
Efficient Java Communication Protocols on High-speed Cluster Interconnects

Guillermo L. Taboada, Juan Touriño and Ramón Doallo
Department of Electronics and Systems

University of A Coruña, Spain
{taboada,juan,doallo}@udc.es

Abstract

This paper presents communication strategies for achiev-
ing efficient parallel and distributed Java applications on
clusters with high-speed interconnects. Communication per-
formance is critical for the overall cluster performance. Pre-
vious efforts at obtaining efficient Java communications have
a limited applicability on high-speed interconnects as they are
focused on high level APIs like RMI, ignoring the particular-
ities of these systems and their native high performance com-
munication protocols. By relying on a custom Java socket im-
plementation higher degrees of performance can be achieved
exploiting high-speed interconnect facilities. Several proto-
col definitions are presented, looking for obtaining high per-
formance Java communications. Moreover, the quality of the
protocol implementations and their design decisions has been
thoroughly evaluated on a Scalable Coherent Interface (SCI)
and Gigabit Ethernet (GbE) testbed cluster. The results of this
analysis have demonstrated that these Java protocols obtain
similar results to native communications.

1 Introduction

There is a growing interest of both scientific and enterprise
environments in high-speed clusters as they deliver outstand-
ing parallel performance at a competitive cost. High-speed
clusters consist of computing nodes connected together by a
high-performance interconnect. SCI, Myrinet and GbE are
three types of high-speed interconnection technologies com-
monly used for clusters. Scalability is a key factor to confront
new challenges in cluster computing, and it depends heav-
ily not only on the network fabric, but also on the commu-
nication middleware. This growing need of efficient com-
munication middleware has led to devote important efforts
on this subject, although almost exclusively on native pro-
tocols. A thorough work focused on native protocols is that
of Verstoep et al. [26], where several implementation issues

are studied in order to obtain an efficient use of Myrinet. In
that work, a non standard user level communication inter-
face is implemented varying reliability protocols, the Maxi-
mum Transfer Unit (MTU), multicast protocols and studying
Serial Direct Memory Access (SDMA)-based versus Proces-
sor Input/Output (PIO)-based message passing and remote-
memory copy. Our proposed approach inherits some opti-
mizations from [26]. Most of these topics are also covered
in the related literature, where works are focused on evaluat-
ing multicast performance of user level multicast libraries on
SCI and Myrinet [16], on obtaining lightweight transport pro-
tocols (RMPP [19]) and also on RDMA-based efficient mes-
sage passing implementations [10]. Nevertheless, despite the
predominance of native protocol optimizations, the increas-
ing interest in Java for high performance computing has re-
cently heightened the need for efficient Java communication
middleware. This efficiency is of critical importance on high-
speed clusters, where the overall performance is quite sensi-
tive to the effect of communication latency and overhead, as
Java does not provide direct high-speed interconnect proto-
cols support and has to resort to the TCP/IP protocol stack.

Current efforts at obtaining efficient Java communication
middleware are focused on RMI optimizations. RMI startup
is significant (around 0.5ms in our SCI testbed cluster), being
inadvisable its use on high-speed networks. In order to allevi-
ate this drawback, several RMI projects have been undertaken
to optimize RMI calls on the Myrinet high-speed intercon-
nect: the Manta compiler [13], the KaRMI library [17] and
RMIX [9]. Manta is a Java to native code compiler with an
optimized protocol implementation; KaRMI reduces the ac-
cess latency to a remote object by means of a more efficient
object serialization and an optimized protocol implementa-
tion and RMIX supports non-IP-based transports via gener-
alized socket factories. Nevertheless, these projects use li-
braries which are difficult to update or maintain. Another ap-
proach is to perform general RMI protocol optimizations in-
creasing RMI efficiency with transformations based on com-
pile time analysis [25].

Different approaches have also been followed in order to
optimize Java communications in another context, in Java
Distributed Shared Memory (DSM) implementations on clus-
ters. Thus, the CoJVM [12] runtime system relies on the
use of the Virtual Interface Architecture (VIA) as its com-
munication protocol aiming to improve application perfor-
mance. Another project which is worth mentioning is JES-
SICA2 [27] which supports transparent Java thread migra-
tion in a JIT compilation environment. Whereas the pre-
vious projects use modified Java Virtual Machines (JVMs),
the JavaSplit [5] bytecode rewriting compiler uses unmodi-
fied JVMs. The multithreaded Java bytecode is rewritten into
parallel bytecode, allowing each JVM to locally optimize the
performance. The latter project’s target platform is a homo-
geneous cluster. Nevertheless, Java programming environ-
ments are designed to cope with heterogeneous and dynam-
ically changing groups of compute nodes. This assumption
reduces significantly communication performance on homo-
geneous high-speed clusters, in exchange for functionality not
always required.

Current efforts in Java communications performance opti-
mization have attained their objectives only partially. More-
over, the lack of high-speed cluster support is decisive for the
lack of performance of Java communications on these sys-
tems, as a previous work [23] has shown up. From that work,
where analytical performance models for Java communica-
tions on high-speed clusters are presented, it can be stated
that the major drawback is the use of RMI in high-speed clus-
ters, although the use of IP emulation libraries, used due to
the lack of native high-speed interconnection protocol sup-
port in Java, adds a significant overhead too. For perfor-
mance improvement the RMI replacement by Java sockets as
the base of communication libraries has already been done
in gMP [21], Ibis [15] and MPJava [18]. Nevertheless, the
native high-speed interconnection protocol support in Java is
still under development.

This paper reports on the results obtained from the im-
plementation of a Java communication protocol designed for
efficient use of Java on high-speed clusters. After analyz-
ing performance bottlenecks in existing protocol implementa-
tions, Java sockets have taken an outstanding role in the pro-
tocol design, being the API provided. Thus, the use of this
well-known API guarantees the success of the approximation
taken.

2 Efficient Communication Protocols

The JVM is composed of both Java and native code and
performs its communications through calls to the underlying
native libraries, specifically calling the widely spread TCP/IP
protocol stack. Unfortunately, TCP/IP places a very heavy

load on host CPUs when dealing with high-speed commu-
nications. In this context, a high-speed interconnection is
a good alternative: Network Interface Cards (NICs) offload
communication processing from the host CPU, freeing up
valuable CPU cycles for application processing. Moreover,
higher performance in terms of both latency and bandwidths
can be reached with these network fabrics, although this per-
formance is obtained with their own efficient libraries and
protocols. Nevertheless, there is a huge number of applica-
tions that use the TCP/IP protocol stack. Rewriting an appli-
cation to use a hardware specific API is usually not possible.
Thus, TCP/IP emulation over high-speed interconnections is
the preferred choice. Examples of IP emulations on high-
speed interconnections are IP over GM from Myricom over
Myrinet, LANE driver [8] over Giganet, IP over Infiniband
(IPoIB) [7], ScaIP [3] from Scali over SCI, and SCIP [4]
from Dolphin also over SCI. Nevertheless, the performance
obtained by IP emulations has not been the expected. In fact,
this has been the motivation for researchers to provide socket
implementations on top of low level protocols, trying to avoid
inefficiencies of the TCP/IP protocol stack.

2.1 High Performance Sockets

The first High Performance socket implementation was
FastSockets [20], a stream socket implementation on top of
ActiveMessages, a lightweight communication protocol that
reduces latency by removing buffering overheads and provid-
ing user level access to the network hardware. Afterwards
SOVIA [8], a user level socket layer on top of VIA, and
Sockets over GbE [2] were introduced. A recent initiative is
the Offload Sockets Framework (OSF) whose representative
project is the Socket Direct Protocol (SDP) for Infiniband.
However, the two projects worthier of deep consideration are
Sockets-MX/Sockets-GM [6] and SCISOCKETS [22], be-
cause they are directly based on the native low latency pro-
tocols provided by the network hardware manufacturers.

Sockets-MX/Sockets-GM are low latency socket imple-
mentations over MX and GM, two low level Myrinet libraries.
These libraries overcome IP emulations over Myrinet, which
involve high system load, by bypassing the TCP/IP proto-
col stack, which takes a big percentage (up to 50%) of the
time spent in communication. Moreover, these projects oper-
ate in user level mode. Sockets-GM provides both buffered
communication and a zero-copy protocol. In buffered com-
munication one copy of the data is copied into pre-registered
buffers and the message delivery is handled by the Myrinet
NIC. In the zero-copy protocol data is exchanged directly
from application to application buffers using GM RDMA
functions. Thus, one-copy protocol trades off low CPU load
for low latency whereas zero-copy protocol cuts down sys-

tem load (high bandwidth rates can be exchanged with low
CPU loads). A sensible choice between protocols involves
using the one-copy protocol for latency sensitive applications,
and the zero-copy protocol for high-bandwidth driven appli-
cations. This protocol choice, as well as the polling/blocking
receiving strategy, can be set dynamically.

SCISOCKETS provides SCI with a socket implementation
on top of SISCI and GENIF low level interfaces. SISCI [1]
is the user level interface for SCI which implements basic
mechanisms to share memory segments between nodes and
to transfer data between them. GENIF is the kernel level
interface for SCI. SCISOCKETS’ transparent access seman-
tics to remote memory in combination with CRC checksums
greatly reduces overhead for very small messages. In fact,
this implementation obtains much lower latencies (4µs) than
other socket projects using similar hardware: Sockets-GM
(21µs) and SOVIA on Giganet (10µs). Differences in per-
formance could be attributed to both the network fabric and
to the socket implementation, but from evaluations of native
protocols performance between SCI and Myrinet [14], and
between Myrinet and Giganet [11], it can be seen that the
differences are mainly explained by the socket implementa-
tion. Aside from startup times, special emphasis has been
put on allowing fully transparent integration with existing ap-
plications. By using the preloading mechanism of the dy-
namic library loader it is possible to make applications use
SCISOCKETS implementation as the default socket imple-
mentation. This transparency to the user in such a convenient
way (without changes to the code and even without recom-
pilation or relinking) provides immediate speedups for both
user and kernel space applications.

3 Java Fast Sockets

In order to support high performance interconnection tech-
nologies on Java a High Performance Java Socket implemen-
tation, named Java Fast Sockets (JFS), has been developed.
Java applications can not run on top of native high perfor-
mance sockets as the layers involved in Java communica-
tions (Java classes in java.net package, native functions in
libnet.so library and JVM native functions) perform calls
that usually are not supported by high performance socket li-
braries. Thus, JFS has to implement communication mecha-
nisms in order to perform communications over these under-
lying protocols.

The implementation of JFS has posed several issues that
can be classified into Java- and native-related issues. Java-
based issues consist of the trade-off between portability and
performance of the solution proposed, the use of the Java NIO
facilities, the use of a lightweight communication layer and
the transparency to the user of the solution proposed. Native-

related issues are the convenience of resorting to native meth-
ods in order to improve performance, the interplay between
native and Java code, the choice between user or kernel level
of the underlying library, changes in the underlying protocols
boundaries and communication strategies (e.g., the activation
of Nagle’s algorithm).

In order to obtain an efficient and portable solution the
strategy to follow is the Ibis-based approach. Thus, an effi-
cient pure Java solution is implemented together with native
solutions to access low-level native protocols through JNI. At
establishing connections, JFS will look for a native-based
protocol. If any, it will take over the communications. Other-
wise, JFS will resort to the pure Java efficient socket imple-
mentation. This design allows new protocols to be plugged
in.

The use of JFS in an application is achieved re-
placing the default SocketFactory, in charge of cre-
ating sockets using the default socket implementation
(PlainSocketImpl), by JFSFactory, which creates
sockets using the JFS implementation (JFSImpl).

The lightness of the solution without lose of functionality
is key to deliver the low latency and high bandwidth of the
high-speed interconnection to applications. The transparency
to the user is achieved by means of a small Java application
that allows through Java’s reflection to invoke the main()
method of the main class of the application after replacing the
default sockets implementation by JFS. The most interesting
code appears in the following box:

Listing 1. Replacing default Sockets by JFS

S o c k e t I m p l F a c t o r y f a c t o r y = new J F S F a c t o r y () ;
Socke t . s e t S o c k e t I m p l F a c t o r y (f a c t o r y) ;
S e r v e r S o c k e t . s e t S o c k e t F a c t o r y (f a c t o r y) ;

C l a s s c l = C l a s s . forName (className) ;
Method method = c l . getMethod (” main ” , a r g s T y p e s) ;
method . invoke (nul l , p a r a m e t e r s) ;

In order to extend java.net.SocketImpl and be
fully compatible with Java sockets there is a minimum num-
ber of classes that must be implemented in the Java sockets
implementation. The specific behavior of the library must be
contained in these four classes:

Listing 2. Base classes implemented in JFS

j f s . J F S S o c k e t I m p l F a c t o r y
j f s . JF S S ocke t I mpl
j f s . S o c k e t I n p u t S t r e a m
j f s . S o c k e t O u t p u t S t r e a m

3.1 Efficient Java NIO

The use of the Java NIO classes, such as data contain-
ers (buffers), I/O channels, selectors and selection keys is an
important issue in JFS. For instance, the use of direct byte
buffers is key in achieving the zero-copy protocol, avoiding
the memory copy overhead. This is because the contents
of direct byte buffers reside outside of the normal garbage-
collected heap. Thus, JVM can perform native I/O operations
directly upon direct byte buffers, avoiding the copy of buffer’s
content using an intermediate buffer whenever an invocation
of one of the underlying operating system’s native I/O opera-
tions is done. Nevertheless, direct buffers usually have higher
allocation and deallocation costs than non-direct buffers. It
is therefore recommended that direct buffers be allocated pri-
marily for large, long-lived buffers that are subject to the un-
derlying system’s native I/O operations.

Another remarkable characteristic of byte buffers is the
definition of methods for reading and writing values of all
other primitive types, except boolean. This type translation
depends on the buffer’s current byte order, which initially is
always BIG ENDIAN, and must be the same as the under-
lying architecture. It has been experimentally observed that
mismatching byte orders between buffers and the system im-
poses important penalties (> 100% handling overhead in-
crease). For access to sequences of values of the same type
a view of a given byte buffer can be created. A view buffer
is another buffer whose content is backed by a byte buffer,
keeping its original direct or non direct properties. Most
Java communications systems use the standard serialization
method which needs intermediate buffers, but view buffers
remove this need and even the serialization process. There-
fore, the use of communicating direct buffers in JFS is ex-
pected to yield measurable performance gains. Another im-
portant feature of NIO is the use of selectors and selection
keys, which together with selectable channels define a multi-
plexed, non-blocking I/O facility. These are worth character-
istics for highly scalable efficient server technology.

Once the importance of NIO has been established, it is
time to analyze its participation in the solution. The pure Java
solution is based on Java NIO SocketChannels and direct
byte buffers, whereas the optimized native solution is based
on an extension of the I/O streams of the java.io package,
which will deal with direct byte buffers through native meth-
ods. These choices have revealed encouraging experimental
results.

3.2 Native Protocol Integration in JFS

In order to achieve higher degrees of optimization JFS has
to resort to native protocols. In this matter, the selection of a

SCI NICGbE NIC

 IRMNIC Driver

SISCI

SCILib

JFS

 TCP/IP

 Java
Sockets

 JFS

Java Apps

Java Apps
 IP
Emulations
SCIP/ScaIP

Figure 1. Overview of JFS architecture

native protocol poses several questions and implementation
challenges. From the analysis of the SCI native protocols,
SCILib [22] has been selected as the resorting layer for JFS
over SCI.

A schema of the architecture of the solution proposed for
SCI and GbE is shown in Figure 1. SCILib is a commu-
nication protocol on top of SISCI that offers unidirectional
message queues. SISCI is a quite low level API, whereas
SCISOCKETS, which is based on SCILib, provides function-
ality not required by JFS and imposes a higher communica-
tion overhead. The original SCILib has been extended in or-
der to meet JFS requirements. The change in the underlying
protocol boundaries has obtained performance gains only in
the Short/Long protocol boundary. The Inline/Short protocol
boundary, 116 bytes, is the longest message that the SCI hard-
ware can send in a physical transaction. SCILib can operate
both in user and kernel level mode, focusing on lower star-
tups and higher transfer ratios respectively. The native proto-
col under JFS takes advantage of this by changing at runtime
the value of the environment variable LD PRELOAD, which
points to the user or kernel level dynamic libraries. Thus, for
messages shorter than a configuration variable, which is by
default 8KB, the native protocol uses user level libraries to
obtain lower startups. For messages longer than 8 KB, kernel
level protocols obtains better transfer ratios.

The overhead of running these native protocols in kernel
level is around 1µs, a quite important value taking into ac-
count that the SCILib startup time is around 3µs. The SCILib
user level is based on SISCI, whereas the kernel level version
is based on GENIF. Moreover, the use of efficient data move-
ment techniques through the Java Native Interface (JNI) is of
crucial importance.

Furthermore, the socket method implementation in
JFS of setPerformancePreferences() and
setTcpNoDelay() require to pass their parameters to the
native library. With setPerformancePreferences()
the importance of latency with respect to bandwidth can
be established in order to increase the performance of the

 0

 50

 100

 150

 200

 250

 1 10 100 1000 10000

L
at

en
cy

 [u
s]

Message size [bytes]

Native Socket latencies

GbE
 SCISOCKETS

SCIP
ScaIP

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 1000 10000 100000 1e+06

B
an

dw
id

th
 [M

bp
s]

Message size [bytes]

Native Socket bandwidths

GbE
 SCISOCKETS

SCIP
ScaIP

 0

 50

 100

 150

 200

 250

 1 10 100 1000 10000

L
at

en
cy

 [u
s]

Message size [bytes]

Java Socket latencies

JFS (GbE)
JFS (SCI)

Java Sockets (SCIP)
Java Sockets (ScaIP)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 1000 10000 100000 1e+06

B
an

dw
id

th
 [M

bp
s]

Message size [bytes]

Java Socket bandwidths

JFS (GbE)
JFS (SCI)

Java Sockets (SCIP)
Java Sockets (ScaIP)

Figure 2. Measured socket latencies and bandwidths

preferred choice. The method setTcpNoDelay() enables
Nagle’s algorithm.

4 Experimental Evaluation

In this section it has been accomplished a performance
evaluation of JFS and of both current Java and C TCP/IP
high performance communication strategies.

4.1 Experiment Configuration

Our testbed consists of two dual-processor nodes (PIV
Xeon at 2.8 GHz with hyper-threading disabled and 2GB of
memory) interconnected via SCI and GbE. The SCI NIC is
a D334 card plugged into a 64bits/66MHz PCI, whereas the
GbE is a Marvell 88E8050 with a MTU of 1500 bytes. The

OS is Linux Centos 4.2 with kernel 2.6.9 and compilers gcc
3.4.4 and Sun JDK 1.5.0 05. The SCI libraries are SCISOCK-
ETS 3.0.3 and DIS 3.0.3 (IRM, SISCI, SCILib and Mbox).
The IP emulation libraries used have been the IP emulation
from Scali, ScaIP 1.0.0, and the IP emulation from Dolphin,
SCIP 1.2.0. This latter library needs a kernel 2.4, so the
testbed has also a 2.4.32 kernel.

In order to benchmark communications, NetPIPE [24]
(Network Protocol Independent Performance Evaluator) has
been used, more specifically the NetPIPE TCP module for
C benchmarks and our own version of the Java TCP module
(there is no public version of Java NetPIPE). These bench-
mark modules provide an easy way to measure the perfor-
mance of TCP point-to-point communications while varying
the socket buffer sizes. The results considered are the half of
the round trip time of a ping-pong test.

4.2 Performance Results

Figure 2 shows experimentally measured latencies and
bandwidths of native and Java sockets as a function of the
message length, for the different communication protocols.
Bandwidth graphs (right side of the figure) are useful to
compare long-message performance, whereas latency graphs
(left side of the figure) serve to compare short-message per-
formance. The upper graphs show native communications,
whereas the lower graphs show the obtained measurements
for Java communications.

4.3 Analysis of Experimental Results

In order to analyze the goodness of the JFS implementa-
tion it has been performed a performance evaluation of native
protocols over SCI and GbE. Results obtained from JFS over
GbE have been quite similar to the results obtained by Java
sockets over this interconnect (results not shown for clarity
purposes). The main difference between using JFS or not lies
on the support of options not implemented in Java sockets like
the new options setPerformancePreferences().

The IP emulation results are shown to strengthen what has
been previously asserted, that IP emulations in general, and
over SCI in particular, show poor performance. Neverthe-
less, several differences exist between the two IP emulations
that deserve to be discussed and can be observed from the
two upper graphs in Figure 2. First, ScaIP default configu-
ration (MTU = 32KB) achieves better results, whereas SCIP
needs changes in the default configuration in order to obtain
optimal results. It has been experimentally checked that the
SCIP optimal configuration in our testbed needs the alloca-
tion of 25 2KB communication buffers. With smaller and
larger buffers the latency increases significantly. The default
configuration, 10 32KB buffers, shows poorer performance.
The optimal configuration leads to increase up to five times
the bandwidth of messages above 2KB. Secondly, SCIP ob-
tains lower startup times than ScaIP, 30µs vs. 81µs, respec-
tively. Nevertheless, ScaIP achieves higher asymptotic trans-
fer rates than the optimal SCIP configuration, 1108Mbps vs.
391Mbps. The lower latency of SCIP and the higher band-
width of ScaIP make SCIP more suitable for short messages
(under 5KB) and ScaIP for larger messages. This behavior is
explained by the fact that ScaIP is a kernel level library and
SCIP has been tested using the user level version. Usually
kernel level libraries show higher startups and transfer ratios
than their user level counterparts.

Results obtained from a high performance socket imple-
mentation (SCISOCKETS) are depicted to show the improve-
ment that these libraries can provide compared to IP emula-
tions.

In the two lower graphs of Figure 2 Java sockets measure-
ments can be observed. The purpose of showing these results
is to acquire at a first glance an idea of the overhead imposed
by the JVM over the native sockets communications. This
overhead can be clearly observed in short messages, ranging
from 6 to 10µs. Nevertheless, with large messages the run-
time differences between native and Java benchmarks are rel-
atively less important: Java decreases transfer ratios around
1 − 4%. Nevertheless, the most interesing aspect is that in
these graphs it can also be seen the performance that Java
sockets obtained over SCI, prior to our work, when Java ap-
plications had to resort to IP emulations. With JFS this per-
formance significantly improves, reducing start-up commu-
nication latencies up to 7 times (with respect to ScaIP) and
improving 4 times the SCIP bandwidth for long messages.
Indeed, the performance shown by JFS is quite similar to the
performance achieved by the native high performance sock-
ets.

For obtaining these results JFS can be configured in three
different ways: changing the buffer size (the default value
is 160 KB), using Nagle’s algorithm and configuring the
polling/interruption strategy on the receiving side. It has been
observed that changing the buffer size to a value of 512KB in-
creases the asymptotic transfer rate around a 4% without side
effects. Nagle’s algorithm has not been activated because of
the latency increment for small messages (in our system 3µs)
and the unperceived latency reduction for larger messages.
Related to the third option, it must be said that this library
follows a hybrid approximation between polling and inter-
ruptions. JFS polls for a message during a certain period
of time and after that, if it has not received anything, waits
for an interruption. The default polling time is 80µs and it
has been experimentally checked that it is the optimal value
in the testbed; less polling time increases the latency for short
messages without benefits, whereas longer polling decreases
slightly the bandwidth. The measurements shown in Figure 2
have been obtained with the optimized JFS configuration.

5 Conclusions

A high performance Java sockets communication protocol
named Java Fast Sockets (JFS) has been presented. The nov-
elty of this approach is that the Java sockets API can now take
advantage transparently and efficiently of high-speed cluster
networks. The implementation of high performance native
communication protocols on high-speed clusters allows JFS
to resort to them in presence of this hardware. New communi-
cation protocols can be plugged into JFS transparently. The
benefits of its implementation decisions, such as resorting to
native protocols and the use of JNI and Java NIO facilities
have been shown. Thus, the use of Java NIO direct buffers for

communications has yielded measurable performance gains.
Experimental results have shown that short messages benefit
specially from these optimizations. In fact, the higher opti-
mization occurs at startup time, where a JFS implementa-
tion over a high-speed interconnect (SCI) has reduced laten-
cies up to 7 times (with respect to ScaIP) and has increased 4
times the bandwidth (with respect to SCIP). Indeed, the per-
formance shown by JFS is quite similar to the performance
achieved by the native high performance sockets SCISOCK-
ETS. JFS obtains startup latencies as low as 11µs on our SCI
testbed.

To sum up, it may be said that advances in both native and
Java-related design issues can deliver performance competi-
tive with native codes on clusters. Java is not only a good
choice as a common platform in heterogeneous network en-
vironments, but also in homogeneous systems, where porta-
bility issues are less important and the emphasis is on perfor-
mance. This reduction in portability requirements enables the
use of highly optimized communication libraries.

Our current work involves tackling interoperability is-
sues between native libraries (SCILib and High Performance
Sockets) and the JVM, and a native implementation of data
transfers of primitive types other than bytes. Moreover, a
key objective is to substitute the current design with a design
based on Selectable Channels SPI. Another ongoing work is
the management of basic data types other than bytes, non-
direct NIO buffers and the implementation of some basic col-
lective message-passing primitives.

Acknowledgments

This work was funded by the Ministry of Education and
Science of Spain under Project TIN2004-07797-C02 and un-
der an FPU grant AP2004-5984.

References

[1] ESPRIT Project 23174 — Software Infrastructure for SCI
(SISCI), 1998.

[2] P. Balaji, P. Shivan, P. Wyckoff, and D. K. Panda. High Perfor-
mance User Level Sockets over Gigabit Ethernet. In Proc. 4th
IEEE Intl. Conf. on Cluster Computing (CLUSTER’02), pages
179–186, Chicago, IL, 2002.

[3] R. Börger, R. Butenuth, and H.-U. Hei. IP over SCI. In Proc.
2nd IEEE Intl. Conf. on Cluster Computing (CLUSTER’00),
pages 73–77, Chemnitz, Germany, 2000.

[4] Dolphin Interconnect Solutions, Inc. IP over SCI. Dolphin ICS
Website.

[5] M. Factor, A. Schuster, and K. Shagin. JavaSplit: a Runtime
for Execution of Monolithic Java Programs on Heterogenous
Collections of Commodity Workstations. In Proc. 5th IEEE

Intl. Conf. on Cluster Computing (CLUSTER’03), pages 110–
117, Hong Kong, China.

[6] M. Fischer. Sockets-GM. Overview and Performance. Myri-
com website.

[7] IETF Draft. IP over IB. IETF Website.
[8] J.-S. Kim, K. Kim, and S.-I. Jung. SOVIA: A User-level Sock-

ets Layer Over Virtual Interface Architecture. In Proc. 3rd
IEEE Intl. Conf. on Cluster Computing (CLUSTER’01), New
Port Beach, CA, 2001.

[9] D. Kurzyniec, T. Wrzosek, V. Sunderam, and A. Slominski.
RMIX: A Multiprotocol RMI Framework for Java. In Proc.
5th Int. Workshop on Java for Parallel and Distributed Com-
puting (JAVAPDC’03), 17th Int. Parallel & Distributed Pro-
cessing Symp. (IPDPS’03), page 140 (7 pages), Nice, France,
2003.

[10] J. Liu, J. Wu, and D. K. Panda. High Performance RDMA-
Based MPI Implementation over InfiniBand. In Proc. of the
17th Intl. Conf. on Supercomputing (ICS’03), pages 295 – 304,
San Francisco, CA, 2003.

[11] M. Lobosco, V. S. Costa, and C. L. de Amorim. Perfor-
mance Evaluation of Fast Ethernet, Giganet, and Myrinet on
a Cluster. In Proc. 2nd Int. Conf. on Computational Sci-
ence (ICCS’02), LNCS 2329, Springer-Verlag, pages 296–
305, Amsterdam, The Netherlands, 2002.

[12] M. Lobosco, A. F. Silva, O. Loques, and C. L. de Amorim. A
New Distributed Java Virtual Machine for Cluster Computing.
In Proc. 9th Intl. Euro-Par Conf. (EuroPAR’03), pages 1207–
1215, Klagenfurt, Austria, 2003.

[13] J. Maassen, R. Nieuwpoort, R. Veldema, H. Bal, T. Kielmann,
C. Jacobs, and R. Hofman. Efficient Java RMI for Parallel Pro-
gramming. ACM Transactions on Programming Languages
and Systems, 23(6):747–775, 2001.

[14] S. Millich, A. George, and S. Oral. A Comparative Through-
put Analysis of Scalable Coherent Interface and Myrinet. In
Proc. of the Workshop on High-Speed Local Networks (HSLN)
27th IEEE Conf. on Local Computer Networks (LCN’02),
pages 691–702, Tampa, FL, November 2002.

[15] R. V. v. Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, and
H. E. Bal. Ibis: an Efficient Java-based Grid Programming
Environment. In ACM Java Grande - ISCOPE 2002 Conf.,
Seattle (WA), pages 18–27, 2002.

[16] S. Oral and A. George. A User-level Multicast Performance
Comparison of Scalable Coherent Interface and Myrinet In-
terconnects. In Proc. of the Workshop on High-Speed Local
Networks (HSLN) 28th IEEE Conf. on Local Computer Net-
works (LCN’03), pages 110–117, Bonn, Germany, 2003.

[17] M. Philippsen, B. Haumacher, and C. Nester. More Efficient
Serialization and RMI for Java. Concurrency: Practice & Ex-
perience, 12(7):495–518, 2000.

[18] B. Pugh and J. Spacco. MPJava: High-Performance Message
Passing in Java using Java.nio. In Proc. 16th Intl. Workshop on
Languages and Compilers for Parallel Computing (LCPC’03),
pages 323–339, College Station, TX, 2003.

[19] R. Riesen and A. B. Maccabe. Simple, Scalable Protocols for
High-Performance Local Networks. In Proc. of the Workshop
on High-Speed Local Networks (HSLN) 28th IEEE Conf. on

Local Computer Networks (LCN’03), pages 640–641, Bonn,
Germany, 2003.

[20] S. H. Rodrigues, T. E. Anderson, and D. E. Culler. High-
Performance Local-Area Communication With Fast Sockets.
In Proc. of Winter 1997 USENIX Symposium, pages 257–274,
Anaheim, CA, 1997.

[21] B. Schmidt, L. Feng, A. Laud, and Y. Santoso. Development
of Distributed Bioinformatics Applications with GMP. Con-
currency: Practice & Experience, 16(9):945–959, 2004.

[22] F. Seifert and H. Kohmann. SCI SOCKETS - A Fast Socket
Implementation over SCI. Dolphin ICS Website.

[23] G. L. Taboada, J. Touriño, and R. Doallo. Performance
Analysis of Java Message-Passing Libraries on Fast Ether-
net, Myrinet and SCI Clusters. In Proc. 5th IEEE Intl. Conf.
on Cluster Computing (CLUSTER’03), pages 118–126, Hong
Kong, China, 2003.

[24] D. Turner and X. Chen. Protocol-Dependent Message-Passing
Performance on Linux Clusters. In Proc. 4th IEEE Intl.
Conf. on Cluster Computing (CLUSTER’02), pages 187–194,
Chicago, IL, 2002.

[25] R. Veldema and M. Philippsen. Compiler Optimized Remote
Method Invocation. In Proc. 5th IEEE Intl. Conf. on Clus-
ter Computing (CLUSTER’03), pages 127–136, Hong Kong,
China, 2003.

[26] K. Verstoep, R. Bhoedjang, T. Rühl, H. Bal, and R. Hof-
man. Cluster Communication Protocols for Parallel-
programming Systems. ACM Transactions on Computer Sys-
tems, 22(3):281–325, 2004.

[27] W. Zhu, C.-L. Wang, and F. C. M. Lau. JESSICA2: A Dis-
tributed Java Virtual Machine with Transparent Thread Migra-
tion Support. In Proc. 4th IEEE Intl. Conf. on Cluster Com-
puting (CLUSTER’02), pages 381–388, Chicago, IL, 2002.

