
UPC Performance Evaluation on a Multicore

System

Damián A. Mallón, J. Carlos

Mouriño, Andrés Gómez

Galicia Supercomputing Center

Santiago de Compostela, Spain

{dalvarez,jmourino,agomez}@cesga.es

Guillermo L. Taboada, Carlos

Teijeiro, Juan Touriño, Basilio B.

Fraguela, Ramón Doallo

Computer Architecture Group

University of A Coruña, Spain

{taboada,cteijeiro,juan,basilio,doallo}@udc.es

Brian Wibecan

Hewlett-Packard

Nashua (NH), USA

brian.wibecan@hp.com

Abstract—As size and architectural complexity of High Per-
formance Computing systems increases, the need for productive
programming tools and languages becomes more important.
The UPC language aims to be a good choice for a produc-
tive parallel programming. However, productivity is influenced
not only by expressiveness of the language, but also by its
performance. To assess the current UPC performance in high
performance multicore systems, and therefore to help improve
UPC developers future productivity, this paper provides an up-
to-date UPC performance evaluation at various levels, evaluating
two collective implementations, comparing their results with
their MPI counterparts, and finally evaluating UPC and MPI
performance in computational kernels. This analysis shows a path
to optimize UPC collectives performance. This work also provides
a performance snapshot of UPC vs the currently most popular
choice for parallel programming, MPI. This snapshot, altogether
with the UPC collectives analysis, shows that there is room for
improvement and, besides its worse performance, UPC is suitable
for a productive development of most HPC applications.

I. INTRODUCTION

As multicore systems are increasing their popularity,

UPC [1] has shown to be a good alternative to more traditional

parallel programming models (e.g., message-passing, data par-

allel and shared-memory models), due to its Partitioned Global

Address Space (PGAS) memory model. The PGAS memory

model makes UPC especially suitable for hybrid shared/dis-

tributed memory architectures. Nevertheless, the transparent

access to data affine to a remote thread usually introduces a

significant overhead.

In order to reduce the number of these inefficient oper-

ations, the UPC collectives specification [2], which is part

of the standard UPC specification [3], defines a set of data

movements and computational operations commonly used in

parallel applications. The implementation of these primitives,

in a UPC collectives library, provides improvements in the

programmability, as well as the locality (and hence the per-

formance) in the data access.

Regarding UPC compilers, the most relevant open-source

implementation is Berkeley UPC [4] (BUPC). BUPC provides

its own collectives library (from now on “BCOL”, Berkeley

COllectives Library). However, it can use other collectives

libraries, such as the UPC reference implementation (from

now on “REF”) [5] from Michigan Tech. University. Besides

BUPC, there are also other commercial and open source UPC

compilers, mainly HP UPC [6] and IBM UPC [7].

As the performance of the collectives operations is crit-

ical for overall performance, this paper presents an up-to-

date performance evaluation of the two collective libraries

aforementioned, comparing their results with the equivalent

MPI operations performance. Due to the lack of suitable

benchmarking tools for this task, a microbenchmarking suite

has been developed as part of this work. Also, in order to

provide a snapshot of UPC current performance in computa-

tional kernels, a second analysis has been done, using the NAS

Parallel Benchmarks (NPB) [8] to compare UPC and MPI.

The rest of this paper is organized as follows. Section

2 discusses the related work on UPC performance evalua-

tions. Section 3 presents the current implementations of UPC

primitives and the different extensions and optimizations that

have been proposed, as well as the microbenchmarking suite

developed as part of this work. It also presents the NPB and

the particular characteristics of their UPC implementation.

Section 4 contains the results of our evaluation conducted

on a multicore InfiniBand supercomputer. Finally, Section 5

concludes the paper.

II. RELATED WORK

Previous UPC performance evaluations [9], [10], [11] have

focused either on basic data movement primitives or whole ap-

plications. Data movement primitives include upc_memget,

upc_memput and upc_memcpy, which process all data

types as byte arrays (raw data). Regarding the evaluated

applications, the most relevant ones are general problem-

solving algorithms, such as matrix multiplication, Sobel edge

detection, N-Queens, and the UPC version of the NPB.

The application benchmarks allowed to measure overall re-

sults of UPC performance, whereas the microbenchmarking

of memory primitives showed communication latencies and

bandwidths.

A shared outcome from these studies is that UPC shows

better performance when data locality and the use of private

memory are maximized [12]. Collective primitives have not

played an important role in these studies: research on this topic

has been mostly restricted to different proposals for optimizing

or extending the standard collectives specification. Recently,

the introduction of MPI-like optimizations on UPC collectives

has been proposed and experimentally evaluated in [13].

Nevertheless, these works only present relative comparisons

between UPC collective libraries, measuring percentages of

improvement, without characterizing their real performance,

so the comparison with other implementations is not possible.

Moreover, these three studies are restricted to the use of a

small number of threads (up to 16) on a cluster of dual

processor nodes.

The analysis of the throughput of collectives primitives

is useful for selecting the implementation that obtains the

highest performance in a given scenario, to detect inefficient

implementations, and eventually to propose new algorithms in

order to increase their performance. The lack of this analysis is

the main motivation of this work. Also, this paper shows rep-

resentative performance results of today’s application setups,

using a larger workload (NPB Class C) and a higher number

of cores (128) than previous works.

III. BENCHMARKING ASPECTS

A. Implementations of UPC Collectives

The UPC collectives specification includes several primi-

tives that implement common communication patterns, such

as broadcast, scatter, gather, exchange or reduce. These prim-

itives operate in the shared-memory space, which implies that

the source and destination arguments of these primitives are

pointers to shared-memory locations. In order to improve the

functionality of the standard collective specification, different

extensions and optimizations have been proposed. The most

relevant ones are Value-based Collectives [14], One-sided Col-

lectives [15] and Variable-sized Data Blocks Collectives [16].

Value-based Collectives optimize communications of single-

valued variables, which can be either on private or shared

memory. The One-sided approach defines communications

in a single direction, with an active and a passive peer for

each communication, thus simplifying synchronizations in data

transfers. Variable-sized Data Blocks Collectives provide a

more flexible set of collectives that define custom message

sizes and source/destination pointers for each communication

peer, allowing non-contiguous data movements and the trans-

mission of data from private memory.

An additional project on UPC collectives is the definition

of sets of threads called “teams”, which allow a collective

primitive to be called by a subset of all available threads [17],

similarly to MPI communicators. Another active line is the

research on extensions of the UPC memory copy library [18],

that aims to suppport the efficient implementation of asyn-

chronous communications and non-contiguous data transfers.

The basis of UPC collectives primitives are data transfers

between threads, which can be implemented either with bulk

data transfers, using UPC functions such as upc_memcpy,

or relying on the collective implementation provided by an

underlying communication library. Regarding the two UPC

collective libraries evaluated in this study, the BUPC collec-

tives library (BCOL) [4] relies on a low-level communication

library (GASNet), whereas the UPC reference implementation

(REF) is implemented with upc_memcpy operations.

From version 2.6.0 of the BUPC compiler, the former linear

flat-tree implementation of collectives has been replaced by a

binomial tree communication pattern, which organizes data

transfers in a logarithmic number of steps, thus reducing

memory and network contention.

Regarding REF, the implementation of its collectives primi-

tives is based on a fully parallel flat-tree algorithm, so that they

are all performed in only one step. Two different approaches

can be used in REF collectives primitives: pull and push. Both

techniques are based on upc_memcpy, and their distinguish-

ing feature is the active side in the communications. In the pull

approach, each destination thread copies its corresponding data

from the source thread in parallel, while in the push approach

each source thread copies its data to all the destination threads.

The selection of a pull or a push approach has to provide a fair

distribution of the communication overhead for each collective

primitive. Thus, in broadcast and scatter a pull implementation

is better because it makes the destination threads copy the data

in parallel from the source thread, whereas the push approach

maximizes parallelism in the gather collective. In this study,

the most efficient approach has been selected for each REF

collective primitive evaluated.

B. UPC Microbenchmark Suite

As there is a lack of suitable benchmarks for our purposes,

we have implemented our own UPC collectives suite, which

is similar to the Intel MPI collectives benchmarks (previously

known as Pallas MPI) [19]. This suite has been designed to

measure the performance of every collective primitive through

a single call to a generic benchmarking function, which tests

the performance of the primitive in a range of message sizes.

To do this, each collective function is identified by a predefined

integer, and this identifier with the minimum and maximum

data sizes are passed as arguments to the generic collective

benchmark call, that returns the performance results for the

given number of threads in each execution. By using this suite,

it is possible to characterize the performance of all collectives

primitives present in the UPC specification, and also for raw

memory copies. However, only five collectives primitives have

been selected for our evaluation: broadcast, scatter, gather,

exchange and reduce.

In order to avoid the issues that might arise when

microbenchmarking communications performance, the

benchmarking suite has been designed following most

of the guidelines presented in [20]. For example, the

UPC {IN,OUT} ALLSYNC (strict) synchronization

mode has been used in all collective calls (in UPC the

synchronization mode is passed to each collective primitive

call as a function parameter). The main goal of this

approach is to characterize the maximum overhead that

the synchronization can impose in a collective primitive

operation. Furthermore, the results have been obtained using

cache invalidation in order to avoid the influence of cache

reuse. This technique has been implemented using new

dynamically allocated buffers for each primitive call, without

reuse. The design of the tests ensures the correctness of the

results. However, simple sanity checks are also performed

here. The performance results of UPC collectives obtained

with our microbenchmark suite are discussed in the next

section.

C. NAS Parallel Benchmarks

The NPB comprises of a set of kernels and pseudo-

applications that reflect different kinds of relevant computation

and communication patterns used by a wide range of appli-

cations, which makes them the de facto standard in parallel

performance benchmarking. The NPB evaluated are: CG (an

iterative equation solver), EP (an embarrassingly parallel code

that assesses the floating point performance), FT (a series of

1-D FFTs on a 3-D mesh), IS (a large integer sort) and MG (a

simplified multigrid kernel that performs both short and long

distance communications). Each kernel has several workloads

to scale from small systems to supercomputers.

NPB-MPI are implemented using Fortran, except for IS

which is programmed in C. The fact that the NPB are

programmed in Fortran has been considered as cause of a

poorer performance of NPB-UPC [21], due to better backend

compiler optimizations for Fortran than for C.

Most of the NPB-UPC kernels, developed at the George

Washington University, have been manually optimized through

techniques that mature UPC compilers should handle in the fu-

ture: privatization, which casts local shared accesses to private

memory accesses, avoiding the translation from global shared

address to actual address in local memory, and prefetching,

which copies non-local shared memory blocks into private

memory.

IV. UPC PERFORMANCE RESULTS

The testbed used in this work is the Finis Terrae supercom-

puter [22], composed of 142 HP Integrity rx7640 nodes, each

one with 8 Montvale Itanium 2 dual-core processors (16 cores

per node) at 1.6 GHz and 128 GB of memory. The InfiniBand

HCA is a dual 4X IB port (16 Gbps of theoretical effective

bandwidth). For the evaluation 8 nodes have been used (up to

128 cores). The number of cores used per node in the NPB

performance evaluation is ⌈n/8⌉, n being the total number of

cores used in the execution. ⌈n/8⌉ consecutive threads run in

the same node.

The OS is SUSE Linux Enterprise Server 10 with kernel

version 2.6.16 and OFED 1.3.1. The MPI implementation is

HP MPI 2.2.5.1 with InfiniBand Verbs (IBV) for internode

communication, and the shared memory transfers for intranode

communication. The UPC compiler is Berkeley UPC 2.6 for

the collective performance analysis, and Berkeley UPC 2.8 for

the NPB performance results. Both versions use the IBV driver

for distributed memory communication, and pthreads within a

node for shared memory transfers. The MPI and UPC backend

compiler is the Intel 10.1.012 for the collective tests, and Intel

11.0.069 for the NPB tests, both versions with -O3 flag.

A. UPC Collective Primitives Performance

Figure 1 shows latency (total communication overhead) for

small messages (where it is more important than bandwidth)

and, for long messages, aggregated bandwidths of UPC col-

lectives for BUPC using two UPC collective implementations,

BCOL and REF. The main difference between the collective

implementations is that REF uses flat-tree communication

algorithms, whereas BCOL resorts to binomial trees. The data

size shown in the figures is the size of the data used in the

collective operation at the root thread, or in any thread in a

non-rooted operation. Thus, in a 1 MB scatter primitive (rooted

operation) (1 MB)/THREADS of data is sent to each thread

(THREADS is the number of UPC threads involved in the

collective operation).

The aggregated bandwidth metric includes the minimum

number of bytes that need to be transferred in the collective

primitive operation, thus allowing us to compare the per-

formance obtained using different numbers of threads (per-

formance scalability). It has been calculated as data size /

latency for the scatter and gather measures, and as THREADS

* data size / latency for the broadcast and exchange results.

The measured latency includes the synchronization barriers.

Each plot shows the performance of the two collective

implementations (BCOL and REF) using 32 threads. The

results have been obtained using 2, 4 and 8 nodes, which

means using 16, 8 or 4 UPC threads per node, respectively.

Table I presents a summary of the results of the reduce

collective, showing latencies.

The first plot shows the performance of the broadcast

collective. REF obtains the best latency. Binomial trees have

a O(log2N), whereas flat trees have a O(N). However, in

binomial trees almost half of the nodes are a source for

two messages, whereas in flat trees there is only one source

for all messages. Due to that, for small messages it does

not compensate the use of binomial trees, because despite

its lower complexity they have a bigger overhead. For long

messages BCOL shows the best performance. The REF results

are poor, as they involve several internode transfers, which are

an important performance bottleneck for a flat-tree algorithm.

BCOL outperforms their REF counterpart, emphasizing the

fact that the minimization of internode transfers improves the

performance of the collectives. From the analysis of the results

it can be derived that there is not much difference between

using 8 nodes with 4 threads per node, and using 4 nodes

with 8 threads per node. The use of 2 nodes, and hence 16

threads per node, maximizes the number of intranode transfers,

which benefits from the flat-tree algorithm of REF, whereas it

harms BCOL performance.

The second graph presents the results of UPC scatter. It

shows that the best performance has been obtained by REF

thanks to its parallel access to the source thread, which

avoids synchronization steps and data buffering in intermediate

threads. This is the opposite behavior to the broadcast, where

BCOL obtains better results than REF. In this case the BCOL

scatter (binomial tree) has to transfer additional data for all

Data size

Broadcast - UPC Performance (32 Threads)

 120

 160

 200

 240

 280

 320

 360

 400

 440

 480

 520

4B 16B 64B 256B 1KB 4KB

L
a

te
n

c
y

 (
µ

s
)

BCOL 8 nodes
REF 8 nodes

BCOL 4 nodes
REF 4 nodes

BCOL 2 nodes
REF 2 nodes

4KB 16KB 64KB 256KB 1MB 4MB

 0

 0.8

 1.6

 2.4

 3.2

 4

 4.8

 5.6

 6.4

 7.2

 8

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

G
B

p
s

)

Data size

Scatter - UPC Performance (32 Threads)

 150

 175

 200

 225

 250

 275

 300

 325

 350

 375

 400

4B 16B 64B 256B 1KB 4KB

L
a

te
n

c
y

 (
µ

s
)

BCOL 8 nodes
REF 8 nodes

BCOL 4 nodes
REF 4 nodes

BCOL 2 nodes
REF 2 nodes

4KB 16KB 64KB 256KB 1MB 4MB

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

G
B

p
s

)

Data size

Gather - UPC Performance (32 Threads)

 210

 240

 270

 300

 330

 360

 390

 420

 450

 480

 510

4B 16B 64B 256B 1KB 4KB

L
a

te
n

c
y

 (
µ

s
)

BCOL 8 nodes
REF 8 nodes

BCOL 4 nodes
REF 4 nodes

BCOL 2 nodes
REF 2 nodes

4KB 16KB 64KB 256KB 1MB 4MB

 0

 0.165

 0.33

 0.495

 0.66

 0.825

 0.99

 1.155

 1.32

 1.485

 1.65

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

G
B

p
s

)

Data size

Exchange - UPC Performance (32 Threads)

 280

 560

 840

 1120

 1400

 1680

 1960

 2240

 2520

 2800

 3080

4B 16B 64B 256B 1KB 4KB

L
a

te
n

c
y

 (
µ

s
)

BCOL 8 nodes
REF 8 nodes

BCOL 4 nodes
REF 4 nodes

BCOL 2 nodes
REF 2 nodes

4KB 16KB 64KB 256KB 1MB 4MB

 0

 0.45

 0.9

 1.35

 1.8

 2.25

 2.7

 3.15

 3.6

 4.05

 4.5

A
g

g
re

g
a

te
d

 B
a

n
d

w
id

th
 (

G
B

p
s

)

Figure 1. UPC operations performance

the leaves of a node (intermediate buffering). For example,

in a 1 MB scatter to 8 threads using a binomial tree it is

required that the source thread transfers 512 KB in the first

step, the two threads with data (the source and the one that got

the data in the first step) will transfer 256 KB in the second

step, and finally, four threads will copy 128 KB to the leaves

of the binomial tree. Thus, BCOL requires the movement

of 1536 KB whereas REF only 1024 KB, which means an

overhead in terms of extra data transferred of 50% of the

data size considered in the primitive. Regarding a 32-thread

operation, the additional data overhead is 153% of the data

size considered in the primitive. Thus, for a 1 MB scatter,

1.53 MB of additional data are transferred. Therefore, REF

scatter obtains higher throughput as it transmits the minimum

amount of data without synchronization overheads. This ef-

ficient implementation allows REF to outperform BCOL. In

this case the best results have been obtained using 2 nodes,

and hence 16 threads per node, where the number of shared-

memory transfers is maximized.

The third plot depicts the results of UPC gather. Similarly to

scatter, REF usually outperforms BCOL for large messages. In

fact, the evaluation of all the graphs of gather shows analogous

conclusions to the previous primitive. However, the latency of

REF gather increases with the number of nodes, showing that

the management of several small internode messages intro-

Table I
UPC REDUCE LATENCIES (32 THREADS)

Data size

1KB 1MB

Nodes 2 4 8 2 4 8

BCOL 242 µs 186 µs 213 µs 227 µs 305 µs 354 µs

REF 297 µs 249 µs 287 µs 3860 µs 3966 µs 3599 µs

duces a significant overhead. Thus, for the smaller transfers it

is better to use a binomial tree algorithm that maximizes the

number of shared-memory transfers.

The last plot in Figure 1 shows the exchange results. This

primitive involves a more complex communication pattern than

the preceding ones. The REF latency suffers from the use of

few nodes, and increases significantly when 2 nodes are in

use. However, as the message size increases, the performance

gap narrows. Consequently, BCOL outperforms REF on 8 and

4 nodes, whereas REF outperforms BCOL on 2 nodes. Both

BCOL and REF implementations benefit from the use of 8

nodes, compared to the use of 4 and 2, as for this non-rooted

operation all threads are actively communicating, thus taking

advantage of the highest number of nodes.

These results have been obtained with the

UPC {IN,OUT} ALLSYNC synchronization modes.

Preliminary results have shown that UPC collectives

Table II
UPC VS. MPI COLLECTIVES PERFORMANCE (32 THREADS/PROCESSES, 4 NODES, MPI = 100%)

Broadcast Scatter Gather Exchange/Alltoall

Library \ Message size 1 KB 1 MB 1 KB 1 MB 1 KB 1 MB 1 KB 1 MB

MPI (GB/s) 0.0992 4.4013 0.0088 1.5360 0.0183 1.5627 0.0066 0.0971

BCOL 5% 86% 43% 44% 45% 45% 16% 89%

REF 9% 24% 72% 97% 3% 64% 13% 68%

can greatly reduce their communication overhead with

UPC {IN,OUT} MYSYNC and UPC {IN,OUT} NOSYNC

synchronization, especially for BCOL implementation and for

small messages, thanks to the use of lighter synchronization

modes (e.g., for a 32 byte BCOL broadcast with 32 threads

and 2 nodes, MYSYNC and NOSYNC synchronization

modes reduce the communication overhead, compared to

ALLSYNC, in 47% and 77%, respectively).

Table I shows the latencies (in microseconds) of UPC

reduce. The latency has been selected as performance measure

instead of the bandwidth as the UPC reduce only involves

the transfer of a primitive data type value per thread, inde-

pendently of the number of elements being processed. The

operation of the UPC reduce differs from the MPI reduction,

which communicates all the local data. Thus, the reduction

of an array of 10 elements per thread/process returns a

scalar result in UPC and a 10 element result array for MPI.

The operation used in the microbenchmarking is the floating

point addition of double precision data (doubles). Unlike the

previous data movement collectives, reduce is a computational

one, and therefore its UPC implementation is more intensive in

computations than in communications. Thus, in this scenario,

it can be concluded that the computation associated to a reduce

call happens to be implemented more efficiently in BCOL

reduce than in REF, because BCOL clearly outperforms REF

especially for long messages.

From the analysis of the performance results presented in

this section it can be concluded that: (1) there are significant

performance differences between BCOL and REF; therefore,

it is possible to increase UPC throughput by selecting the

best collective library at runtime for each configuration and

message size; (2) and it is possible to optimize collective op-

erations minimizing the number of internode communications

and using a flat-tree algorithm for shared-memory transfers on

intranode communication.

B. UPC vs. MPI Collective Performance Analysis

This subsection presents a comparative analysis of the per-

formance of the UPC collectives and their MPI counterparts.

The benchmarking software used is the UPC microbench-

marking suite presented in previous sections and the Intel

MPI Benchmarks. As MPI collectives have been thoroughly

optimized for years, the gap between MPI and UPC collectives

performance can be considered a good estimate of the quality

of a UPC implementation. However, UPC will not always lag

behind MPI, as it is expected that UPC collectives outperform

MPI when shared-memory transfers are involved. Table II

shows the relative performance of UPC compared to MPI (HP-

MPI v2.2.5.1), where UPC collectives throughput is shown as

a percentage of the MPI performance. The reduce comparison

is not shown, as the UPC reduce primitive has no equivalent

operation in MPI (MPI reduce transfers an array instead of

a single variable). These results have been obtained for two

representative message sizes, 1 KB and 1 MB. An analysis

of the results shows that the UPC performance is lower than

MPI results. Furthermore, UPC suffers from higher start-up

latencies than MPI, which means poor performance for 1 KB

messages, especially for the broadcast. This comparative anal-

ysis of MPI and UPC collectives performance serves to assess

that there is room for improvement in the implementation of

the UPC collectives.

C. Performance Evaluation of UPC Kernels

The figure 2 shows NPB-MPI and NPB-UPC performance

using both InfiniBand and shared memory communication.

The left graphs show the kernel’s performance in MOPS

(Million Operations Per Second), whereas the right graphs

present their associated speedups.

Regarding the CG kernel, MPI performs slightly worse than

UPC using up to 32 cores due to the kernel implementation,

whereas on 64, and especially on 128 cores, MPI outperforms

UPC. Although UPC uses pthreads within a node, its commu-

nication operations, most of them point-to-point transfers with

a regular communication pattern, are less scalable than MPI

primitives.

EP is an embarrassingly parallel kernel, and therefore shows

almost linear scalability for both MPI and UPC. The results

in MOPS are approximately 6 times lower for UPC than for

MPI due to the poorer UPC compiler optimizations. EP is the

only NPB-UPC kernel that has not been optimized through

prefetching and/or privatization, and the workload distribution

is done through a upc_forall function, preventing more

aggressive optimizations.

The performance of FT depends on the efficiency of the

exchange collective operations. Although the UPC implemen-

tation is optimized through privatization, it presents signifi-

cantly lower performance than MPI. In this kernel UPC is

limited by its single thread performance, due to the lack of

aggressive optimizations, and not by its communications. This

why the UPC results, although significantly lower than MPI

in terms of MOPS, show higher speedup than MPI. This

is a communication-intensive code that benefits from UPC

intranode shared memory communication, which is maximized

on 64 and 128 cores.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 4 8 16 32 64 128

M
O

P
S

Number of Cores

CG C Class

MPI

UPC

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 4 8 16 32 64 128

S
p

e
e

d
u

p

Number of Cores

CG C Class

MPI

UPC

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 4 8 16 32 64 128

M
O

P
S

Number of Cores

EP C Class

MPI

UPC

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16 32 64 128

S
p

e
e

d
u

p

Number of Cores

EP C Class

MPI

UPC

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 4 8 16 32 64 128

M
O

P
S

Number of Cores

FT C Class

MPI

UPC

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 4 8 16 32 64 128

S
p

e
e

d
u

p

Number of Cores

FT C Class

MPI

UPC

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 4 8 16 32 64 128

M
O

P
S

Number of Cores

IS C Class

MPI

UPC

 0

 5

 10

 15

 20

 25

 1 2 4 8 16 32 64 128

S
p

e
e

d
u

p

Number of Cores

IS C Class

MPI

UPC

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 1 2 4 8 16 32 64 128

M
O

P
S

Number of Cores

MG C Class

MPI

UPC

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2 4 8 16 32 64 128

S
p

e
e

d
u

p

Number of Cores

MG C Class

MPI

UPC

Figure 2. Performance of NPB kernels

IS is a quite communication-intensive code. Thus, both MPI

and UPC obtain low speedups for this kernel (less than 25 on

128 cores). Although UPC IS has been optimized using priva-

tization, the lower performance of its communications limits

its scalability, which is slightly lower than MPI speedups.

Regarding MG, MPI outperforms UPC in terms of MOPS,

whereas UPC shows higher speedup. The reason is, like in FT,

the poor performance of UPC MG on 1 core, which allows it

to obtain almost linear speedups on up to 16 cores.

V. CONCLUSIONS

This paper has presented two up-to-date performance evalu-

ations: (1) two UPC collective libraries, being both compared

with MPI; (2) UPC vs MPI in computational kernels.

The main conclusions of this work are: (1) there is a lack

of collectives primitives benchmarks, so we have implemented

our own UPC collectives microbenchmark suite, which is

similar to a widely spread suite for MPI collectives (Intel MPI

microbenchmarks); (2) the two collective implementations

evaluated present significant differences in performance, which

depends on the memory architecture, the message size and

the communication pattern of the primitive; (3) it is possi-

ble to achieve important performance increases by automat-

ically selecting the best collective primitive implementation

at runtime; (4) UPC primitives take advantage of the use

of hybrid shared/distributed memory configurations, currently

the most commonly deployed ones (e.g., multicore clusters);

(5) inefficient implementations of communications primitives

have been detected, such as REF reduce; (6) UPC obtains

quite poor collective performance compared to MPI; moreover,

the best comparative results are obtained for long messages,

as UPC suffers from high start-up communication latencies.

This comparative evaluation shows that there is room for

performance improvement in UPC collectives libraries.

Finally, it can be concluded that UPC codes can take full

advantage of the use of efficient and scalable collectives

primitives. Thus, the characterization of their performance

is highly important. Furthermore, the higher programmability

provided by collectives primitives, together with their locality

exploitation, improves the productive development of efficient

parallel applications in UPC.

As future work we intend to develop a more efficient UPC

collective library that would take into account the locality and

the communication overhead among all threads. Thus, in a hy-

brid shared/distributed memory architecture this library would

minimize the number of remote memory operations. Moreover,

the shared-memory (local) accesses can be improved by taking

advantage of the affinity of UPC threads in order to improve

the memory throughput.

ACKNOWLEDGMENTS

This work was funded by Hewlett-Packard and partially

supported by the Ministry of Science and Innovation of Spain

under Project TIN2007-67537-C03-02 and by the Galician

Government (Xunta de Galicia, Spain) under the Consolidation

Program of Competitive Research Groups (Ref. 3/2006 DOGA

13/12/2006). We gratefully thank Jim Bovay at HP for their

valuable support, and CESGA for providing access to the Finis

Terrae supercomputer.

REFERENCES

[1] George Washington University, “Unified Parallel C at GWU,”
http://upc.gwu.edu [Last visited: August 2009].

[2] E. Wiebel, D. Greenberg and S. R. Seidel,
“UPC Collective Operations Specifications v1.0,”
http://www.gwu.edu/upc/docs/UPC Coll Spec V1.0.pdf [Last visited:
August 2009].

[3] UPC Consortium, “UPC Language Specifications v1.2. (May 31,
2005).” http://upc.lbl.gov/docs/user/upc spec 1.2.pdf [Last visited: Au-
gust 2009].

[4] “Berkeley UPC,” http://upc.lbl.gov/ [Last visited: August 2009].
[5] Michigan Tech, “Collectives Reference Implementation,”

http://www.upc.mtu.edu/collectives/col1.html [Last visited: August
2009].

[6] Hewlett-Packard Inc., “HP Unified Parallel C (HP UPC),”
http://hp.com/go/upc/ [Last visited: August 2009].

[7] IBM, “IBM XL Unified Parallel C (IBM XL UPC),”
http://www.alphaworks.ibm.com/tech/upccompiler [Last visited:
August 2009].

[8] NASA Advanced Computing Division, “NAS Parallel Benchmarks,”
http://www.nas.nasa.gov/Software/NPB/ [Last visited: August 2009].

[9] Z. Zhang and S. Seidel, “Benchmark Measurements of Current UPC
Platforms,” in Proc. 4th Workshop on Performance Modeling, Evaluation

and Optimization of Parallel and Distributed Systems (PMEO’05),
Denver (CO), 2005, p. 276b (8 pages).

[10] T. El-Ghazawi and F. Cantonnet, “UPC Performance and Potential: a
NPB Experimental Study,” in Proc. 15th ACM/IEEE Conference on

Supercomputing (SC’02), Baltimore (MD), 2002, p. 1–26.
[11] T. El-Ghazawi and F. Cantonnet and Y. Yao and S. Annareddy and A.

S. Mohamed, “Benchmarking Parallel Compilers: A UPC Case Study,”
Future Generation Computer Systems, vol. 22, no. 7, pp. 764–775, 2006.

[12] T. El-Ghazawi and S. Chauvin, “UPC Benchmarking Issues,” in Proc.

30th Intl. Conference on Parallel Processing (ICPP’01), Valencia
(Spain), 2001, pp. 365–372.

[13] R. A. Salama and A. Sameh, “Potential Performance Improvement of
Collective Operations in UPC,” Advances in Parallel Computing, vol. 15,
pp. 413–422, 2008.

[14] D. Bonachea, “UPC Collectives Value Interface, v1.2,”
http://upc.lbl.gov/docs/user/README-collectivev.txt [Last visited:
August 2009].

[15] Z. Ryne and S. Seidel, “Ideas and Specifications for
the new One-sided Collective Operations in UPC,”
http://www.upc.mtu.edu/papers/OnesidedColl.pdf [Last visited: August
2009].

[16] Z. Ryne and S. Seidel, “UPC Extended Collective Operations Specifi-
cation,” http://www.upc.mtu.edu/papers/UPC CollExt.pdf [Last visited:
August 2009].

[17] R. Nishtala, G. Almasi, and C. Cascaval, “Performance without Pain
= Productivity: Data Layout and Collective Communication in UPC,”
in Proc. 13th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming (PPoPP’08), Salt Lake City (UT), 2008, pp.
99–110.

[18] D. Bonachea, “Proposal for Extending the UPC Memory Copy Library
Functions, v2.0,” http://upc.lbl.gov/publications/upc memcpy.pdf [Last
visited: August 2009].

[19] Intel Corporation, “Intel MPI Benchmarks,”
http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
[Last visited: August 2009].

[20] W. Gropp and E. Lusk, “Reproducible Measurements of MPI Perfor-
mance Characteristics,” in Proc. 6th European PVM/MPI Users’ Group

Meeting (EuroPVM/MPI’99). Lecture Notes in Computer Science vol.

1697, Barcelona (Spain), 1999, pp. 11–18.
[21] T. A. El-Ghazawi and F. Cantonnet, “UPC Performance and Potential:

a NPB Experimental Study,” in Proc. of the 15th ACM/IEEE Conf. on

Supercomputing (SC’02), Baltimore (MD), 2002, pp. 1–26.
[22] “Finis Terrae Supercomputer,” http://www.top500.org/system/details/

9500 [Last visited: August 2009].

