc all gather v, but here
the sdisp local array should contain block phases to each thread instead of ab-
solute array indexes in order to indicate a value for a thread. For example, if
sdisp local[i] is 1 in a call to upc all gather v local, the function will have
the same behavior as with a call to upc all gather v with sdisp[i] equal to
i*src blk+1.

The upc all gather v raw function indicates the amount of data for communi-
cations on each thread as a chunk of bytes following the sizes indicated by ar-
ray nbytes. The displacements in the source array are consequently described in
terms of bytes in the parameter sdisp raw, as well as in the block size parameters
src blk raw and dst blk raw.

The upc all gather v rooted function takes an additional argument (root) that
indicates the thread used as root for communications.

The chunk of shared memory that gathers all subarrays must have affinity to only
one thread. Analogously, the source position for thread i must be less than or
equal to the difference of dst blk and nelems[i] (dst blk raw and nbytes[i]

for upc all gather v raw). If any of these conditions is not fulfilled, the chunks
received in array dst may be truncated.

All these functions treat the src pointer as if it pointed to a shared memory area
with type:

shared [src_blk*typesize] char [src_blk*typesize*THREADS]

except the upc all gather v raw function, which treats src as a pointer to a shared
memory area with type:

shared [src_blk_raw] char [src_blk_raw*THREADS]

The dst pointer in upc all gather v and upc all gather v local is interpreted
as a pointer to a shared memory area with type:

shared [] char [dst_blk*typesize]

and the same applies to upc all gather v raw, considering dst blk*typesize =

dst blk raw.
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The dst pointer in upc all gather v rooted is considered as if it pointed to a
shared memory area with type:

shared [dst_blk*typesize] char [dst_blk*typesize*THREADS]

Get-put-priv Variants

A variant called get is defined by using a private pointer as destination for commu-
nications. The name of this variant is the same as the base collective, but adding
get at the end, as shown in the synopsis. The shared source pointers in each

of these functions are treated the same way as in the corresponding base collec-
tive. It is important to note that these functions do not require the argument
dst blk/dst blk raw, which is present in their corresponding base collectives.

A variant called put is defined by using a private pointer as source for communica-
tions. The name of this variant is the same as the base collective, but adding put

at the end, as shown in the synopsis. The src blk and src blk raw arguments,
where present, represent a limit for the number of elements in each private source
array. It is important to note that the displacements in sdisp/sdisp raw should
be defined as in the corresponding base collective.

A variant called priv is defined by using private pointers as source and destination
for communications. The name of this variant is the same as the base collective, but
adding priv at the end, as shown in the synopsis. The src blk and src blk raw

arguments, where present, represent a limit for the number of elements in each pri-
vate source array, and the block phases in sdisp/sdisp raw are defined analogously
to the get variant.

Apart from the commented parameters, all the arguments in common with the base
collectives are analogously defined.

Example

In the next piece of code, the selected elements from array A are gathered in the shared
memory block associated to thread 1 in array B.

#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];
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shared [NELEMS] int B[NELEMS*THREADS];

shared int sdisp[THREADS];

shared int nelems[THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

sdisp[MYTHREAD] = MYTHREAD*NELEMS + (MYTHREAD % (NELEMS/2));

nelems[MYTHREAD] = MYTHREAD % (NELEMS/2) + 1;

upc_all_gather_v(&B[NELEMS+1], A, sdisp, NELEMS, NELEMS, nelems, sizeof(int),

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.2.4. The upc all gather all v Collective

Synopsis

#include <upc.h>

void upc_all_gather_all_v (

shared void *dst, shared const void *src, shared int *ddisp,

shared int *sdisp, shared size_t *nelems, size_t dst_blk,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_gather_all_v_local (

shared void *dst, shared const void *src, shared int *ddisp_local,

shared int *sdisp_local, shared size_t *nelems, size_t dst_blk,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_gather_all_v_privparam (

shared void *dst, shared const void *src, int ddisp,

int *sdisp, size_t *nelems, size_t dst_blk,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_gather_all_v_raw (

shared void *dst, shared const void *src, shared size_t *ddisp_raw,

shared size_t *sdisp_raw, shared size_t *nbytes, size_t dst_blk_raw,

size_t src_blk_raw, upc_flag_t sync_mode

);

/**
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* GET VERSIONS

*/

void upc_all_gather_all_v_get (

void *dst, shared const void *src, shared int *ddisp,

shared int *sdisp, shared size_t *nelems, size_t dst_blk,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_gather_all_v_local_get (

void *dst, shared const void *src, shared int *ddisp_local,

shared int *sdisp_local, shared size_t *nelems,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_gather_all_v_privparam_get (

void *dst, shared const void *src, int ddisp,

int *sdisp, size_t *nelems, size_t dst_blk,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_gather_all_v_raw_get (

void *dst, shared const void *src, shared size_t *ddisp_raw,

shared size_t *sdisp_raw, shared size_t *nbytes, size_t dst_blk_raw,

size_t src_blk_raw, upc_flag_t sync_mode

);

/**

* PUT VERSIONS

*/

void upc_all_gather_all_v_put (

shared void *dst, const void *src, shared int *ddisp,

shared int *sdisp, shared size_t *nelems, size_t dst_blk,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_gather_all_v_local_put (

shared void *dst, const void *src, shared int *ddisp_local,

shared int *sdisp_local, shared size_t *nelems, size_t dst_blk,

size_t typesize, upc_flag_t sync_mode

);

void upc_all_gather_all_v_privparam_put (

shared void *dst, const void *src, int ddisp,

int *sdisp, size_t *nelems, size_t dst_blk,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_gather_all_v_raw_put (
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shared void *dst, const void *src, shared size_t *ddisp_raw,

shared size_t *sdisp_raw, shared size_t *nbytes, size_t dst_blk_raw,

size_t src_blk_raw, upc_flag_t sync_mode

);

/**

* PRIV VERSIONS

*/

void upc_all_gather_all_v_priv (

void *dst, const void *src, shared int *ddisp,

shared int *sdisp, shared size_t *nelems,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_gather_all_v_local_priv (

void *dst, const void *src, shared int *ddisp_local,

shared int *sdisp_local, shared size_t *nelems,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_gather_all_v_privparam_priv (

void *dst, const void *src, int ddisp,

int *sdisp, size_t *nelems,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_gather_all_v_raw_priv (

void *dst, const void *src, shared size_t *ddisp_raw,

shared size_t *sdisp_raw, shared size_t *nbytes,

size_t src_blk_raw, upc_flag_t sync_mode

);

Description

This is a UPC allgather collective that uses a configurable amount of source and
destination data per thread.

The upc all gather all v function copies THREADS chunks of shared memory from
each of the array indexes in src contained in sdisp to the shared memory spaces
with affinity to each thread in array dst specified by the array indexes in ddisp.
Each index in sdisp determines a source position for a chunk of nelems[i] ele-
ments of size typesize for each thread i, which are merged consecutively in index
ddisp[i] of array dst. The number of elements in a block in arrays src and dst

is src blk and dst blk, respectively. All indexes in sdisp and ddisp are absolute
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array indexes. All values in array nelems must be strictly greater than zero.

The upc all gather all v local function is analogous to the previous one, but
here the ddisp local and sdisp local arrays should contain block phases to each
thread instead of absolute array indexes in order to indicate a value for a thread. For
example, if sdisp local[i] and ddisp local[i] are 1 in a call to this collective, it
will have the same behavior as with a call to upc all gather all v with sdisp[i]

and ddisp[i] equal to i*src blk+1 and i*dst blk+1, respectively.

The upc all gather all v privparam function defines ddisp, sdisp and nelems

as private arrays in order to optimize its performance. Additionally, ddisp is here
defined as a single integer, and its value may be different for each thread calling this
collective.

The upc all gather all v raw function indicates the amount of data for commu-
nications on each thread as a chunk of bytes following the sizes indicated by array
nbytes. The displacements in the source and destination arrays are consequently
described in terms of bytes in parameters sdisp raw and ddisp raw, respectively,
as well as in the block size parameters src blk raw and dst blk raw.

The number of gathered elements per thread must not be higher than the difference
of (MYTHREAD+1)*dst blk and ddisp[i] for thread i ((MYTHREAD+1)*dst blk raw

and ddisp raw[i] for the raw function). Analogously, the source position for thread
i must be less than or equal to the difference of dst blk and nelems[i]. If any of
these conditions is not fulfilled, the chunks received in array dst may be truncated.

All these functions treat the src pointer as if it pointed to a shared memory area
with type:

shared [src_blk*typesize] char [src_blk*typesize*THREADS]

except the upc all gather all v raw function, which treats src as a pointer to a
shared memory area with type:

shared [src_blk_raw] char [src_blk_raw*THREADS]

The dst pointer in all functions is interpreted as a pointer to a shared memory area
with type:

shared [dst_blk*typesize] char [dst_blk*typesize*THREADS]



A.2 Vector-variant Collectives 177

and the same applies to upc all gather all v raw, with dst blk*typesize =

dst blk raw.

Get-put-priv Variants

A variant called get is defined by using a private pointer as destination for commu-
nications. The name of this variant is the same as the base collective, but adding
get at the end, as shown in the synopsis. The shared source pointers in each of

these functions are treated the same way as in the corresponding base collective,
and only the local function does not require the argument dst blk/dst blk raw.

A variant called put is defined by using a private pointer as source for communi-
cations. The name of this variant is the same as the base collective, but adding
put at the end, as shown in the synopsis. The src blk and src blk raw argu-

ments, where present, represent a limit for the number of elements in each private
source array. It is important to note that the displacements in sdisp/sdisp raw

and ddisp/ddisp raw should be defined as in the corresponding base collective.

A variant called priv is defined by using private pointers as source and destination
for communications. The name of this variant is the same as the base collective, but
adding priv at the end, as shown in the synopsis. The src blk and src blk raw

arguments, where present, represent a limit for the number of elements in each pri-
vate source array, and the block phases in sdisp/sdisp raw and ddisp/ddisp raw

are defined analogously to the get variant.

Apart from the commented parameters, all the arguments in common with the base
collectives are analogously defined.

Example

In the next piece of code, the selected elements from array A are gathered in all shared
memory blocks of array B.

#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

shared [NELEMS] int B[NELEMS*THREADS];

shared int sdisp[THREADS];

shared int ddisp[THREADS];
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shared int nelems[THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

sdisp[MYTHREAD] = MYTHREAD*NELEMS + (MYTHREAD % (NELEMS/2));

// All threads gather the results in the second position of their array block

ddisp[MYTHREAD] = MYTHREAD*NELEMS + 1;

nelems[MYTHREAD] = MYTHREAD % (NELEMS/2) + 1;

upc_all_gather_all_v(B, A, ddisp, sdisp, NELEMS, NELEMS, nelems, sizeof(int),

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.2.5. The upc all exchange v Collective

Synopsis

#include <upc.h>

void upc_all_exchange_v (

shared void *dst, shared const void *src, shared int *exchange,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_exchange_v_local (

shared void *dst, shared const void *src, shared int *exchange_local,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_exchange_v_merge (

shared void *dst, shared const void *src, shared int *exchange,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

shared int *disp, upc_flag_t sync_mode

);

void upc_all_exchange_v_merge_local (

shared void *dst, shared const void *src, shared int *exchange_local,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

shared int *disp_local, upc_flag_t sync_mode

);

void upc_all_exchange_v_privparam (
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shared void *dst, shared const void *src, int *exchange,

size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_exchange_v_raw (

shared void *dst, shared const void *src, shared size_t *exchange_raw,

shared size_t *nbytes, size_t dst_blk_raw, size_t src_blk_raw,

upc_flag_t sync_mode

);

/**

* GET VERSIONS

*/

void upc_all_exchange_v_get (

void *dst, shared const void *src, shared int *exchange,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_exchange_v_local_get (

void *dst, shared const void *src, shared int *exchange_local,

shared size_t *nelems, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_exchange_v_merge_get (

void *dst, shared const void *src, shared int *exchange,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

shared int *disp, upc_flag_t sync_mode

);

void upc_all_exchange_v_merge_local_get (

void *dst, shared const void *src, shared int *exchange_local,

shared size_t *nelems, size_t src_blk, size_t typesize,

shared int *disp_local, upc_flag_t sync_mode

);

void upc_all_exchange_v_privparam_get (

void *dst, shared const void *src, int *exchange,

size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_exchange_v_raw_get (

void *dst, shared const void *src, shared size_t *exchange_raw,

shared size_t *nbytes, size_t dst_blk_raw, size_t src_blk_raw,

upc_flag_t sync_mode
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);

/**

* PUT VERSIONS

*/

void upc_all_exchange_v_put (

shared void *dst, const void *src, shared int *exchange,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_exchange_v_local_put (

shared void *dst, const void *src, shared int *exchange_local,

shared size_t *nelems, size_t dst_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_exchange_v_merge_put (

shared void *dst, const void *src, shared int *exchange,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

shared int *disp, upc_flag_t sync_mode

);

void upc_all_exchange_v_merge_local_put (

shared void *dst, const void *src, shared int *exchange_local,

shared size_t *nelems, size_t dst_blk, size_t typesize,

shared int *disp_local, upc_flag_t sync_mode

);

void upc_all_exchange_v_privparam_put (

shared void *dst, const void *src, int *exchange,

size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_exchange_v_raw_put (

shared void *dst, const void *src, shared size_t *exchange_raw,

shared size_t *nbytes, size_t dst_blk_raw, size_t src_blk_raw,

upc_flag_t sync_mode

);

/**

* PRIV VERSIONS

*/

void upc_all_exchange_v_priv (

void *dst, const void *src, shared int *exchange,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode
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);

void upc_all_exchange_v_local_priv (

void *dst, const void *src, shared int *exchange_local,

shared size_t *nelems, size_t dst_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_exchange_v_merge_priv (

void *dst, const void *src, shared int *exchange,

shared size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

shared int *disp, upc_flag_t sync_mode

);

void upc_all_exchange_v_merge_local_priv (

void *dst, const void *src, shared int *exchange_local,

shared size_t *nelems, size_t dst_blk, size_t typesize,

shared int *disp_local, upc_flag_t sync_mode

);

void upc_all_exchange_v_privparam_priv (

void *dst, const void *src, int *exchange,

size_t *nelems, size_t dst_blk, size_t src_blk, size_t typesize,

upc_flag_t sync_mode

);

void upc_all_exchange_v_raw_priv (

void *dst, const void *src, shared size_t *exchange_raw,

shared size_t *nbytes, size_t dst_blk_raw, size_t src_blk_raw,

upc_flag_t sync_mode

);

Description

This is a UPC exchange collective that uses a configurable amount of source and
destination data per thread.

The upc all exchange v function swaps THREADS chunks of shared memory from
array src into array dst according to the array indexes included in exchange.
Array exchange must have THREADS*THREADS elements. Locations i*THREADS to
(i+1)*THREADS-1 in exchange define the array indexes for source chunks in src

and also the destination indexes for received chunks in dst used by thread i. For
each index i in exchange, there is a nelems[i] that defines the number of elements
in the chunk. The number of elements in a block in arrays src and dst is src blk

and dst blk, respectively. All indexes in exchange are absolute array indexes. All
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values in array nelems must be strictly greater than zero.

The upc all exchange v local function is analogous to upc all exchange v, but
here the exchange local array should contain block phases to each thread instead
of absolute array indexes in order to indicate a value for a thread. For example, if the
value of exchange local[i] for thread j is 1 in a call to upc all exchange v local,
the function will reference the same chunk as with a call to upc all exchange v with
exchange[i] equal to j*src blk+1. Analogously, the corresponding remote chunk
will be copied to the position j*dst blk+1 in the destination array.

The upc all exchange v merge function is similar to upc all exchange v, but
it does not copy each memory chunk to the destination array according to the
exchange array; instead, all chunks with affinity to a thread in the destination ar-
ray are copied one after the other (that is, the chunk received from thread 1 is placed
immediately after the last element of the chunk received from thread 0, and so on).
In order to provide more flexibility, this collective takes an additional argument: an
array of THREADS called disp, which indicates the position in the destination array
where each thread should place the first element of the chunk received from thread
0. If NULL is passed as a value for disp, no displacement is applied in the destination
array.

The upc all exchange v merge local function is analogous to the previous one,
but here the arrays exchange local and disp local contain block phases to each
thread instead of absolute array indexes in order to indicate a value for a thread. For
example, if the values of exchange local[i] and disp local[j] for thread j are
both 1 in a call to upc all exchange v merge local, the function will reference
the same chunk as with a call to upc all exchange v merge with exchange[i]

equal to j*src blk+1. Analogously, the corresponding remote chunks will be stored
consecutively starting in the position j*dst blk+1 in the destination array.

The upc all exchange v privparam function defines exchange and nelems as pri-
vate arrays in order to optimize its performance.

The upc all exchange v raw function indicates the amount of data for communi-
cations on each thread as a chunk of bytes following the sizes indicated by array
nbytes. The displacements in the source and destination arrays are consequently
described in terms of bytes in the parameter exchange raw, as well as in the block
size parameters src blk raw and dst blk raw.
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None of the chunks defined should exceed the size of its corresponding destina-
tion; that is, for each thread i, nelems[i*THREADS+j] should be less than or
equal to the difference of exchange[j*THREADS+i+1] (or dst blk*THREADS when
i=j=THREADS-1) and exchange[j*THREADS+i]. The same applies to the raw col-
lectives considering nbytes, dst blk raw and exchange raw in the previous cases.
If these conditions are not fulfilled, the chunks received in array dst may be trun-
cated.

All these functions treat the src pointer as if it pointed to a shared memory area
with type:

shared [src_blk*typesize] char [src_blk*typesize*THREADS]

except upc all exchange v raw, which treats src as a pointer to a shared memory
area with type:

shared [src_blk_raw] char [src_blk_raw*THREADS]

The dst pointer in all functions is interpreted as a pointer to a shared memory area
with type:

shared [dst_blk*typesize] char [dst_blk*typesize*THREADS]

considering dst blk*typesize = dst blk raw for upc all exchange v raw.

Get-put-priv Variants

A variant called get is defined by using a private pointer as destination for communi-
cations. The name of this variant is the same as the base collective, but adding get

at the end, as shown in the synopsis. The shared source pointers in each of these
functions are treated the same way as in the corresponding base collective. The
dst blk/dst blk raw argument, where present, represents a limit for the number
of elements in each private destination array. It is important to note that if non-
local values are used in exchange/exchange raw, each value should be defined as if
the destination array was a shared array with the same type as the corresponding
base collective.
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A variant called put is defined by using a private pointer as source for communica-
tions. The name of this variant is the same as the base collective, but adding put

at the end, as shown in the synopsis. The src blk/src blk raw argument, where
present, represents a limit for the number of elements in each private source array.
Similarly to the get case, when using non-local values in exchange/exchange raw

each value should be defined as if the source array was a shared array with the same
type as the corresponding base collective.

A variant called priv is defined by using private pointers as source and destination
for communications. The name of this variant is the same as the base collective,
but adding priv at the end, as shown in the synopsis. The same comments as in
the put case apply here.

Apart from the commented parameters, all the arguments in common with the base
collectives are analogously defined.

Example

In the next piece of code, the selected elements from array A are exchanged in array B

(assume THREADS = NELEMS/2).

#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

shared [NELEMS] int B[NELEMS*THREADS];

shared [THREADS] exchange[THREADS];

shared [THREADS] int nelems[THREADS*THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

// Initialize ’exchange’ array

for (int i=MYTHREAD*THREADS; i<(MYTHREAD+1)*THREADS; i++) {

exchange[i]=i+1;

}

// Move always one or two elements per chunk

for (int i=MYTHREAD*THREADS; i<(MYTHREAD+1)*THREADS; i++) {

nelems[i]=1+(i%2);
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}

upc_all_exchange_v(B, A, exchange, nelems, NELEMS, NELEMS, sizeof(int),

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.2.6. The upc all permute v Collective

Synopsis

#include <upc.h>

void upc_all_permute_v (

shared void *dst, shared const void *src, shared const int *perm,

shared int *disp, shared size_t *nelems, size_t dst_blk,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_permute_v_local (

shared void *dst, shared const void *src, shared const int *perm,

shared int *disp_local, shared size_t *nelems, size_t dst_blk,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_permute_v_raw (

shared void *dst, shared const void *src, shared const int *perm,

shared size_t *disp_raw, shared size_t *nbytes, size_t dst_blk_raw,

size_t src_blk_raw, upc_flag_t sync_mode

);

/**

* GET VERSIONS

*/

void upc_all_permute_v_get (

void *dst, shared const void *src, shared const int *perm,

shared int *disp, shared size_t *nelems, size_t dst_blk,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_permute_v_local_get (

void *dst, shared const void *src, shared const int *perm,

shared int *disp_local, shared size_t *nelems,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_permute_v_raw_get (

void *dst, shared const void *src, shared const int *perm,
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shared size_t *disp_raw, shared size_t *nbytes, size_t dst_blk_raw,

size_t src_blk_raw, upc_flag_t sync_mode

);

/**

* PUT VERSIONS

*/

void upc_all_permute_v_put (

shared void *dst, const void *src, shared const int *perm,

shared int *disp, shared size_t *nelems, size_t dst_blk,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_permute_v_local_put (

shared void *dst, const void *src, shared const int *perm,

shared int *disp_local, shared size_t *nelems, size_t dst_blk,

size_t typesize, upc_flag_t sync_mode

);

void upc_all_permute_v_raw_put (

shared void *dst, const void *src, shared const int *perm,

shared size_t *disp_raw, shared size_t *nbytes, size_t dst_blk_raw,

size_t src_blk_raw, upc_flag_t sync_mode

);

/**

* PRIV VERSIONS

*/

void upc_all_permute_v_priv (

void *dst, const void *src, shared const int *perm,

shared int *disp, shared size_t *nelems, size_t dst_blk,

size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_permute_v_local_priv (

void *dst, const void *src, shared const int *perm,

shared int *disp_local, shared size_t *nelems, size_t dst_blk,

size_t typesize, upc_flag_t sync_mode

);

void upc_all_permute_v_raw_priv (

void *dst, const void *src, shared const int *perm,

shared size_t *disp_raw, shared size_t *nbytes, size_t dst_blk_raw,

size_t src_blk_raw, upc_flag_t sync_mode

);
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Description

This is a UPC permute collective that uses a configurable amount of source and
destination data per thread.

The upc all permute v function copies a chunk of shared memory with affinity to
the ith thread to a portion of a shared memory area associated to thread perm[i]

in the same array. The start index of each of the THREADS chunks is stored in disp,
and the size of each of them is indicated by the corresponding element in array
nelems. All elements in disp are absolute array indexes. All elements in nelems

must be strictly greater than zero. The number of elements per block in arrays src
and dst is src blk and dst blk, respectively.

The upc all permute v local function is analogous to upc all exchange v, but
here the disp local array should contain block phases to each thread instead of
absolute array indexes in order to indicate a value for a thread. For example, if the
value of disp local[i] is 1 in a call to upc all permute v local, the destination
array will be updated as with a call to upc all permute v with disp[i] equal to
i*dst blk+1.

The upc all permute v raw function indicates the amount of data for communi-
cations on each thread as a chunk of bytes following the sizes indicated by array
nbytes. The displacements in the source and destination arrays are consequently
described in terms of bytes in the parameter ddisp raw, as well as in the block size
parameters src blk raw and dst blk raw.

The target of the src, dst and perm pointers must have affinity to thread 0. Addi-
tionally, the src and dst pointers are treated as if they had phase 0.

The destination position for thread i must be less than or equal to the difference
of dst blk/dst blk raw and nelems[i]/nbytes[i]. If any of these conditions is
not fulfilled, the behavior of the function may be undefined or the chunks received
in array dst may be truncated.

The values stored in perm[0...THREADS-1] must define a permutation of the integer
values between 0 and THREADS-1.

All these functions treat the src pointer as if it pointed to a shared memory area
with type:

shared [src_blk*typesize] char [src_blk*typesize*THREADS]
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except upc all permute v raw, which treats src as a pointer to a shared memory
area with type:

shared [src_blk_raw] char [src_blk_raw*THREADS]

The dst pointer in all functions is interpreted as a pointer to a shared memory area
with type:

shared [dst_blk*typesize] char [dst_blk*typesize*THREADS]

considering dst blk*typesize = dst blk raw for upc all permute v raw.

Get-put-priv Variants

A variant called get is defined by using a private pointer as destination for communi-
cations. The name of this variant is the same as the base collective, but adding get

at the end, as shown in the synopsis. The shared source pointers in each of these
functions are treated the same way as in the corresponding base collective. The
dst blk/dst blk raw argument, where present, represents a limit for the number
of elements in each private destination array.

A variant called put is defined by using a private pointer as source for communica-
tions. The name of this variant is the same as the base collective, but adding put

at the end, as shown in the synopsis. The src blk/src blk raw argument, where
present, represents a limit for the number of elements in each private source array.

A variant called priv is defined by using private pointers as source and destination
for communications. The name of this variant is the same as the base collective,
but adding priv at the end, as shown in the synopsis. The src blk/src blk raw

argument, where present, represents a limit for the number of elements in each
private source array.

Apart from the commented parameters, all the arguments in common with the base
collectives are analogously defined.

Example

In the next piece of code, the shared memory blocks in array A are permuted into array
B according to the definitions in perm. This code is specifically designed for 4 threads.
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#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

shared [NELEMS] int B[NELEMS*THREADS];

shared int perm[THREADS];

shared int disp[THREADS];

shared int nelems[THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

if (MYTHREAD == 0) {

// Define the desired permutation

perm[0]=3; perm[1]=2;

perm[2]=0; perm[3]=1;

// Four 2-element chunks are defined

for (int i=0; i<THREADS; i++) {

disp[i]=i*2;

nelems[i]=2;

}

}

upc_all_permute_v(B, A, disp, nelems, perm, NELEMS, NELEMS, sizeof(int),

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.2.7. The upc all vector copy Collective

Synopsis

#include <upc.h>

void upc_all_vector_copy (

shared void *dst, shared const void *src, shared int *ddisp,

shared int *sdisp, shared size_t *nelems, int nchunks,

size_t dst_blk, size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_vector_copy_privparam (

shared void *dst, shared const void *src, int *ddisp,

int *sdisp, size_t *nelems, int nchunks,

size_t dst_blk, size_t src_blk, size_t typesize, upc_flag_t sync_mode

);
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void upc_all_vector_copy_raw (

shared void *dst, shared const void *src, shared size_t *ddisp_raw,

shared size_t *sdisp_raw, shared size_t *nbytes, int nchunks,

size_t dst_blk_raw, size_t src_blk_raw, upc_flag_t sync_mode

);

/**

* GET VERSIONS

*/

void upc_all_vector_copy_get (

void *dst, shared const void *src, shared int *ddisp,

shared int *sdisp, shared size_t *nelems, int nchunks,

size_t dst_blk, size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_vector_copy_privparam_get (

void *dst, shared const void *src, int *ddisp,

int *sdisp, size_t *nelems, int nchunks,

size_t dst_blk, size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_vector_copy_raw_get (

void *dst, shared const void *src, shared size_t *ddisp_raw,

shared size_t *sdisp_raw, shared size_t *nbytes, int nchunks,

size_t dst_blk_raw, size_t src_blk_raw, upc_flag_t sync_mode

);

/**

* PUT VERSIONS

*/

void upc_all_vector_copy_put (

shared void *dst, const void *src, shared int *ddisp,

shared int *sdisp, shared size_t *nelems, int nchunks,

size_t dst_blk, size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_vector_copy_privparam_put (

shared void *dst, const void *src, int *ddisp,

int *sdisp, size_t *nelems, int nchunks,

size_t dst_blk, size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_vector_copy_raw_put (

shared void *dst, const void *src, shared size_t *ddisp_raw,

shared size_t *sdisp_raw, shared size_t *nbytes, int nchunks,

size_t dst_blk_raw, size_t src_blk_raw, upc_flag_t sync_mode

);
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/**

* PRIV VERSIONS

*/

void upc_all_vector_copy_priv (

void *dst, const void *src, shared int *ddisp,

shared int *sdisp, shared size_t *nelems, int nchunks,

size_t dst_blk, size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_vector_copy_privparam_priv (

void *dst, const void *src, int *ddisp,

int *sdisp, size_t *nelems, int nchunks,

size_t dst_blk, size_t src_blk, size_t typesize, upc_flag_t sync_mode

);

void upc_all_vector_copy_raw_priv (

void *dst, const void *src, shared size_t *ddisp_raw,

shared size_t *sdisp_raw, shared size_t *nbytes, int nchunks,

size_t dst_blk_raw, size_t src_blk_raw, upc_flag_t sync_mode

);

Description

This is a UPC collective that provides a flexible definition for any number of data
copies between threads.

The upc all vector copy function copies nchunks portions of shared memory of
array src into array dst. Arrays sdisp, ddisp and nelems must have nchunks

elements, in order to define the array index of the source subarray, the destination
index and the chunk length, respectively. All values in nelems must be strictly
greater than zero. The number of elements per block in array src and dst is
src blk and dst blk, respectively.

The upc all vector copy privparam function defines sdisp, ddisp and nelems as
private arrays in order to optimize its performance.

The upc all vector copy raw function indicates the amount of data for commu-
nications on each thread as a chunk of bytes following the sizes indicated by array
nbytes. The displacements in the source and destination arrays are consequently
described in terms of bytes in parameters sdisp raw and ddisp raw, respectively,
as well as in the block size parameters src blk raw and dst blk raw.
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All chunks defined must have affinity to only one thread; that is, for each chunk i,
nelems[i] should be less than or equal to the difference of dst blk and ddisp[i]

(nbytes[i], dst blk raw and ddisp raw[i] for the raw collective). Additionally,
the target of the src and dst pointers must have affinity to thread 0. If any of these
conditions is not fulfilled or if the chunks overlap, the chunks received in array dst

may be truncated or the result of the copy may be undefined.

All these functions treat the src pointer as if it pointed to a shared memory area
with type:

shared [src_blk*typesize] char [src_blk*typesize*THREADS]

except upc all vector copy raw, which treats src as a pointer to a shared memory
area with type:

shared [src_blk_raw] char [src_blk_raw*THREADS]

The dst pointer in all functions is interpreted as a pointer to a shared memory area
with type:

shared [dst_blk*typesize] char [dst_blk*typesize*THREADS]

considering dst blk*typesize = dst blk raw for upc all vector copy raw.

Get-put-priv Variants

A variant called get is defined by using a private pointer as destination for communi-
cations. The name of this variant is the same as the base collective, but adding get

at the end, as shown in the synopsis. The shared source pointers in each of these
functions are treated the same way as in the corresponding base collective. Here
the dst blk/dst blk raw argument represents a limit for the number of elements
in each private destination array.

A variant called put is defined by using a private pointer as source for communi-
cations. The name of this variant is the same as the base collective, but adding
put at the end, as shown in the synopsis. Here the src blk/src blk raw argument

represents a limit for the number of elements in each private source array.
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A variant called priv is defined by using private pointers as source and destination
for communications. The name of this variant is the same as the base collective, but
adding priv at the end, as shown in the synopsis. Here the src blk/src blk raw

argument represents a limit for the number of elements in each private source array.

Apart from the commented parameters, all the arguments in common with the base
collectives are analogously defined.

Example

In the next piece of code, four chunks of shared memory are defined in array A according
to the displacements in sdisp and the number of elements in nelems, and they are moved
to array B in the positions stated in ddisp.

#define NELEMS 1000

#define NCHUNKS 4

shared [NELEMS] int A[NELEMS*THREADS];

shared [NELEMS] int B[NELEMS*THREADS];

shared int sdisp[NCHUNKS];

shared int ddisp[NCHUNKS];

shared int nelems[NCHUNKS];

// Initialize A

for (int i=MYTHREAD*NELEMS*THREADS; i<(MYTHREAD+1)*NELEMS*THREADS; i++) {

A[i]=i;

}

if (MYTHREAD == 0) {

// Four 110-element chunks are defined

for (int i=0; i<NCHUNKS; i++) {

sdisp[i]=i*100+15;

ddisp[i]=i*200;

nelems[i]=110;

}

}

upc_all_vector_copy(B, A, ddisp, sdisp, nelems, NCHUNKS, NELEMS, NELEMS,

sizeof(int), UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);
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A.2.8. Computational Vector-variant Collectives

Synopsis

#include <upc.h>

#include <upc_collective.h>

/**

* REDUCE

*/

void upc_all_reduce<<T>>_v (

shared void *dst, shared const void *src, upc_op_t op,

shared int *sdisp, shared size_t *nelems, int nchunks, size_t src_blk,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_v_get (

void *dst, shared const void *src, upc_op_t op,

shared int *sdisp, shared size_t *nelems, int nchunks, size_t src_blk,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_v_put (

shared void *dst, const void *src, upc_op_t op,

shared int *sdisp, shared size_t *nelems, int nchunks, size_t src_blk,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_v_priv (

void *dst, const void *src, upc_op_t op,

shared int *sdisp, shared size_t *nelems, int nchunks, size_t src_blk,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

/**

* ALLREDUCE

*/

void upc_all_reduce<<T>>_all_v (

shared void *dst, shared const void *src, upc_op_t op,

shared int *sdisp, shared size_t *nelems, int nchunks, size_t src_blk,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_all_v_get (

void *dst, shared const void *src, upc_op_t op,

shared int *sdisp, shared size_t *nelems, int nchunks, size_t src_blk,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode
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);

void upc_all_reduce<<T>>_all_v_put (

shared void *dst, const void *src, upc_op_t op,

shared int *sdisp, shared size_t *nelems, int nchunks, size_t src_blk,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_all_v_priv (

void *dst, const void *src, upc_op_t op,

shared int *sdisp, shared size_t *nelems, int nchunks, size_t src_blk,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

/**

* PREFIX REDUCE

*/

void upc_all_prefix_reduce_<<T>>_v (

shared void *dst, shared const void *src, upc_op_t op,

shared int *ddisp, shared int *sdisp, shared size_t *nelems,

int nchunks, size_t dst_blk, size_t src_blk,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_prefix_reduce_<<T>>_v_get (

void *dst, shared const void *src, upc_op_t op,

shared int *ddisp, shared int *sdisp, shared size_t *nelems,

int nchunks, size_t dst_blk, size_t src_blk,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_prefix_reduce_<<T>>_v_put (

shared void *dst, const void *src, upc_op_t op,

shared int *ddisp, shared int *sdisp, shared size_t *nelems,

int nchunks, size_t dst_blk, size_t src_blk,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);

void upc_all_prefix_reduce_<<T>>_v_priv (

void *dst, const void *src, upc_op_t op,

shared int *ddisp, shared int *sdisp, shared size_t *nelems,

int nchunks, size_t dst_blk, size_t src_blk,

<<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), upc_flag_t sync_mode

);
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Description

These functions define a set of UPC computational operations that provide a flexible
definition for any number of source data chunks.

The prototypes above represent 132 computational extended collectives, where T

and TYPE have the following correspondences:

T TYPE T TYPE

C signed char L signed long

UC unsigned char UL unsigned long

S signed short F float

US unsigned short D double

I signed int LD long double

UI unsigned int

For example, if T is C, TYPE must be signed char

The upc all reduceT v and upc all reduceT all v functions reduce a subset of
values in array src according to a custom number of chunks defined by the additional
parameters: sdisp contains the array indexes for every chunk, nelems indicates the
length of each chunk and nchunks represents the number of chunks that are used in
each function call. Therefore, arrays sdisp and nelems should have nchunks ele-
ments each. The src blk parameter represents the number of elements included in a
block of memory in the src array. Additionally to this, the upc all reduceT all v

function returns the result in the shared memory space of all threads.

The upc all prefix reduceT v function computes a prefix reduction using a cus-
tom number of chunks defined in array src. The parameter sdisp contains the
array indexes for every chunk, ddisp defines the destination indexes for each pro-
cessed chunk, nelems indicates the length of each chunk and nchunks represents
the number of chunks that are used in each function call. Therefore, arrays sdisp,
ddisp and nelems should have nchunks elements each. After the execution of the
function, the dst array contains the results of the partial reductions obtained for the
defined chunks according to the ordering of the source values in src, and according
to the block size definitions src blk and dst blk (if they are not equal, the result
may be truncated).

On completion of the upc all reduceT v functions, the TYPE value referenced by
dst is src[<chunk0>] ⊕ src[<chunk1>] ⊕ · · · ⊕ src[<chunknchunks−1>], where
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src[<chunkn>] is the result of the reduction of all the elements in chunk n and “⊕”
is the operator specified by the op parameter.

On completion of the upc all reduceT all v functions, the TYPE value referenced
by &(dst + i) for each thread i is src[<chunk0>] ⊕ src[<chunk1>] ⊕ · · · ⊕
src[<chunknchunks−1>], where src[<chunkn>] is the result of the reduction of all
the elements in chunk n and “⊕” is the operator specified by the op parameter. It
is important to note that the operation is performed regardless of the block size in
array dst.

On completion of the upc all prefix reduceT v functions, the TYPE value refer-
enced by the ith position of chunk j is

⊕j−1
n=0src[<chunkn>] ⊕ src[<chunkj(0)>]

⊕ src[<chunkj(1)>] ⊕ · · · ⊕ src[<chunkj(i)>], where
⊕j−1

n=0src[<chunkn>] is the
result of the reduction of all the elements in chunks 0 to j-1, src[<chunkj(i)>] is
the ith element of chunk j and “⊕” is the operator specified by the op parameter.

The argument op can have the following values:

• UPC ADD: addition.

• UPC MULT: multiplication.

• UPC AND: bitwise AND for integer and character variables. Results are undefined
for floating point numbers.

• UPC OR: bitwise OR for integer and character variables. Results are undefined
for floating point numbers.

• UPC XOR: bitwise XOR for integer and character variables. Results are undefined
for floating point numbers.

• UPC LOGAND: logical AND for all variable types.

• UPC LOGOR: logical OR for all variable types.

• UPC MIN: for all data types, find the minimum value.

• UPC MAX: for all data types, find the maximum value.

• UPC FUNC: use the specified commutative function func to operate on the data
in the src array.

• UPC NONCOMM FUNC: use the specified non-commutative function func to oper-
ate on the data in the src array.
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The operations represented by op are assumed to be associative and commuta-
tive (except those provided using UPC NONCOMM FUNC). An operation whose result
is dependent on the operator evaluation or on the order of the operands will have
undefined results.

If the value of src blk passed to all these functions is greater than zero, they
treat the src pointer as if it pointed to a shared memory area with blocking factor
src blk, and therefore with type:

shared [src_blk] <<TYPE>> [<nelems>]

where <nelems> represents the total number of elements in the array. It is important
to note that this value is not explicitly passed as a parameter to the functions.

If the value of src blk is zero, the functions treat the src pointer as if it pointed to
a shared memory area of <nelems> elements of type TYPE with an indefinite layout
qualifier, and therefore with type:

shared [] <<TYPE>> [<nelems>]

In this case, the source array would only have affinity to one thread, and thus the
chunks for reductions should be defined accordingly.

The upc all reduceT v and upc all reduceT all v functions consider the dst

array as if it had type:

shared <<TYPE>> *

The upc all prefix reduceT v function considers the dst array as if it had type:

shared [dst_blk] <<TYPE>> [<nelems>]

Get-put-priv Variants

A variant called get is defined by using a private pointer as destination for commu-
nications. The name of this variant is the same as the base collective, but adding
get at the end, as shown in the synopsis. The shared source pointers in each of

these functions are treated the same way as in the corresponding base collective.
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A variant called put is defined by using a private pointer as source for communica-
tions. The name of this variant is the same as the base collective, but adding put

at the end, as shown in the synopsis. The shared destination pointers in each of
these functions are treated the same way as in the corresponding base collective.

A variant called priv is defined by using private pointers as source and destination
for communications. The name of this variant is the same as the base collective,
but adding priv at the end, as shown in the synopsis.

In all these variants the src blk argument represents a limit for the number of
elements of the source chunk. Even when src is private, the displacements in sdisp

and ddisp (when present) should be defined as if src had the same shared type as
in the corresponding base collective.

Apart from the commented parameters, all of these variants present the same addi-
tional arguments as the base collective.

Examples

In the next piece of code, the sum of 4 chunks in array A is computed and stored in
the shared memory of thread 0. Then, the sum of the first three chunks is computed and
stored in the shared memory of all threads. Finally, the prefix reduction is applied to the
first two chunks and stored in array B. It is important to note that, in all cases, it is not
relevant the actual number of elements in sdisp, ddisp and nelems, as long as they have
at least the required number of chunks for the collective call in which they are used.

#define NELEMS 1000

#define NCHUNKS 4

shared [THREADS] int A[NELEMS*THREADS];

shared [THREADS] int B[NELEMS*THREADS];

shared int sdisp[NCHUNKS], ddisp[NCHUNKS], nelems[NCHUNKS];

shared int res, result[THREADS];

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

if (MYTHREAD == 0) {
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// Four 110-element chunks are defined

for (int i=0; i<NCHUNKS; i++) {

sdisp[i]=i*100+15; ddisp[i]=i*100+15; nelems[i]=110;

}

}

upc_all_reduceI_v(&res, A, UPC_ADD, sdisp, nelems, NCHUNKS,

THREADS, NULL, UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

upc_all_reduceI_all_v(result, A, UPC_ADD, sdisp, nelems, NCHUNKS-1,

THREADS, NULL, UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

upc_all_prefix_reduceI_v(B, A, UPC_ADD, ddisp, sdisp, nelems, NCHUNKS-2,

THREADS, THREADS, NULL, UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.3. Team-based Collectives

A.3.1. The upc all broadcast team Collective

Synopsis

#include <upc.h>

#include "teamutil.h"

void upc_all_broadcast_team (

shared void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_broadcast_team_get (

void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_broadcast_team_put (

shared void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_broadcast_team_priv (

void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);
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Description

This is a UPC broadcast collective that is executed by a subset of threads defined
by a team (parameter t).

Each memory chunk involved in the communication has a size of nbytes/nthr team,
where nthr team is the number of threads in the team. The rest of arguments are
similar to the corresponding standard collective.

The upc all broadcast team function treats the src pointer as if it pointed to a
shared memory area with type:

shared [] char [nbytes]

and the dst pointer is considered as if it pointed to a shared memory area with
type:

shared [nbytes] char [nbytes*THREADS]

Get-put-priv Variants

Three variants are defined using different configurations for the locality of the source
and destination pointers. The get variant uses a private pointer as destination, the put
variant uses a private pointer as source, and the priv variant uses private pointers as source
and destination. Each shared source or destination in these variants is considered to have
the same behavior as in the base collective according to the previous description.

Example

In the next piece of code, the whole shared memory block associated to thread 1 in
array A is copied to the blocks in array B associated to all threads in the team.

#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

shared [NELEMS] int B[NELEMS*THREADS];

team t; // The team has to be initialized

// Initialize A
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for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

upc_all_broadcast_team(B, &A[NELEMS], NELEMS*sizeof(int), t,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.3.2. The upc all scatter team Collective

Synopsis

#include <upc.h>

#include "teamutil.h"

/**

* TEAM

*/

void upc_all_scatter_team (

shared void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_scatter_team_get (

void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_scatter_team_put (

shared void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_scatter_team_priv (

void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

/**

* TEAM ALLTHR

*/

void upc_all_scatter_team_allthr (

shared void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_scatter_team_allthr_get (
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void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_scatter_team_allthr_put (

shared void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_scatter_team_allthr_priv (

void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

Description

This is a UPC scatter collective that is executed by a subset of threads defined by
a team (parameter t).

In the upc all scatter team collective each memory chunk involved in the commu-
nication has a size of nbytes/nthr team, where nthr team is the number of threads
in the team. The rest of arguments are similar to the corresponding standard col-
lective.

The upc all scatter team allthr collective is analogous to the previous one, but
every chunk has a size of nbytes/THREADS.

Both functions treat the src pointer as if it pointed to a shared memory area with
type:

shared [] char [nbytes]

and the dst pointer is considered as if it pointed to a shared memory area with
type:

shared [nbytes] char [nbytes*THREADS]

Get-put-priv Variants

Three variants are defined for each of the two functions presented before. The get
variant uses a private pointer as destination, the put variant uses a private pointer as
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source, and the priv variant uses private pointers as source and destination. Each shared
source or destination in these variants is considered to have the same behavior as in the
corresponding base collective according to the previous description.

Example

In the next piece of code, the shared memory block associated to thread 1 in array A

is scattered to array B.

#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

shared [NELEMS] int B[NELEMS*THREADS];

team t; // The team has to be initialized

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

upc_all_scatter_team(B, &A[NELEMS], NELEMS*sizeof(int), t,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.3.3. The upc all gather team Collective

Synopsis

#include <upc.h>

#include "teamutil.h"

/**

* TEAM

*/

void upc_all_gather_team (

shared void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_gather_team_get (

void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);
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void upc_all_gather_team_put (

shared void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_gather_team_priv (

void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

/**

* TEAM ALLTHR

*/

void upc_all_gather_team_allthr (

shared void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_gather_team_allthr_get (

void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_gather_team_allthr_put (

shared void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_gather_team_allthr_priv (

void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

Description

This is a UPC gather collective that is executed by a subset of threads defined by a
team (parameter t).

In the upc all gather team collective each memory chunk involved in the commu-
nication has a size of nbytes/nthr team, where nthr team is the number of threads
in the team. The rest of arguments are similar to the corresponding standard col-
lective.

The upc all gather team allthr collective is analogous to the previous one, but
every chunk has a size of nbytes/THREADS.
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Both functions treat the src pointer as if it pointed to a shared memory area with
type:

shared [] char [nbytes]

and the dst pointer is considered as if it pointed to a shared memory area with
type:

shared [nbytes] char [nbytes*THREADS]

Get-put-priv Variants

Three variants are defined for each of the two functions presented before. The get
variant uses a private pointer as destination, the put variant uses a private pointer as
source, and the priv variant uses private pointers as source and destination. Each shared
source or destination in these variants is considered to have the same behavior as in the
corresponding base collective according to the previous description.

Example

In the next piece of code, two integers per thread from array A are gathered in the
memory block of array B with affinity to thread 1.

#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

shared [NELEMS] int B[NELEMS*THREADS];

team t; // The team has to be initialized

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

upc_all_gather_team(&B[NELEMS], A, 2*sizeof(int), t,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);



A.3 Team-based Collectives 207

A.3.4. The upc all gather all team Collective

Synopsis

#include <upc.h>

#include "teamutil.h"

/**

* TEAM

*/

void upc_all_gather_all_team (

shared void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_gather_all_team_get (

void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_gather_all_team_put (

shared void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_gather_all_team_priv (

void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

/**

* TEAM ALLTHR

*/

void upc_all_gather_all_team_allthr (

shared void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_gather_all_team_allthr_get (

void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_gather_all_team_allthr_put (

shared void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_gather_all_team_allthr_priv (
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void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

Description

This is a UPC allgather collective that is executed by a subset of threads defined
by a team (parameter t).

In the upc all gather all team collective each memory chunk involved in the com-
munication has a size of nbytes/nthr team, where nthr team is the number of
threads in the team. The rest of arguments are similar to the corresponding stan-
dard collective.

The upc all gather all team allthr collective is analogous to the previous one,
but every chunk has a size of nbytes/THREADS.

Both functions treat the src pointer as if it pointed to a shared memory area with
type:

shared [nbytes] char [nbytes*THREADS]

and the dst pointer is considered as if it pointed to a shared memory area with
type:

shared [nbytes*THREADS] char [nbytes*THREADS*THREADS]

Get-put-priv Variants

Three variants are defined for each of the two functions presented before. The get
variant uses a private pointer as destination, the put variant uses a private pointer as
source, and the priv variant uses private pointers as source and destination. Each shared
source or destination in these variants is considered to have the same behavior as in the
corresponding base collective according to the previous description.

Example

In the next piece of code, two integers per thread are gathered from array A to array
B by all threads in team t.
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#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

shared [NELEMS] int B[NELEMS*THREADS];

team t; // The team has to be initialized

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

upc_all_gather_all_team(B, A, 2*sizeof(int), t, UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.3.5. The upc all exchange team Collective

Synopsis

#include <upc.h>

#include "teamutil.h"

/**

* TEAM

*/

void upc_all_exchange_team (

shared void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_exchange_team_get (

void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_exchange_team_put (

shared void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_exchange_team_priv (

void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

/**

* TEAM ALLTHR

*/
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void upc_all_exchange_team_allthr (

shared void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_exchange_team_allthr_get (

void *dst, shared const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_exchange_team_allthr_put (

shared void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

void upc_all_exchange_team_allthr_priv (

void *dst, const void *src, size_t nbytes, team t,

upc_flag_t sync_mode

);

Description

This is a UPC exchange collective that is executed by a subset of threads defined
by a team (parameter t).

In the upc all exchange team collective each memory chunk involved in the com-
munication has a size of nbytes/nthr team, where nthr team is the number of
threads in the team. The rest of arguments are similar to the corresponding stan-
dard collective.

The upc all exchange team allthr collective is analogous to the previous one, but
every chunk has a size of nbytes/THREADS.

Both functions treat the src pointer as if it pointed to a shared memory area with
type:

shared [nbytes] char [nbytes*THREADS]

and the dst pointer is considered as if it pointed to a shared memory area with
type:

shared [nbytes*THREADS] char [nbytes*THREADS*THREADS]
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Get-put-priv Variants

Three variants are defined for each of the two functions presented before. The get
variant uses a private pointer as destination, the put variant uses a private pointer as
source, and the priv variant uses private pointers as source and destination. Each shared
source or destination in these variants is considered to have the same behavior as in the
corresponding base collective according to the previous description.

Example

In the next piece of code, two integers per thread are exchanged from array A to array
B by all threads in team t.

#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

shared [NELEMS] int B[NELEMS*THREADS];

team t; // The team has to be initialized

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

upc_all_exchange_team(B, A, 2*sizeof(int), t, UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

A.3.6. The upc all permute team Collective

Synopsis

#include <upc.h>

#include "teamutil.h"

/**

* TEAM

*/

void upc_all_permute_team (

shared void *dst, shared const void *src, shared const int *perm

size_t nbytes, team t, upc_flag_t sync_mode

);
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void upc_all_permute_team_get (

void *dst, shared const void *src, shared const int *perm,

size_t nbytes, team t, upc_flag_t sync_mode

);

void upc_all_permute_team_put (

shared void *dst, const void *src, shared const int *perm,

size_t nbytes, team t, upc_flag_t sync_mode

);

void upc_all_permute_team_priv (

void *dst, const void *src, shared const int *perm,

size_t nbytes, team t, upc_flag_t sync_mode

);

/**

* TEAM ALLTHR

*/

void upc_all_permute_team_allthr (

shared void *dst, shared const void *src, shared const int *perm,

size_t nbytes, team t, upc_flag_t sync_mode

);

void upc_all_permute_team_allthr_get (

void *dst, shared const void *src, shared const int *perm,

size_t nbytes, team t, upc_flag_t sync_mode

);

void upc_all_permute_team_allthr_put (

shared void *dst, const void *src, shared const int *perm,

size_t nbytes, team t, upc_flag_t sync_mode

);

void upc_all_permute_team_allthr_priv (

void *dst, const void *src, shared const int *perm,

size_t nbytes, team t, upc_flag_t sync_mode

);

Description

This is a UPC permute collective that is executed by a subset of threads defined by
a team (parameter t).

The values stored in perm[0...nthr team] (where nthr team is the number of
threads in the team) must define a permutation using the integer values between 0

and nthr team-1. The rest of arguments are similar to the corresponding standard
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collective.

The upc all permute team allthr collective is analogous to the previous one, but
the permutation is defined using thread identifiers, and thus perm should have
THREADS values.

Both functions treat the src and dst pointers as if they pointed to a shared memory
area with type:

shared [nbytes] char [nbytes*THREADS]

Get-put-priv Variants

Three variants are defined for each of the two functions presented before. The get
variant uses a private pointer as destination, the put variant uses a private pointer as
source, and the priv variant uses private pointers as source and destination. Each shared
source or destination in these variants is considered to have the same behavior as in the
corresponding base collective according to the previous description.

Example

In the next piece of code, the blocks associated to each thread in A are permuted in
array B by all threads in team t.

#define NELEMS 10

shared [NELEMS] int A[NELEMS*THREADS];

shared [NELEMS] int B[NELEMS*THREADS];

shared int perm[THREADS]; // perm has to be initialized

team t; // The team has to be initialized

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

upc_all_permute_team(B, A, perm, NELEMS*sizeof(int), t,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);
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A.3.7. Computational Team-based Collectives

Synopsis

#include <upc.h>

#include <upc_collective.h>

#include "teamutil.h"

/**

* REDUCE

*/

void upc_all_reduce<<T>>_team (

shared void *dst, shared const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), team t,

upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_team_get (

void *dst, shared const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), team t,

upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_team_put (

shared void *dst, const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), team t,

upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_team_priv (

void *dst, const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), team t,

upc_flag_t sync_mode

);

/**

* ALLREDUCE

*/

void upc_all_reduce<<T>>_all_team (

shared void *dst, shared const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), team t,

upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_all_team_get (

void *dst, shared const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), team t,
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upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_all_team_put (

shared void *dst, const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), team t,

upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_all_team_priv (

void *dst, const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), team t,

upc_flag_t sync_mode

);

/**

* PREFIX REDUCE

*/

void upc_all_prefix_reduce<<T>>_team (

shared void *dst, shared const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), team t,

upc_flag_t sync_mode

);

void upc_all_prefix_reduce<<T>>_team_get (

void *dst, shared const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), team t,

upc_flag_t sync_mode

);

void upc_all_prefix_reduce<<T>>_team_put (

shared void *dst, const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), team t,

upc_flag_t sync_mode

);

void upc_all_prefix_reduce<<T>>_team_priv (

void *dst, const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>), team t,

upc_flag_t sync_mode

);

Description

These functions define a set of UPC computational operations that are executed by
a subset of threads defined by a team (parameter t).
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The prototypes above represent 132 computational extended collectives, where T

and TYPE have the following correspondences:

T TYPE T TYPE

C signed char L signed long

UC unsigned char UL unsigned long

S signed short F float

US unsigned short D double

I signed int LD long double

UI unsigned int

For example, if T is C, TYPE must be signed char

The arguments used in upc all reduceT team and upc all reduceT all team

are analogous to those of the standard reduce collective. This also applies to
upc all prefix reduceT team with its standard collective counterpart.

Both src and dst pointers must have affinity to a thread included in the team.

The order of processing of the values in src is determined by the team identifier of
each thread; that is, after processing thread i with team identifier m, the next chunk
processed will correspond to thread j with team identifier m+1.

On completion of the upc all reduceT team functions, the value of the TYPE shared
variable referenced by dst is src[0] ⊕ src[1] ⊕ · · · ⊕ src[nelems-1], where
src[i] is the ith element in the reduction sequence and “⊕” is the operator spec-
ified by the op parameter. The upc all reduceT all team function presents an
analogous result, but here the result is stored in the addresses referenced by &(dst

+ m), where m is the identifier of each thread in the team.

On completion of the upc all prefix reduceT team functions, the ith TYPE shared
variable in the destination (dst[i]) is src[0] ⊕ src[1] ⊕ · · · ⊕ src[i].

The argument op can have the following values:

• UPC ADD: addition.

• UPC MULT: multiplication.

• UPC AND: bitwise AND for integer and character variables. Results are undefined
for floating point numbers.
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• UPC OR: bitwise OR for integer and character variables. Results are undefined
for floating point numbers.

• UPC XOR: bitwise XOR for integer and character variables. Results are undefined
for floating point numbers.

• UPC LOGAND: logical AND for all variable types.

• UPC LOGOR: logical OR for all variable types.

• UPC MIN: for all data types, find the minimum value.

• UPC MAX: for all data types, find the maximum value.

• UPC FUNC: use the specified commutative function func to operate on the data
in the src array.

• UPC NONCOMM FUNC: use the specified non-commutative function func to oper-
ate on the data in the src array.

The operations represented by op are assumed to be associative and commuta-
tive (except those provided using UPC NONCOMM FUNC). An operation whose result
is dependent on the operator evaluation or on the order of the operands will have
undefined results.

If the value of blk size passed to all these functions is greater than zero, they
treat the src pointer as if it pointed to a shared memory area with blocking factor
blk size, and therefore with type:

shared [blk_size] <<TYPE>> [<nelems>]

where <nelems> represents the total number of elements in the array. It is important
to note that this value is not explicitly passed as a parameter to the functions.

If the value of blk size is zero, the functions treat the src pointer as if it pointed to
a shared memory area of <nelems> elements of type TYPE with an indefinite layout
qualifier, and therefore with type:

shared [] <<TYPE>> [<nelems>]

The upc all reduceT team and upc all reduceT all team functions consider the
dst array as if it had type:

shared <<TYPE>> *
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The upc all prefix reduceT team function considers the dst array as if it had
type:

shared [blk_size] <<TYPE>> [<nelems>]

Get-put-priv Variants

Three variants are defined for each of the three functions presented before. The get
variant uses a private pointer as destination, the put variant uses a private pointer as
source, and the priv variant uses private pointers as source and destination. Each shared
source or destination in these variants is considered to have the same behavior as in the
corresponding base collective according to the previous description.

Examples

In the next piece of code, the accumulative sum of all the elements from array A

associated to threads in team t is computed in array B, and then the sum of these elements
in array B is computed in variable c.

#define NELEMS 1000

shared [THREADS] int A[NELEMS*THREADS];

shared [THREADS] int B[NELEMS*THREADS];

shared int c;

team t; // The team has to be initialized

// Initialize A

for (int i=MYTHREAD*NELEMS; i<(MYTHREAD+1)*NELEMS; i++) {

A[i]=i;

}

upc_all_prefix_reduceI_team(B, A, UPC_ADD, NELEMS, NELEMS, NULL, t,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);

upc_all_reduceI_team(&c, B, UPC_ADD, NELEMS, NELEMS, NULL, t,

UPC_IN_ALLSYNC|UPC_OUT_ALLSYNC);
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A.4. Get-put-priv Variants of Standard Collec-

tives

Synopsis

#include <upc.h>

#include <upc_collective.h>

/**

* BROADCAST

*/

void upc_all_broadcast_get (

void *dst, shared const void *src, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_broadcast_put (

shared void *dst, const void *src, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_broadcast_priv (

void *dst, const void *src, size_t nbytes, upc_flag_t sync_mode

);

/**

* SCATTER

*/

void upc_all_scatter_get (

void *dst, shared const void *src, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_scatter_put (

shared void *dst, const void *src, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_scatter_priv (

void *dst, const void *src, size_t nbytes, upc_flag_t sync_mode

);

/**

* GATHER

*/

void upc_all_gather_get (

void *dst, shared const void *src, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_gather_put (

shared void *dst, const void *src, size_t nbytes, upc_flag_t sync_mode

);
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void upc_all_gather_priv (

void *dst, const void *src, size_t nbytes, upc_flag_t sync_mode

);

/**

* ALLGATHER

*/

void upc_all_gather_all_get (

void *dst, shared const void *src, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_gather_all_put (

shared void *dst, const void *src, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_gather_all_priv (

void *dst, const void *src, size_t nbytes, upc_flag_t sync_mode

);

/**

* EXCHANGE

*/

void upc_all_exchange_get (

void *dst, shared const void *src, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_exchange_put (

shared void *dst, const void *src, size_t nbytes, upc_flag_t sync_mode

);

void upc_all_exchange_priv (

void *dst, const void *src, size_t nbytes, upc_flag_t sync_mode

);

/**

* PERMUTE

*/

void upc_all_permute_get (

void *dst, shared const void *src, shared const int *perm,

size_t nbytes, upc_flag_t sync_mode

);

void upc_all_permute_put (

shared void *dst, const void *src, shared const int *perm,

size_t nbytes, upc_flag_t sync_mode

);

void upc_all_permute_priv (

void *dst, const void *src, shared const int *perm,

size_t nbytes, upc_flag_t sync_mode
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);

/**

* REDUCE

*/

void upc_all_reduce<<T>>_get (

void *dst, shared const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>),

upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_put (

shared void *dst, const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>),

upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_priv (

void *dst, const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>),

upc_flag_t sync_mode

);

/**

* ALLREDUCE

*/

void upc_all_reduce<<T>>_all_get (

void *dst, shared const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>),

upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_all_put (

shared void *dst, const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>),

upc_flag_t sync_mode

);

void upc_all_reduce<<T>>_all_priv (

void *dst, const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>),

upc_flag_t sync_mode

);

/**

* PREFIX REDUCE

*/

void upc_all_prefix_reduce<<T>>_get (
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void *dst, shared const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>),

upc_flag_t sync_mode

);

void upc_all_prefix_reduce<<T>>_put (

shared void *dst, const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>),

upc_flag_t sync_mode

);

void upc_all_prefix_reduce<<T>>_priv (

void *dst, const void *src, upc_op_t op, size_t nelems,

size_t blk_size, <<TYPE>> (*func) (<<TYPE>>,<<TYPE>>),

upc_flag_t sync_mode

);

Description

These collectives present the same features as the corresponding standard ones, but
they use private arrays as source and/or destination of communications.

The get-put-priv variants of the extended collectives have already been included in
their corresponding sections: in-place (Section A.1), vector-variant (Section A.2)
and team-based collectives (Section A.3).
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