
Received January 17, 2021, accepted January 25, 2021, date of publication February 9, 2021, date of current version February 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3058280

Optimizing Coherence Traffic in Manycore
Processors Using Closed-Form Caching/Home
Agent Mappings
STEVE KOMMRUSCH1, MARCOS HORRO 2, LOUIS-NOËL POUCHET1,
GABRIEL RODRÍGUEZ 2, AND JUAN TOURIÑO 2, (Senior Member, IEEE)
1Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA
2CITIC, Computer Architecture Group, Universidade da Coruña, Campus de Elviña, 15071 A Coruña, Spain

Corresponding author: Gabriel Rodríguez (gabriel.rodriguez@udc.es)

This research was supported in part by the Ministry of Science and Innovation of Spain under Grant PID2019-104184RB-I00 / AEI /
10.13039/501100011033, in part by the Ministry of Education of Spain under Grant FPU16/00816, and in part by the U.S. National
Science Foundation under Award CCF-1750399. CITIC is funded by Xunta de Galicia and FEDER funds of the EU (Centro de
Investigación de Galiciaaccreditation, grant ED431G 2019/01).

ABSTRACT Manycore processors feature a high number of general-purpose cores designed to work in a
multithreaded fashion. Recent manycore processors are kept coherent using scalable distributed directories.
A paramount example is the Intel Mesh interconnect, which consists of a network-on-chip interconnecting
‘‘tiles’’, each of which contains computation cores, local caches, and coherence masters. The distributed
coherence subsystemmust be queried for every out-of-tile access, imposing an overhead on memory latency.
This paper studies the physical layout of an Intel Knights Landing processor, with a particular focus on
the coherence subsystem, and uncovers the pseudo-random mapping function of physical memory blocks
across the pieces of the distributed directory. Leveraging this knowledge, candidate optimizations to improve
memory latency through the minimization of coherence traffic are studied. Although these optimizations
do improve memory throughput, ultimately this does not translate into performance gains due to inherent
overheads stemming from the computational complexity of the mapping functions.

INDEX TERMS Network-on-chip, manycores, coherence traffic, distributed directories, architectural
discovery, reverse engineering.

I. INTRODUCTION
Manycore processors feature a high number of general-
purpose cores designed to work in a multithreaded fash-
ion. In order to make systems scalable, current designs
are usually based on replicated IP blocks connected by a
high-performance fabric. An example of such an approach
is the Intel Mesh interconnect (IM), first featured in the Intel
Xeon Phi Knights Landing (KNL) processor [34]. The IM
is the current interconnection standard in the most advanced
Intel processors, including Intel Xeon Scalable servers and
the High-End Desktop family of Core-X chips [1], [35].

Each IP block in an IM-based processor, called ‘‘tile’’,
includes computation cores and local caches. In order to
maintain memory coherence the system employs the Intel
MESIF protocol, supported by a distributed directory. Each

The associate editor coordinating the review of this manuscript and

approving it for publication was Christian Pilato .

tile includes part of this distributed directory in a component
called the Caching/Home Agent (CHA). The directory must
be accessed each time a core requests access to a memory
block which is not already locally available in the appro-
priate state. This distributed design increases the scalability
of the coherence system by removing the bottleneck that a
centralized directorywould impose, but causes a non-uniform
increase in the network latency due to the varying distances
between a tile and the set of CHAs on the mesh. Figure 1
details this latency variation across the full mesh of an Intel
Xeon Phi x200 7210 (Knights Landing), as measured by
Horro et al. [12]. As can be observed, latency overheads are
higher than 25% for extreme cases.

One key aspect of the design of the CHA-based direc-
tory in IM processors is that both the physical layout of
the logical components of the processor and the mapping of
memory blocks to CHAs are opaque and non-disclosed by
Intel. This prevents memory latency optimizations, since the

28930 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-0184-8527
https://orcid.org/0000-0002-0338-3655
https://orcid.org/0000-0001-9670-1933
https://orcid.org/0000-0001-9315-1788


S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

FIGURE 1. Actual access latencies from each tile in the mesh of an Intel
x200 7210 processor to MCDRAM #0, for a memory block whose
coherence data is contained in the tile next to the memory interface.
We note differences in access latency of up to 32 CPU cycles (a 27%
overhead over the minimum observed latency of 117 cycles). Section III
details how these latencies are measured.

programmer has no a-priori knowledge of the latency that
can be expected for each access. Furthermore, Intel adver-
tises this architecture as UMA, since the average memory
access latency is approximately the same for all tiles in the
mesh. This article builds on a previous work [12], which
reverse-engineered the physical layout of the logical compo-
nents of the processor and showed how this knowledge, cou-
pled with an inspector-executor which dynamically analyzes
which CHAs are associated to each memory block access,
can be used to optimize irregular codes. Leveraging this,
the present work focuses on building a closed form function
of themapping of memory blocks to CHAs in order to remove
the costly inspection phase, enabling new optimization strate-
gies for IM processors. More specifically, this paper makes
the following contributions:
• The mapping of memory blocks to CHAs is reverse-
engineered. Binary functions which compute a target
CHA from a physical memory address are exposed and
shown to be pseudo-random in nature (Section IV).

• Different optimization strategies to improve memory
latency by leveraging the mappings between mem-
ory and CHAs are designed. Approaches are proposed
based on both dynamic and static work scheduling
(Sections V and VI).

• Experiments are performed to quantify the effec-
tiveness of the proposed optimizations. It is shown
how the proposed schedulings improve the memory
latency by exploiting CHA proximity. However, due
to the pseudo-random nature of the block-mapping
functions the implementation of these schedulings

affects other performance-impacting factors, which
may ultimately lead to performance degradation
(Sections V-A and VI-B).

The paper is structured as follows. Section II covers the
IM architecture, with a particular focus on Knights Landing
processors, and provides an overview of the current work.
Section III explains the approach to discover the physical
layout of the logical components of the KNL processor.
Section IV details the reverse engineering process that leads
to the discovery of the memory-to-CHAmapping. Sections V
and VI detail runtime- and compile-time-based approaches,
respectively, to optimize coherence traffic and summarize
the results of the experimental evaluation phase. Section VII
discusses the obtained results and related work. Finally,
Section VIII concludes the paper.

II. BACKGROUND AND OVERVIEW
This paper studies the Intel Knights Landing (KNL) architec-
ture as a paramount example of the Intel Mesh interconnect.
KNL [18] is a manycore processor, including from 64 to
72 cores inside a single die. The processor layout consists
of a 2D mesh topology containing 38 tiles, detailed in Fig. 2.
Internally, each tile contains two cores, each with its private
L1 instruction and data caches (32 KiB each); and a unified
L2 cache (1 MiB) shared among the local cores, but private
to the tile.

FIGURE 2. Physical location of logical entities on the KNL floorplan. Each
tile contains two cores with the logical IDs shown in the enclosing
rectangle. The smaller number below shows the logical ID of each CHA
module. Tiles with blank boxes have their cores disabled. A simple
naming algorithm can be inferred: CHAs are labeled in sequence, and the
set of IDs in each quadrant yield the same value modulo 4. Logical
processor IDs are also assigned sequentially, but processors with
disabled cores are skipped. More details on the analysis of the logical
layout of the processor can be found in [12].

VOLUME 9, 2021 28931



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

The KNL processor has two different types of DRAM
memory. A Multi-Channel DRAM (MCDRAM) provides
high bandwidth through eight interfaces in the corners of the
mesh. Besides, two DDR controllers on opposite parts of the
chip control three memory channels each. The MCDRAM
memory has higher latency than DDR (it is approximately
10% slower), but the eight interfaces can be accessed simul-
taneously, providing a much higher bandwidth.

Messages traverse the mesh using a simple YX routing
protocol: a packet always travels vertically first, until it hits
its target row. Then, it begins traveling horizontally until
it reaches its destination. Each vertical hop takes 1 clock
cycle, while horizontal hops take 2 cycles. The mesh features
4 parallel networks, each customized for delivering different
types of packets.

KNL employs a directory-based cache coherence mecha-
nism using Intel MESIF [11], a variant of MESI. In order
to alleviate the bottleneck of centralized directories, it fea-
tures a distributed system in which each tile includes a
Caching/HomeAgent (CHA) in charge ofmanaging a portion
of the directory. Each time a core requests a memory block
that does not reside in the local tile caches, the distributed
directory is queried. A message is sent to the appropriate
CHA (message (1) in Fig. 1). If the block already resides
in one of the L2 caches in the mesh in Forward state,1 the
CHA will forward the request to the owner, which will send
the data to the requestor in turn (messages (2) and (3) in the
figure). In other cases, the data must be fetched from the
appropriate memory interface. The data flow shown in the
figure exemplifies one of the performance hazards inherent
to the KNL architecture: although the data for the requested
block lies in the forwarder tile F, just above the requestor
R, the coherence data is stored far away in tile C. As it is,
18 cycles are required to transfer the data (10 vertical and
4 horizontal hops). But, if the directory information were
stored either in the requestor or in the forwarder, the round
trip time of data packets would be of only 2 cycles (2 vertical
hops on the mesh).

The KNL processor features specialized sub-NUMA clus-
tering modes, which provide lower memory latency to
NUMA-aware applications only (e.g., MPI codes). In this
work we focus on the more general Quadrant configuration
mode, which is the de-facto standard in which any processor
can access any memory block. Commonly, the access time
of a core to any memory block is assumed to be UMA when
in Quadrant mode [18], [30]. This is a reasonable assump-
tion, given that memory blocks will be uniformly interleaved
across the CHAs and memory interfaces using an opaque,
pseudo-random hash function. As a result, the access latency
will be averaged out over a sufficient number of accesses
for all cores. If the fine-grained behavior of each core is
analyzed, the access latency for different memory blocks is,

1A cache containing a block in Forward state is in charge of serving said
block upon a request. The requestor acquires the block in Forward state,
while the sender changes it to Shared.

however, not uniform. Horro et al. [12] measured the access
latencies in Figure 1, showing that the actual communication
costs from different cores to a fixed memory block are far
from UMA. More precisely, the coherence traffic causes a
systematic degradation of the theoretical optimal memory
performance which, on average, creates the illusion of UMA
behavior. They further identified the physical placement of
logical entities on the processor, shown on Figure 2, which
allows to optimize data and process placement to minimize
traffic latencies. Finally, Horro et al. generated the map of
the correspondence between each single block of the 16 GiB
high-bandwidth MCDRAM memory to its corresponding
CHA, by leveraging the performance counters provided
by the architecture. Using this map, an inspector-executor
approach was proposed to dynamically schedule tasks in
irregular codes to processors improving both coherence and
data traffic. Further details about the reverse-engineering of
the mapping of the logical components of the processor to the
physical dye are given in Section III.
Inspector-executor approaches present undesirable run-

time overheads. If a closed form of the memory-to-CHA
mapping function were known it could be exploited to devise
dynamic approaches to task scheduling with lighter overhead,
or provided to an optimizing compiler that generated ad-hoc
schedules taking advantage of the access latency information.
The following section details how the actual pseudo-random
memory block mapping over the CHAs was analyzed to
extract mapping functions that can be used to predict the CHA
assigned to a given physical memory block. This information
is then exploited in Sections V and VI to devise the proposed
optimizations.

III. MAPPING THE KNL ARCHITECTURE
We reverse engineered the physical layout of an Intel x200
7210 processor by profiling memory access latencies, build-
ing potential layout candidates, and iteratively discarding the
ones which present a larger squared error with respect to
the observed behavior. For this purpose, we systematically
measure the access latency from each logical core ID to cache
blocks located in each of the 8MCDRAM interfaces and each
of the 38 CHAs in the mesh. In Quadrant mode, blocks stored
in a given MCDRAM interface MC can only be indexed by
CHAs located in the same quadrant asMC . As such, for each
block stored in MC there are only 10 (for upper quadrants)
or 9 (for lower quadrants) potential CHA candidates for
storing its directory information. This amounts to 76 different
(MC,CHA) combinations. We initialize a sufficiently large
memory buffer so that it contains at least an instance of these
76 combinations. If the distribution of memory blocks over
CHAs were uniform, approximately 5 kB of memory would
be sufficient. However, due to the pseudo-random nature of
the distribution function, more memory may be required.
In practice, we used 64 kB of data to ensure that we find at
least an instance of each (MC,CHA) pair. With the results of
the full CHA mapping of data found in Section IV, it can be

28932 VOLUME 9, 2021



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

proved that the lower bound of this buffer size is, in general,
16 kB, or 8 kB if the buffer is 8 kB-aligned.

In order to identify the (MC,CHA) pair to which each
memory block is assigned, we employ a microbenchmark
that repeatedly accesses a block and flushes it from the cache
N times. After these accesses, we check which MCDRAM
and CHA pair has at least N accesses by using a custom
kernel module which leverages the uncore Model Specific
Registers (MSRs) to measure the number of accesses to each
CHA component and MCDRAM interface.2 After we find
a block associated to (CH ,MC), we repeatedly access and
flush it again from each of the active tiles in the mesh, but this
time we measure the access latency. Note that we only need
to obtain the latency for one out of each 2 cores, since cores in
the same tile will present the same out-of-tile access latency.
It is inferrable from /proc/cpuinfo that cores (2x) and
(2x + 1) lie in the same tile.

We discover the association of CHAs and MCDRAMs to
quadrants by analyzing the missing (CH ,MC) pairs in the
obtained data. In particular, we find that data in MCDRAM
interfaces (2y) and (2y+1) are indexed by CHAs z such that (z
mod 4 = y), e.g.,MCDRAMs 0 and 1 are associated to CHAs
{0, 4, . . . , 36}; MCDRAMs 2 and 3 to CHAs {1, 5, . . . , 37};
and so on.

Once these data are collected, we analyze them to deter-
mine where each pair of cores and CHA is located on the
physical mesh, taking into account the public KNL specifica-
tions. The floorplan includes 38 physical tiles, some of which
have their cores disabled depending on the processor model.3

Note that, despite having disabled cores, all tiles have fully
functional CHAs and mesh interconnects. The actual location
of the tiles with disabled cores is believed to change for each
processor unit, depending on process variations. However,
the CPUID instruction can be used to discover the actual
(C,CH ) associations between cores and CHAs [26]. It also
provides the list of CHAs which do not have enabled cores.
Armed with this information, and with our measured core-
to-CHA-to-MCDRAM latencies, we build a squared error
model for each candidate assignment of (C,CH ) tiles to
the physical mesh. In our Intel x200 7210, only 32 tiles
have active cores. As such, we have to discover the actual
location of the 32 tiles with active cores, plus the 6 disabled
tiles. Taking into account that we know the associations from
(C,CH ) pairs and quadrants, as detailed above, there are only
10! × 10! × 9! × 9! different combinations, as two quadrants
have 10 tiles while the other two have only 9 tiles each. This
information allows us to reduce the possible combinations
by a factor of 1021 with respect to the original 38! possible
candidates. To reduce even further the number of possibilities
we employ a heuristic approach. In the first place, we locate

2We employ the PERF_EVT_SEL_X_Y and
ECLK_PMON_CTRX_LOW/HIGH registers to monitor CHAs and
MCDRAMs, respectively [14]. We measure events RxR_INSERTS.IRQ
and RPQ.Inserts [15].

3The exact count is 6 tiles with disabled cores in Intel x200 7210 and
7230 series; 4 in 7250 series; and 2 in 7290 series.

feasible candidates for the corner tiles, i.e., those contiguous
to each MCDRAM interface. For this purpose, we identify
the minimum experimental memory latency L (117 cycles in
our tests), and search for (C,CH ,MC) tuples with an access
latency of at most L plus a configurable error margin. In this
way, we reduce the possible combinations for the 8 corners
to under 200. Next, for each of these candidates, we build
mean squared error models for placing the remaining tiles,
and finally accept the onewhich shows the least squared error.

The obtained results present a clear, human-designed pat-
tern in the location of both CHAs and cores, as shown in Fig-
ure 2. The CHAs in each quadrant are sequentially arranged
in column-major order. Cores are assigned sequentially to
CHAs, skipping those with disabled cores. We believe that
disabled cores vary for each particular KNL unit, depending
on process variations, but that the pattern for arranging the
CHAs and assigning the cores to CHAs is fixed. If this
assumption is correct, it allows one to obtain the physical lay-
out of any individual KNL unit immediately, by just checking
which CHAs have disabled cores through CPUID instruc-
tions. Unfortunately, we have not been able to validate this
assumption by experimenting on different processor units.

Physically mapping the processor mesh is the first step
towards reasoning about communication latencies for IM
architectures, as will be described in the following sections.

IV. REVERSE ENGINEERING THE CHA MAPPING
In hardware designs, pseudo-random mappings often make
use of XOR gates, such as with Cyclic Redundancy Codes
(CRCs), Linear Feedback Shift Registers, and other XOR
hashes [20]. XOR mappings can be efficiently implemented
in gates relative to other forms of pseudo-random mapping
binary addresses, such as modulo arithmetic of the form x =
(n1addr+ n2) mod n3.
Horro et al. [12] generated a map of the correspondence

between the 16 GiB of MCDRAM memory to each CHA
using a similar process as the one described in Section III. The
16 GiB of MCDRAM are allocated, their virtual-to-physical
correspondence checked, each memory block repeatedly read
and flushed from the caches, and the MSRs configured to
read information about the CHAs that are involved in that
operation. In order to speed up and simplify this process,
1 GiB hugepages are used for thememory allocations. Table 1
shows the CHA mapping for the first 128 cache lines out of
the 256 million mapped locations, i.e., the entire MCDRAM
address space.

This section describes the analysis of this mapping data in
order to generate the closed forms of the mapping functions.
Since full 64-byte cache lines are stored when a CHA location
is determined for the data, the address-to-CHAmapping does
not make use of address bits 5:0. In a first, coarse-grained
analysis of the data, we find that the CHA mapping depends
only on address bits A34:6, which allows for 2536,870,912 dis-
tinct binary functions for each of the 6 CHA bits.

Given values for CHA from 0 to 37, 6 bits are needed to
represent this number, but given that 38 is not a power of 2,

VOLUME 9, 2021 28933



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

TABLE 1. Address-to-CHA mapping for the first 128 CHA values out
of 256 million. To aid in visualizing, CHA0 and CHA1 are shown in a box
and CHA37 is shown in white over black .

we did not expect to see a straightforward XOR equation of
address bits for each CHA bit. However, given the ease of
computing binary functions in hardware, we did expect and
found that each bit for the CHA value can be computed inde-
pendently (again, as opposed to a scheme like addr mod 38).
The process we follow to determine the equations for CHA

bits is shown in Figure 3. Our final process finds equations of
the form CHAn = f g|h where most of the bits are correctly
predicted by the f function alone, gmasks some bits to 0, and
h is OR’ed in to correct some bits to 1. Following the idea
that the function should be easily implementable in hardware,
we first attempt to find f = a1 ⊕ a2 ⊕ . . . ⊕ an−1 ⊕
z(an, an+1, . . .); that is, f is a function which XORs certain
address bits together with a binary function z which uses a
small number of identifiable address bits.

FIGURE 3. Reverse engineering hardware-friendly hash functions.

For instance, consider the toggle frequency for CHA0 when
different bits of the address are toggled shown in Table 2.
As can be seen, 99.93% of the time toggling a6 or a8 changes
the result of CHA0, whereas toggling a7 almost never affects
its value. It can be concluded that the mapping function for bit
0 must be of the form CHA0 = a6 ⊕ a8 ⊕ . . . , where ‘‘. . .’’
is yet to be determined. The fact that the data is not 100%
conclusive is either attributable to the over-simplification of
the generated closed-form, or to measurement errors in the
performance counter-based mapping process. The latter will
be shown to be the case: the generated closed-form 100%
matches the mapping, as experimentally proved below.

TABLE 2. CHA0 toggle frequency when toggling address bits a6 to a34.
In this case, values greater than 0.98 or less than 0.02 indicate errors in
the CHA predicted based on performance counters, and are interpreted as
1 and 0, respectively.

The analysis of the toggle frequency finds that some of
the bits A29:6 are directly XOR’ed into CHA0, while some
others do not appear at all. However, the study also shows that
bits A33:30 affect the function, but not in the same categorical
way. The toggle frequency is somewhere between 5% and
95%. In order to reverse engineer the role of these bits in
the function, the limited input binary function of A33:30 is
analyzed to detect which combinations of these bits toggle the
result of the partial XOR function built from A29:6, as shown
in Table 3. This reverse engineering process yields the func-
tions CHA0 and CHA1 in Figure 4 for the 2 least significant
bits of the CHA.

Although the number of CHA locations (38) is not divisible
by 4, we found that CHA0−1 are each on for 50% of the
addresses, and as seen in Figure 2 this distributes data evenly
among the 4 quadrants of the die. CHA1 = 1 indicates the
data is in the lower half of the die; CHA0 = 1 indicates the
data is on the right side of the die. Given that the lower quad-
rants have one fewer CHA as compared to upper quadrants,
this will cause an imbalance of up to 20% in the number of
memory blocks mapped to different CHAs, as described in
more detail in Section V.

28934 VOLUME 9, 2021



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

FIGURE 4. Reverse-engineered mapping function between memory blocks and CHAs.

The functions for CHA2−5 are more complex than those
for CHA0−1, in order to reasonably distribute data among
the 38 CHA values. As shown in Figure 3, finding the base
function f , whichmatchesmost binary function values, some-
times does not fully match the measured function values.
In such cases, we search for g functions to logically AND
with f to set certain values to 0, and h functions to logically
OR with f g to set certain values to 1. As an example, we will
describe the process of determining the g function for CHA2
with reference to Table 4. The f function includes a8⊕a9⊕a12
which results in regular blocks of 1’s and 0’s when the address
bits 13:6 are varied with a total of 128 1’s and 128 0’s in the

set of 256 cache lines. However, the performance counter data
implies that 6 of those 1’s are actually 0’s. Note that in the
binary representation of 0 through 37, bit 2 is high 18/38 =
47% of the time, hence the simple 50/50 XOR equation from
f needs to be masked to 0 in some pseudo-random locations
resulting on CHA2 = f g. Given where the masking occurs
in Table 4, we surmise the structure of the g function to be
((a11 ⊕ . . .)|(a10 ⊕ . . .))(a6 ⊕ . . .)(a7 ⊕ . . .)(a9 ⊕ . . .)(. . .)
where ‘‘. . .’’ represents unknown functions of higher order
bits. By comparing f g to the known CHA locations with
partially completed g functions, we build up the complete
mask functions detailed in Figure 4.

VOLUME 9, 2021 28935



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

TABLE 3. For CHA0, bits 33 to 30 do not directly get XOR’ed with other
bits, but are part of a function that itself is XOR’ed with those bits.

TABLE 4. CHA2 for the first 256 cache lines. Given a base function which
includes a8 ⊕ a9 ⊕ a12, the 6 boxed 0 positions show where a
masking function is used.

LikeCHA2, CHA5 uses a base f function and amask-to-0 g
function. Bits CHA3 and CHA4 had a base f function, mask-
to-0 g function, and mask-to-1 h function. The h function
was found by recognizing where the f g pattern itself was not
producing correct predictions. The process of determining the
f function by observing XOR toggle indications and solving
the 4- or 5-bit binary function remaining can be automated.
In theory, given a rough constraint on the types of functions
to be considered, the process of finding the g and h functions
could also be semi-automated by searching for mispredic-
tions of the f function to the true result. Future architectures
may vary the mapping structure, but the general approach
used here to reverse engineer XOR trees would be applicable
to them. However, involving a human to interpret binary
results and build the final equations may remain common for
this type of task. Note that this approach allows for discovery
of partial equations without necessarily solving the full binary
function.

After generating the closed forms, we find a small pro-
portion of 0.03% discrepancies when comparing the original

mapping data to the CHAs predicted by the generated
closed-form functions. We validated the closed forms by
re-running the mapping microbenchmarks for these divergent
blocks, this time finding 100% agreement with the generated
closed forms. Consequently, we attribute the discrepancy in
the original mapping to transient measurement errors in the
MSRs.

V. RUNTIME OPTIMIZATION
As mentioned in Section II, Horro et al. [12] developed an
inspector-executor approach to the optimization of coher-
ence traffic in KNL processors. This approach is limited to
irregular codes, and consists in transforming the data layout
so that the data to be accessed by each tile lie in memory
blocks for which the coherence information was assigned
to nearby CHAs. This approach has an important overhead
during the inspection phase. First, the input data need to be
physically copied to target memory blocks with the required
coherence properties. Then, the associated indirection arrays
need to be recomputed. Lastly, the resulting data are now
spread across a much larger region of memory, in order to
find suitable memory blocks, and therefore cache locality is
degraded and the number of page faults increased. With the
closed form of the mapping functions exposed in Section IV,
it is possible to apply this approach to general codes, instead
of being restricted to irregular computations. The basic idea is
to encode the schedule of tasks not on the indirection arrays,
but to exploit the properties of the mapping function.

Consider the general matrix-vector multiplication code
depicted in Figure 5. This is an interesting problem because
of its simplicity, its transversality, and because of the fact
that it is memory-bound in modern processors. As such,
it will benefit from increasing the memory throughput. The
dominant part of the memory footprint of the computation is
the access to matrix B, and therefore the following analysis
will be centered on trying to optimize its access.

FIGURE 5. Scalar code for general matrix-vector multiplication
parallelized using a static block schedule.

Given the complexity of the mapping functions, it is
implausible to dynamically perform a very fine-grained
scheduling of iterations to tiles that will actually have the
required coherence information in its local CHA. Besides,
this would imbalance the computation, as our mapping data
shows that some CHAs manage up to 20% more memory
blocks than others. This is a consequence of two different fac-
tors. First, the upper quadrants have 10 CHAs each, whereas
the lower quadrants have only 9 CHAs. That will create some
imbalance, given that the memory distribution over quadrants
is balanced, i.e., each quadrant manages exactly 4 GiB of
memory. But furthermore, distributing a power of 2 number

28936 VOLUME 9, 2021



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

of memory blocks over a non-power of 2 number of CHAs
creates an additional imbalance. The actual distribution of
memory to CHAs is as follows:

• Upper quadrants have 10 CHAs, 8 of them manage
416 MiB each, while the remaining 2 (those with the
highest IDs in each quadrant) manage 384 MiB each.

• Lower quadrants have 9 CHAs, 8 of them manage
464 MiB each, while the remaining one (that with the
highest ID in each quadrant) manages 384 MiB.

Note that this does not vary across different Xeon Phi
x200 models, as all units have 38 enabled CHAs, indepen-
dently of the number of active cores.

In order to alleviate this imbalance we focus instead
on the quadrant granularity, emulating the behavior of the
sub-NUMA modes of the machine by ensuring that each tile
computes data with coherence information resident on its
quadrant only. In this fashion, each quadrant manages exactly
4 GiB of memory. The approach followed for scheduling
iterations in this fashion is described in the following.

The quadrant mapping benefits from a convenient feature
of the address-to-CHA functions. As noted in Section IV,
and due to the physical placement of logical CHAs on the
network-on-chip shown in Figure 2, bits CHA0 = c0 and
CHA1 = c1 identify the quadrant c1c0 in which the CHA
is located. Consider the kth memory block with address Ak

aligned to a 256-byte boundary, i.e., k is a multiple of 4.
Bits Ak5:0 express an offset inside the memory block, and
therefore are not used in the computation of the associated
CHA. Because of the 256-byte alignment, Ak7:6 = 00b. The
address of the next memory block, Ak+1 = Ak + 64, will
share its most significant bits with Ak , i.e., Ak+163:8 = Ak63:8, and
Ak+17:6 = 01b. Since A6 participates in the XOR computation
in the equations for CHA1 and CHA0 in Figure 4, it can
be determined that the least significant bits of its associated
CHA will be flipped, i.e., if the associated quadrant for Ak

is c1c0 then the associated quadrant for Ak+1 will be c1 c0.
Similarly, Ak+27:6 = 10b and its associated quadrant will be
c1c0; and A

k+3
7:6 = 11b and its associated quadrant is c0c1.

This results in the convenient organization that precisely 1 out
of every 4 cache lines is in each physical quadrant, allowing
parallel access routines to evenly divide up work among
physical processors.

In the proposed sub-NUMA schedule a processor located
in quadrant c1c0 will process only memory blocks with asso-
ciated CHA in the same quadrant. After processing a block
at address A, the next address in the same quadrant could
be located at A + 100b, A + 101b, A + 110b, or A + 111b
depending on A33:8. Determining which of the 4 addresses
is next in our quadrant mathematically requires to compute
the full CHA equations discovered in Section IV. However,
these are complex so these computations should be performed
as little as possible. The actual offset required to compute
the next address in quadrant c1c0 has a fixed pattern for
address bits A12:8, which allows a 64-bit register to store the
offsets for the next 32 cache lines. In this way, processors

stepping through memory can thus avoid full computation of
the mapping function 31 out of each 32 iterations.

A. EXPERIMENTAL RESULTS
In order to have full control over the executed instruc-
tions, the original code from Figure 5 is manually vec-
torized using AVX-512 intrinsics as shown in Figure 6.
In this way, opaque optimizations that may bias the
comparison of different schedules are avoided. This
section focuses on single-precision floating point arithmetic
only, but all obtained results are directly extrapolable to
double-precision FP.

FIGURE 6. Manually vectorized code for general matrix-vector
multiplication parallelized using a static block schedule.

Both the code in Figure 6 and the equivalent sub-NUMA
schedule are executed on an Intel x200 7210 running at
the base frequency of 1.30 GHz, to avoid turbo-related
variations. The codes were compiled using ICC 19.1.1.217,
with flags-Ofast -xKNL -qopenmp. They are executed
on 64 threads using KMP_AFFINITY=scatter. Heap
variables are stored into 1 GiB hugepages via hugectl
-heap, and these hugepages are guaranteed to be allocated
in theMCDRAMaddress space using numatcl -m 1. The
experiments are run with N = 16384, which makes matrix B
take up 1 GiB of memory, that is, an entire hugepage.

The roofline model generated by Intel Advisor [29] for
these codes is shown in Figure 7. For these experiments, the
hardware prefetcher was manually turned off using Model
Specific Registers (MSR) [36] in order to observe the raw
effect of the proposed coherence traffic optimizations without
interference. As shown in the figure, the sequential sched-
ule achieves 50.7 GFLOPS for an arithmetic intensity (AI)
of 0.25, which is approximately 65% of the roofline for that
AI, whereas the sub-NUMA schedule achieves 54.7 GFLOPS
for an AI of 0.22, or 81% of the roofline. The GFLOPS
have increased and the AI has decreased, due to the addi-
tional memory traffic required to compute the sub-NUMA
schedule, resulting in a large net increase of the percentage
of peak performance that is obtained. The figure shows how
executions with double-precision arithmetic achieve the same
approximate results, but dividing the number of rawGFLOPS
by 2.

The improvement in raw performance measured by the
roofline model, however, can be deceitful. Although the
sub-NUMA schedule achieves a higher FLOP count, it also

VOLUME 9, 2021 28937



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

FIGURE 7. Roofline plot for the matrix-vector multiplication using both
single- and double-precision arithmetic.

executes additional instructions on non-consecutive mem-
ory blocks, causing a degradation in cache behavior and
ultimately execution time. In order to more closely investi-
gate the effect of the proposed optimization, selected perfor-
mance counters weremeasured for several different execution
setups. The results are shown in Figure 8. In order to com-
pute the sub-NUMA schedule, the number of instructions
to be executed almost triples, increasing by 188%. The
largest share of these are data L1 loads and stores, which
grow by 145%. This increase, however, is absorbed by the
L2 cache, and the L2 misses remain virtually identical. There
is a very significant increase in the IPC of these codes,
which goes from 18.6 in the original version to 53.15 in
the sub-NUMA schedule. The memory latency, approxi-
mated by the OFFCORE_RESPONSE_0:OUTSTANDING

FIGURE 8. Sum of selected performance counters for all threads.
Logarithmic scale is used for the Y axis. The figure shows the number of
cycles, instructions issued, packed SIMD instructions, scalar SIMD
instructions, L1 data accesses, L2 misses, MCDRAM ‘‘far’’ accesses to
other quadrants in the NoC, and total number of MCDRAM accesses.
Values are normalized to those of the sequential schedule.

performance counter, is slightly decreased by 1.8%. All these
variables compound for an almost zero net effect on execution
time: execution cycles are reduced by a modest 0.8%.

In order to try to decrease the schedule-related computa-
tions, a modified version which employs vectorization oper-
ations for offset computation was developed. In essence,
the offsets for each 32 consecutive memory blocks are now
computed using AVX-512 arithmetic. This version, labeled
‘‘Vect. sub-NUMA’’ in Figures 7 and 8 reduces the number of
instructions by 37.8% with respect to the regular sub-NUMA
schedule. However, it worsens register pressure, increasing
L1 accesses by a further 26%. As a result, the GFLOPS
decrease to 52.3, and so does the AI to 0.20, for a grand total
of 82.4% of the peak performance.

As previously mentioned, these results were executed after
disabling the hardware prefetching. The reason is that the
sub-NUMA schedule does not access memory sequentially,
and is at a tremendous disadvantage against the sequential
schedule when the prefetcher is enabled, which would absorb
and eliminate any potential advantage from the sub-NUMA
schedule. In fact, when enabling the hardware prefetcher the
performance of the sequential schedule is improved by 1.2x,
whereas it is detrimental for sub-NUMA (i.e., its performance
slightly decreases by approximately 5%) as it features a
pseudo-random access pattern that mimics the memory-to-
CHA mapping funtions.

VI. COMPILE-TIME OPTIMIZATION
As shown by the experiments in the previous section, improv-
ing the mesh locality during runtime has an important impact
on other execution parameters due to the pseudo-random
nature of the memory-to-CHA mapping functions and their
computational complexity. A different way to exploit this
knowledge is to optimize the scheduling of completely static
codes during the compilation stage.

Augustine et al. [2] recently proposed a data-specific
code generation technique for the optimization of sparse-
immutable codes, including artificial neural network infer-
ence. In essence, this approach automatically builds sets of
regular subcomputations by mining for regular subregions
in the irregular data structure. The resulting code is spe-
cialized to the sparsity structure of the input matrix, but
does not employ indirection arrays, improving predictability
and SIMD vectorizability. This section focuses on the sparse
matrix-vector multiplication (SpMV) as an immediate target
of this class of data-specific optimizations.

A graphical depiction of a small subset of operations per-
formed by the sparse matrix-vector multiplication of matrix
FIDAP/ex7, included in the SuiteSparse Matrix Collec-
tion [7] is offered in Figure 9. For many sparse matrices, this
code generation approach delivers better performance than
the generic, irregular alternative. Besides promoting vector-
ization, data-specific approaches encode the matrix structure
implicitly in the program source. This does not only reduce
the number of memory accesses, but collaterally stores the
matrix structure in the first-level instruction cache, which

28938 VOLUME 9, 2021



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

FIGURE 9. Sets of regular subcomputations built for the Sparse Matrix-Vector multiplication of matrix FIDAP/ex7 in the
SuiteSparse repository. The figure in the left shows the location of the nonzero points in the upper left corner of the matrix. Each
identified regular subcomputation is marked as a rectangle enclosing several nonzeros, and captured as an AVX-512 operation,
as shown in the pseudo-code on the right.

is classically underutilized for small irregular codes such as
SpMV. The effect is similar to extending the first-level data
cache: matrix structure will be stored in the instruction cache
(since it is embedded in the code), whereas actual matrix val-
ues will be stored in the data cache. The immediate disadvan-
tage is that the code grows proportionally to the matrix size.
Still, for sufficiently regular sparse matrices the combined
size for structure and data values (the program footprint) will
be small enough as to benefit from this tradeoff.

As opposed to the dynamic approach of Section V,
the static optimization has no explicit execution overhead.
As such, the schedule of each computation can be carefully
analyzed and planned in order to improve coherence traffic.
Note that, as opposed to the dynamic approach in which
the mapping functions could be applied on already-allocated
memory, in this case the memory allocation must be stati-
cally known. The approach employed for this is detailed in
Section VI-A. For the remainder of this section it is assumed
that the physical address associated to each data block in the
program is statically known.

Consider the generic SpMV statement s executed by the
data-specific approach:

s : yi = Aj · xk

Note that this statement does not include irregular indices,
since the code has been generated for a specific input matrix
with a fixed sparsity structure, as exemplified in Figure 9.
Consequently, the compiler has static knowledge of all the
memory movements that will be required for executing
each specific part of the code. At a glance, the proposed
compile-time approach computes an access cost for each
statement in the data-specific SpMV code for each tile in
the processor, and then schedules operations across the mesh
following a greedy approach. Access costs are dynamically
updated during the scheduling process to reflect the updated
placement of eachmemory block in the private caches of each
tile.

Consider a data block B with directory information associ-
ated to tile Td and actual data accessed through tile TB. The
actual source of data can either be the private L2 cache of
tile TB, if the associated tile is the Forwarder for B; or TB

can be one of the tiles with an associated memory interface,
which will serve B after reading it from memory. Regardless
of the actual coherence status of B, in order to access the
data the requestor tile will send a message to Td , which will
forward the request to TB, which in turn will send B back to
the requestor. Figure 10 illustrates this situation. Note that
Td and TB constitute the opposite corners of a rectangle on
the network-on-chip (NoC) which contains the tiles that can
access B with minimum latency. Tiles outside this rectangle
incur extra latency, which can be computed as 2× (2×Dx +
Dy), whereDx andDy are the horizontal and vertical distances
from the tile to the rectangle, respectively.

Based on these access times, a scheduling system is devel-
oped, conceptually described in Algorithm 1. Each tile in the
NoC is visited in order, and for each of them the subset of
operations to be executed on that tile is selected in a greedy,
iterative fashion, choosing the one with the smallest data
movement cost at each iteration, until that tile reaches its bal-
anced load. The upper bound of its computational complexity
is O(S3): the algorithm essentially distributes all of the state-
ments in the program to the tiles in the mesh, which would
present linear complexity onS . However, the cost of the set of
remaining statements has to be recomputed frequently, due to
the data movements derived from the assignment decissions
in each iteration of the inner loop. The cost τ of executing

Algorithm 1: Static Scheduling of SpMV Operations
Input: Set S of SpMV statements to be scheduled
Input: Set T of tiles in the NoC
Output: Schedule 2(S)→ T
Compute LT = total number of FLOPS in S;
Compute Lb =

LT
#T the number of FLOPs to be

computed by each tile to balance load;
foreach tile t ∈ T do

while Load(t) < Lb do
Select s ∈ S : τ (s, t) ≤ τ (s′, t),∀s, s′ ∈ S;
Assign 2(s) = t;
Update S = S − {s};

VOLUME 9, 2021 28939



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

each statement s in tile t is computed as:

τ (s, t) = τ (yi, t)+ τ (Aj, t)+ τ (xk , t)

That is, the aggregated cost of accessing memory blocks yi,
Aj, and xk from tile t . For each individual memory block, its
access cost is computed as:

τ (B, t) = λB + 2×
(
2× Dx(t,RB)+ Dy(t,RB)

)
where:
• λB is a factor that depends on the latency to physi-
cally access B, including 12 cycles for accessing a pri-
vate L2 in the NoC, and 115 cycles for accessing an
MCDRAM interface.

• Dx/y(t,RB) is the horizontal/vertical distance from the
requestor tile t to the rectangle defined by the tiles in
its opposite corners TB and Td , containing the data and
the coherence information, respectively, as described
in Figure 10.

FIGURE 10. Overhead, in mesh cycles, of accessing a block of data
resident in the L2 cache of tile TB, and with coherence information
resident in tile Td . All the tiles inside the rectangle defined by Td and TB
access data in 14 cycles with zero associated overhead. In any
communication, first the CHA at Td is queried. Then the CHA sends a
F orward request to the source L2 cache at TB, which sends the data back
to the requestor. For any tile inside the 0-overhead rectangle, being closer
to the CHA means a shorter travel time for the query, and a larger one for
the response. These compensate one another, yielding zero net effect. For
tiles outside the rectangle, the overhead is compounded by the extra time
that the query needs to enter the rectangle, plus the extra time that the
response needs to arrive back at the requestor from inside a rectangle
tile.

The order in which each of the tiles is visited is carefully
selected: those with worst-case trip times are selected first.
For instance, the upper-left tile in the NoC has a worst-case

round trip time of 32 cycles when accessing data with Td
or TB on the bottom-right tile. However, the round trip time
from a central tile to any other tile in the mesh is of at most
18 cycles.

Note that the schedules generated by this static optimiza-
tion process are no longer sub-NUMA, as opposed to the
dynamic approach in Section V. In this case, there is no
runtime constraint enforcing quick computation of the sched-
ule, so the system can use the full fine-grained information
about memory-to-CHAmapping to decide whether accessing
data on a different quadrant will be the best option from a
coherence traffic point of view.

Once all operations are scheduled, the code is generated
specifically for each tile. In order to reduce code sizes, affine
compression may be applied to group similar operations
together on regular affine loops [31]. These do not employ
indirection arrays, being still fully vectorizable, while reduc-
ing the pressure on the instruction cache.

A. FIXING PHYSICAL ADDRESSES
One of the challenges of static scheduling with this class of
pseudo-random functions is that it is not possible to compute
the associated CHA of a virtual address, as the 34 least-
significant bits of the address will be used. Even with 1 GiB
hugepage sizes, the maximum supported by the architecture,
only 30 bits remain unchanged during the virtual-to-physical
address translation. This means that the code cannot rely sim-
ply on page alignment, as can be done for cache optimization,
and must target specific physical pages.

In order to fix the physical pages that are assigned to a
specific application, we employ 1 GiB hugepages. Since the
MCDRAM address space has only 16 GiB in total, there
will only be 16 possible pages that can be assigned to our
application. The assignment order varies slightly depending
on the machine state upon launch. To overcome this diffi-
culty we employ a hybrid static/dynamic approach. During
the static analysis, the code generated assumes that specific
1 GiB hugepages will be allocated to the different data struc-
tures in the program. These assumptions are registered in
static constant variables in the source code. During runtime,
an executor overallocates as many 1 GiB pages as possible.
Then, it translates their virtual addresses to physical addresses
by reading the process pagemap in /proc. Finally, it assigns
the required hugepages to the data structures in the code
by comparing the allocated physical addresses to the static
constant variables assumed during the scheduling process,
and frees the remaining, unused ones.

B. EXPERIMENTAL RESULTS
We generate data-specific codes for more than 20 sparse
matrices selected from the range of matrices between
1 million and 10 million nonzeros in the SuiteSparse repos-
itory. The upper bound is used for tractability purposes.
The lower bound to ensure sufficiently large operation. The
selected matrices were the cluster centroids resulting from
running k-means on SuiteSparse and using regularity and size

28940 VOLUME 9, 2021



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

as the target characteristics [2]. Each of the selected matrices
was processed to extract the data-specific operations required
by its SpMV. Three different implementations were generated
for testing:

• The generic irregular version of Figure 11.
• A data-specific version with sequential schedule,
as described by Augustine et al. [2].

• A data-specific version containing exactly the same set
of operations, but scheduled in a coherence-aware fash-
ion using Algorithm 1.

FIGURE 11. Classical, irregular SpMV code.

Codes are compiled using ICC 19.1.1.217 with -Ofast
-xKNL -qopenmp. They are executed on an Intel x200
7210, running at the base frequency of 1.30 GHz, to avoid
turbo-related variations, using 64 threads, one per core in the
NoC. Ten repetitions were performed for each execution, and
average values are reported for each thread after discarding
outliers (identified as values x such that |x−X̄ | > 3σ (X )). For
the generic irregular version and the sequentially-scheduled
data-specific one the ‘‘scatter’’ thread placement is employed.
For the coherence-aware version an ad-hoc assignment is
employed, ensuring that each thread is executed on the appro-
priate statically scheduled tile. These codes are typically very
large in size, explicitly containing the full set of operations
to be performed for multiplying a sparse matrix by a given
vector. Executable sizes vary between 39 and 206MiB. As for
dynamic scheduling, hugectl -heap and numactl -m
1 are used to control the use of hugepages and memory
domains. The hardware prefetcher is enabled for all the exper-
iments in this section.

The data-specific versions were found to be 2.1x faster
on average than the generic irregular version. This is a
clear indication that a manycore architecture with light,
vectorization-oriented processors is not well geared towards
irregular codes, which feature many control flow-related
instructions such as induction variable increments and
branches. The data-specific versions perform, on aggregate,
4.7x less L1 accesses, but incur 1.2x more L1 data misses.
The L1 instruction misses increase by 39.9x. This increase is
mostly absorbed by the L2 cache and the hardware prefetcher,
however, and overall the number of L2 misses is only 12.8%
higher in the data-specific versions. Furthermore, these addi-
tional misses are resolved locally by the mesh, and the num-
ber of MCDRAM accesses decreases by 21.6%. In summary,
the memory behavior, which is potentially the weakest run-
time aspect of a data-specific version, is not significantly
worsened. In exchange, the data-specific codes execute 5.4x
less instructions, including 2.3x less scalar operations and

859x more vector operations. The biggest culprit in runtime
difference is precisely the number of executed instructions,
and the number of stalls due to missing reservation stations
is 4.9x larger on irregular codes. Due to these intrinsic dif-
ferences in the nature of each implementation, we drop the
irregular version of SpMV in the following experiments, and
focus on comparing only the sequential and coherence-aware
schedules of the data-specific implementations. Figure 12
shows these detailed results.

From a performance point of view, on aggregate the
coherence-aware schedule increases execution time by 3.2%.
The detailed execution cycles obtained for the SpMV of
each matrix are shown in Figure 13. None of the matrices

FIGURE 12. Execution cycles, data L1 accesses, data L1 misses,
instruction L1 misses, L2 misses, MCDRAM accesses, executed
instructions, scalar operations, vector operations, and stalls due to
missing reservation stations (RS) for irregular and data-specific versions
of the SpMV operation. Note that the Y axis is truncated for
readability.

FIGURE 13. Execution cycles of the coherence-aware schedule,
normalized to those of the sequential schedule.

VOLUME 9, 2021 28941



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

FIGURE 14. Execution cycles, executed instructions, data L1 accesses,
data L1 misses, L2 misses, and MCDRAM accesses of the
coherence-aware schedule for selected matrices in the experimental set:
the one with the best relative performance (#1308), the one with the
worst one (#2044), and the middle case (#2473). Values are normalized
to those of the sequential schedule.

achieves a performance improvement, the best one being
0.1% slower than the baseline. For some matrices the oper-
ation is noticeably slower, the extreme case being 10.3% less
performant.

In order to study in more detail the reasons for this per-
formance degradation, three selected matrices are closely
examined. Selected performance counters for these matrices
are detailed in Figure 14. On careful inspection the perfor-
mance is strongly correlated with the number of MCDRAM
accesses incurred by each version of the code (with Pearson’s
correlation coefficient R = 0.91).
The conclusion to be inferred from these experiments is

that, even with fully static scheduling, CHA locality can-
not be appropriately leveraged to improve performance of
data-specific sparse codes. The reason is that, due to the
pseudo-random nature of the assignment between mem-
ory blocks and CHAs, rescheduling the code to promote
the access of nearby CHAs to improve the cache coher-
ence traffic patterns necessarily impacts cache locality neg-
atively for codes benefiting from sequential data access.
Even though SpMV has a varying degree of randomness
in the access to the x vector, the matrix data in A can
be accessed sequentially, and this is a huge advantage of
the sequential schedule, particularly taking into account the
hardware prefetcher. Despite the performance degradation,
a careful analysis of the performance counters evidences
that the coherence-aware schedule broadly improves memory
latency, as shown in Figure 15, by 10% on aggregate. Average
latency goes from 0.77 cyles per access in the sequential
schedule, to 0.70 cycles per access in the coherence-aware
schedule. The IPC is very slightly increased, going from
12.37 to 12.42.

FIGURE 15. Memory latency of the coherence-aware schedule normalized
to the sequential schedule baseline for all the matrices in the
experimental set.

VII. DISCUSSION AND RELATED WORK
When Horro et al. [12] initially explored the optimization of
coherence traffic on the Knights Landing NoC, they observed
a clear effect on the application performance due to affinity
relationships between cores and CHAs. This work was based
on a pre-computed assignment of memory blocks to CHAs.
The optimized scheduling was performed dynamically in an
inspector-executor fashion, which represents a very costly
step that would negate any actual performance benefit in
a real setting. Furthermore, the rescheduling could only be
applied to irregular codes. Based on these promising results,
the current work focused on reverse engineering the functions
behind this mapping. The authors expected these functions to
be useful to alleviate the overhead of the inspector-executor
approach, in addition to being usable by architecture-specific
compilers that could perform low-level optimizations of
coherence traffic. However, these expectations were toned
down by the actual shape of the mapping functions. Although
the XOR-based functions are cheap to implement in hardware
and widely used for other non-regular mappings, such as
the assignment between memory blocks and LLC slices in
Intel Core processors [9], [16], [23], they are costly to com-
pute in software. This cost can be overcome if the mapping
presents some kind of regularity that can be exploited by
carefully optimizing the code and schedules. For instance,
Scolari et al. [33] propose to exploit the knowledge about the
hash functions that map data to LLC slices in an Intel Sandy
Bridge processor to achieve performance isolation. This is
possible since the hash functions which govern this mapping
only employ a simple XOR of selected bits from 17 to 32 of
an address, which means that blocks of 64 kB of contiguous
and aligned data will be mapped to the same LLC slice. This
approach is limited to processors having a power of 2 number
of cores, as otherwise the mapping functions will likely be
nonlinear. This is the reason for the contrasting complexity

28942 VOLUME 9, 2021



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

of the equations presented in Section IV, which require XOR
and negations, dramatically broadening the search space and
making brute-force approaches essentially infeasible. This
complexity is derived from the non-power of 2 number of tiles
in the Xeon Phi x200.

When trying to exploit the mapping of coherence data to
CHAs in the Xeon Phi x200 architecture, the software com-
plexity of the XOR-based hash functions, together with their
pseudo-random nature, in which sequences of four consecu-
tive memory blocks are guaranteed, by design, to be mapped
to CHAs in different quadrants, makes it impossible to apply
similar, regular schemes. The approaches proposed in Sec-
tions V and VI achieve to reduce contention on the processor
network, but ultimately do not achieve to improve execution
performance due to the computational cost involved in the
optimized scheduling.

Note that the approach followed in this paper has focused
on a particular Intel Xeon Phi 7210 unit, but it is generalizable
to any Xeon Phi 72xx. We have studied other units, including
7250 and 7290, and found that the memory-to-CHAmapping
is identical, as is the physical placement of the CHAs on the
network and the way to distribute the logical core IDs over the
set of enabled physical cores. This set, however, is subject to
fabrication process variations and changes for each specific
unit of the processor. The process for mapping the logical
components of the processor to their physical locations, based
on profiling the communication latency of different logical
entities in the processor, followed by a discrimination process
based on mean squared error models, is applicable to other
processor designs. The process presented to reverse-engineer
the binary functions for the memory-to-CHA mapping could
be applied when searching for hardware-friendly hash func-
tions in general. The presented flow chart in Figure 3 may
not work for a specific problem, but could provide useful
information which indicate adjustments to explore or rule out
certain function forms.

For all these inconveniences from the high-performance
computing point of view, the approach followed by Intel has
many advantages in everyday computing. It is implausible to
write a code that systematically accesses only a particular set
of CHAs, making them into a bottleneck. Such a bottleneck
can happen with regular mappings, such as a modulo-based
mapping that can suffer from systematic conflicts for certain
access patterns. Furthermore, it manages to distribute mem-
ory blocks across the quadrants in the NoC in a fair fashion,
ensuring that all of them have to manage the same amount of
information on aggregate. This is no simple task, given the
irregularity of the NoC, which features a non-power of two
number of tiles, unevenly distributed across quadrants. Still,
the price to pay is an all-to-all coherence traffic pattern which
requires dedicated communication rings to handle.

Going forward, it would be desirable to improve this
design, coupling the directory distribution that avoids bot-
tlenecks in the NoC with a more regular and predictable
mapping of the memory blocks to enable programmers, par-
ticularly in the high-performance computing domain, to have

full control over coherence traffic. Horro et al. [13] developed
a simulator for the traffic on the NoC of distributed directory
architectures based on the Tejas architectural simulator [32],
predicting that codes with coherence traffic control would
experiment a 20% decrease in overall traffic over the NoC,
yielding more than 50% latency improvement for the coher-
ence packets. McCalpin [24], [25], [27] discusses address
hashing in Intel Scalable and KNL processors, analyzing the
binary permutations in address bits and their physical location
in the mesh, i.e. their corresponding CHA. His work focuses
on cache line distribution, rather on the actual hash functions.

In recent years, a number of papers have explored the
design of scalable networks-on-chip to support manycore
architectures. Daya et al. [8] design a NoC based on an
ordered network and a snoopy coherence protocol, and show
how congestion increases heavily with the number of cores.
Ferdman et al. [10] propose a scalable distributed directory
system to alleviate the power and performance problems of
sparse and duplicate-tag directories, scaling up to 1,024 cores.
Charles et al. [5] identify the importance of the coherence
traffic in manycore performance, and show how the memory
modes in the Intel KNL can be manipulated to achieve better
performance. They neither explore software optimizations to
coherence traffic, nor the actual layout of the KNL processor.
Numerous other techniques to efficiently schedule applica-
tions on network-on-chips have been developed. Kim et al.
[19] focus on categorizing the memory accesses behavior of
threads and employing different policies for them. Xiao et al.
[38] parallelize applications by implementing careful load
balancing between cores and minimizing inter-core commu-
nications. Liu et al. [21] use a compiler-guided scheme to
minimize on-chip network traffic by reducing the distances
of cores to data, but without taking into account the effects
of a distributed directory. Lu et al. [22] propose a poly-
hedral model and associated optimizations to achieve data
locality in these topologies. In these works, no particular
consideration is given to the effect of distributed cache home
agents on memory access latency, and therefore deploying
such approach on a KNL may be refined with placement
and subsequent inter-core communications further improved
using the results we presented earlier.

Several papers have explored the performance of the KNL
architecture, mainly through the analysis of well-known
benchmarks, machine learning applications, and parallel
workloads [3], [4], [6], [17]. None of these works under-
take the analysis of the locality characteristics of the KNL
interconnect. Ramos and Hoefler [30] develop a capability
model of the cache performance and memory bandwidth of
the KNL, characterizing the impact of the different memory
and cluster modes. However, this work does not consider the
impact of the distributed directory.

Finally, other works have proposed ways to discover archi-
tectural features, or to automatically tune applications in
highly complex systems. Yotov et al. [39] developed a set
of microbenchmarks to measure parameters of the memory
hierarchy. Wang et al. [37] argue that the static discovery of

VOLUME 9, 2021 28943



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

optimal configuration parameters is a fundamentally flawed
approach, proposing a configuration interface to specify per-
formance constraints that should be satisfied at runtime.
Mishra et al. [28] propose to use automatic learning systems
to manage resources towards meeting specific latency and
energy constraints.

VIII. CONCLUSION
Current manycore designs are usually based on replicated IP
blocks connected by a high-performance fabric. An example
of such an approach is the Intel Mesh interconnect (IM),
first featured in the Intel Xeon Phi Knights Landing (KNL)
processor [34]. The IM is the current interconnection standard
in the most advanced Intel processors, including Intel Xeon
Scalable servers and the High-End Desktop family of Core-X
chips [1], [35].

In this work, we presented the first complete reverse-
engineering of the hardware mapping functions between
memory block addresses and the Cache/Home Agent on the
KNL, exposing complex bitwise XOR-based functions that
can then be exploited at compile-time to further improve data
access latency via careful placement. We presented different
optimization strategies based on both dynamic and static
work scheduling. Extensive experiments quantified themerits
and drawbacks of the proposed optimizations, improving
memory access latency by leveraging the spatial locality of
CHAs. However, our experiments clearly expose the limi-
tations of exploiting such complex XOR-based functions in
software, which may ultimately lead to overall performance
degradation despite memory latency improvements.

ACKNOWLEDGMENT
The authors wish to thank John McCalpin for his invaluable
insights into the KNL architecture.

REFERENCES
[1] M. Arafa, B. Fahim, S. Kottapalli, A. Kumar, L. P. Looi, S. Mandava,

A. Rudoff, I. M. Steiner, B. Valentine, G. Vedaraman, and S. Vora, ‘‘Cas-
cade lake: Next generation Intel Xeon Scalable processor,’’ IEEE Micro,
vol. 39, no. 2, pp. 29–36, Mar./Apr. 2019.

[2] T. Augustine, J. Sarma, L.-N. Pouchet, and G. Rodríguez, ‘‘Generating
piecewise-regular code from irregular structures,’’ in Proc. 40th ACM SIG-
PLAN Conf. Program. Lang. Design Implement., Jun. 2019, pp. 625–639.

[3] A. Azad andA. Buluc, ‘‘Awork-efficient parallel sparsematrix-sparse vec-
tor multiplication algorithm,’’ in Proc. IEEE Int. Parallel Distrib. Process.
Symp. (IPDPS), May 2017, pp. 688–697.

[4] C. Byun, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, V. Gadepally,
M. Houle, M. Hubbell, M. Jones, A. Klein, P. Michaleas, L. Milechin,
J. Mullen, A. Prout, A. Rosa, S. Samsi, C. Yee, and A. Reuther, ‘‘Bench-
marking data analysis and machine learning applications on the Intel KNL
many-core processor,’’ in Proc. IEEE High Perform. Extreme Comput.
Conf. (HPEC), Sep. 2017, pp. 1–6.

[5] S. Charles, C.A. Patil, U.Y. Ogras, and P. Mishra, ‘‘Exploration of memory
and cluster modes in directory-based many-core CMPs,’’ in Proc. 12th
IEEE/ACM Int. Symp. Netw.-Chip, NOCS, Oct. 2018, pp. 1–8.

[6] L. Chen, B. Peng, B. Zhang, T. Liu, Y. Zou, L. Jiang, R. Henschel,
C. Stewart, Z. Zhang, E. McCallum, Z. Tom, O. Jon, and J. Qiu, ‘‘Bench-
marking harp-DAAL: High performance Hadoop on KNL clusters,’’
in Proc. IEEE 10th Int. Conf. Cloud Comput. (CLOUD), Jun. 2017,
pp. 82–89.

[7] T. A. Davis and Y. Hu, ‘‘The university of florida sparse matrix collection,’’
ACM Trans. Math. Softw., vol. 38, pp. 1–25, Dec. 2011.

[8] B. K. Daya, C.-H.-O. Chen, S. Subramanian, W.-C. Kwon, S. Park,
T. Krishna, J. Holt, A. P. Chandrakasan, and L.-S. Peh, ‘‘SCORPIO: A 36-
core research chip demonstrating snoopy coherence on a scalable mesh
NoC with in-network ordering,’’ in Proc. ACM/IEEE 41st Int. Symp.
Comput. Archit. (ISCA), Jun. 2014, pp. 25–36.

[9] A. Farshin, A. Roozbeh, G. Q. Maguire, and D. Kosti, ‘‘Make the most
out of last level cache in Intel processors,’’ in Proc. 14th EuroSys Conf.,
Mar. 2019, pp. 1–17.

[10] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi, ‘‘Cuckoo directory:
A scalable directory for many-core systems,’’ inProc. IEEE 17th Int. Symp.
High Perform. Comput. Archit., Feb. 2011, pp. 169–180.

[11] J. R. Goodman and H. H. J. Hum, ‘‘MESIF: A two-hop cache
coherency protocol for point-to-point interconnects,’’ Univ. Auck-
land, Auckland, New Zealand, Tech. Rep., 2009. [Online]. Avail-
able: https://researchspace.auckland.ac.nz/handle/2292/11593?show=full
and http://hdl.handle.net/2292/11593

[12] M. Horro, M. T. Kandemir, L.-N. Pouchet, G. Rodríguez, and J. Touriño,
‘‘Effect of distributed directories in mesh interconnects,’’ in Proc. 56th
Annu. Design Autom. Conf., Jun. 2019, pp. 1–6.

[13] M. Horro, G. Rodríguez, and J. Touriño, ‘‘Simulating the network activity
of modern manycores,’’ IEEE Access, vol. 7, pp. 81195–81210, 2019.

[14] Intel Xeon Phi Processor Performance Monitoring Reference Manual—
Volume 2: Events, Intel, Mountain View, CA, USA, 2017.

[15] Intel Xeon Phi Processor Performance Monitoring Reference Manual—
Volume 1: Registers (Rev. 002), Intel, Mountain View, CA, USA, 2017.

[16] G. Irazoqui, T. Eisenbarth, and B. Sunar, ‘‘Systematic reverse engineering
of cache slice selection in Intel processors,’’ in Proc. Euromicro Conf.
Digit. Syst. Design, Aug. 2015, pp. 629–636.

[17] M. Jacquelin, W. De Jong, and E. Bylaska, ‘‘Towards highly scalable Ab
Initiomolecular dynamics (AIMD) simulations on the Intel knights landing
manycore processor,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
(IPDPS), May 2017, pp. 234–243.

[18] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High
Performance Programming: Knights Landing Edition. Burlington, MA,
USA: Morgan-Kauffman, 2016.

[19] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, ‘‘Thread
cluster memory scheduling: Exploiting differences in memory access
behavior,’’ in Proc. 43rd Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2010, pp. 65–76.

[20] H. Krawczyk, ‘‘LFSR-based hashing and authentication,’’ in Advances
in Cryptology, Y. G. Desmedt, Ed. Berlin, Germany: Springer, 1994,
pp. 129–139.

[21] J. Liu, J. Kotra, W. Ding, and M. Kandemir, ‘‘Network footprint reduction
through data access and computation placement in NoC-based many-
cores,’’ in Proc. 52nd Annu. Design Autom. Conf., Jun. 2015, pp. 1–6.

[22] Q. Lu, C. Alias, U. Bondhugula, T. Henretty, S. Krishnamoorthy,
J. Ramanujam,A. Rountev, P. Sadayappan, Y. Chen, H. Lin, and T.-F. Ngai,
‘‘Data layout transformation for enhancing data locality on NUCA chip
multiprocessors,’’ in Proc. 18th Int. Conf. Parallel Archit. Compilation
Techn., Sep. 2009, pp. 348–357.

[23] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon,
‘‘Reverse engineering Intel last-level cache complex addressing using
performance counters,’’ in Proc. 18th Int. Symp. Res. Attacks, Intrusions,
Defenses, 2015, pp. 48–65.

[24] J. D. McCalpin, ‘‘Address Hashing in Intel KNL and SKX Processors,’’
in Proc. Intel eXtreme Perform. Users Group Annual Fall Conf., 2018.
[Online]. Available: https://www.ixpug.org/events/ixpug-fallconf-2018

[25] J. D. McCalpin, ‘‘HPL and DGEMM performance variability on the xeon
platinum 8160 processor,’’ in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal., Nov. 2018, pp. 225–237.

[26] J. D. McCalpin, ‘‘Observations on core numbering and ‘Core ID’s’ in Intel
processors,’’ Texas Adv. Comput. Center, Univ. Texas at Austin, Austin,
TX, USA, Tech. Rep. TR-2020-01, 2020.

[27] J. D. McCalpin, ‘‘Mapping core and L3 slice numbering to die locations in
Intel Xeon scalable processors,’’ Texas Adv. Comput. Center, Univ. Texas
at Austin, Austin, TX, USA, Tech. Rep. TR-2021-01, 2021.

[28] N. Mishra, C. Imes, J. D. Lafferty, and H. Hoffmann, ‘‘CALOREE: Learn-
ing control for predictable latency and low energy,’’ in Proc. 23rd Int. Conf.
Archit. Support Program. Lang. Oper. Syst., Mar. 2018, pp. 184–198.

[29] K. O’Leary, I. Gazizov, A. Shinsel, R. Belenov, Z. Matveev, and
D. Petunin. (2017). Intel Advisor Roofline Analysis. Accessed:
Jul. 28, 2020. [Online]. Available: https://www.codeproject.com/articles/
1169323/intel-advisor-roofline-analysis

28944 VOLUME 9, 2021



S. Kommrusch et al.: Optimizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/Home Agent Mappings

[30] S. Ramos and T. Hoefler, ‘‘Capability models for manycore memory
systems: A case-study with xeon phi KNL,’’ in Proc. IEEE Int. Parallel
Distrib. Process. Symp. (IPDPS), May 2017, pp. 297–306.

[31] G Rodríguez, M. T. Kandemir, and J. Touriño, ‘‘Affine modeling of pro-
gram traces,’’ IEEE Trans. Comput., vol. 68, no. 2, pp. 294–300, Feb. 2019.

[32] S. R. Sarangi, R. Kalayappan, P. Kallurkar, S. Goel, and E. Peter, ‘‘Tejas:
A java based versatile micro-architectural simulator,’’ in Proc. 25th
Int. Workshop Power Timing Modeling, Optim. Simulation (PATMOS),
Sep. 2015, pp. 47–54.

[33] A. Scolari, D. B. Bartolini, and M. D. Santambrogio, ‘‘A software cache
partitioning system for hash-based caches,’’ ACM Trans. Archit. Code
Optim., vol. 13, no. 4, pp. 1–24, Dec. 2016.

[34] A. Sodani, ‘‘Knights landing (KNL): 2nd generation Intel Xeon phi pro-
cessor,’’ in Proc. IEEE Hot Chips 27 Symp. (HCS), Aug. 2015, pp. 1–24.

[35] S. M. Tam, H. Muljono, M. Huang, S. Iyer, K. Royneogi, N. Satti,
R. Qureshi, W. Chen, T.Wang, H. Hsieh, S. Vora, and E.Wang, ‘‘SkyLake-
SP: A 14 nm 28-core Xeon processor,’’ in IEEE Int. Solid-State Circuits
Conf. (ISSCC) Dig. Tech. Papers, Feb. 2018, pp. 34–36.

[36] K. Viswanathan. (2014).Disclosure of Hardware Prefetcher Control
on Some Intel Processors. Accessed: Aug. 2020. [Online]. Available:
https://software.intel.com/content/www/us/en/develop/articles/disclosure-
of-hw-prefetcher-control-on-some-intel-processors.html

[37] S. Wang, C. Li, H. Hoffmann, S. Lu, W. Sentosa, and A. I. Kistijantoro,
‘‘Understanding and auto-adjusting performance-sensitive configura-
tions,’’ in Proc. 33rd Int. Conf. Archit. Support Program. Lang. Oper. Syst.,
Mar. 2018, pp. 154–168.

[38] Y. Xiao, Y. Xue, S. Nazarian, and P. Bogdan, ‘‘A load balancing inspired
optimization framework for exascale multicore systems: A complex net-
works approach,’’ in Proc. IEEE/ACM Int. Conf. Computer-Aided Design
(ICCAD), Nov. 2017, pp. 217–224.

[39] K. Yotov, K. Pingali, and P. Stodghill, ‘‘Automatic measurement of mem-
ory hierarchy parameters,’’ in Proc. ACM SIGMETRICS Int. Conf. Meas.
Modeling Comput. Syst., 2005, pp. 181–192.

STEVE KOMMRUSCH is currently pursuing the
Ph.D. degree with the Department of Computer
Science, Colorado State University (CSU). His
research interests include machine learning tech-
niques for syntactic understanding and generation
of computer code, AI safety, and verifiable ways
to use machine learning. Prior to beginning his
computer science Ph.D. work, he worked in the
field of computer hardware design attaining the
level of Fellow Design Engineer with Advanced

Micro Devices. He has 31 patents granted in the fields of computer graphics,
system-on-chip design, silicon debugging, low-power processors, and asyn-
chronous clocking techniques.

MARCOS HORRO received the B.S. and M.S.
degrees in computer science from the Universi-
dade da Coruña, Spain, in 2016 and 2018, respec-
tively. He is currently pursuing the Ph.D. degree
with the Department of Computer Engineering,
Universidade da Coruña. His main research inter-
ests include in the area of HPC, computer architec-
ture focused on the performance evaluation, and
optimization of heterogeneous memory systems
and compilers.

LOUIS-NOËL POUCHET is currently an Asso-
ciate Professor of computer science with Colorado
State University, Fort Collins, CO, USA, with a
joint appointment with the Electrical and Com-
puter Engineering Department. He is also working
on pattern-specific languages and compilers for
scientific computing, and has designed numerous
approaches using optimizing compilation to effec-
tively map applications to CPUs, GPUs, FPGAs,
and System-on-Chips. His work spans a variety of

domains including compiler optimization design especially in the polyhedral
compilation framework, high-level synthesis for FPGAs and SoCs, and
distributed computing. He is the author of the PolyOpt and PoCC compilers,
and of the PolyBench benchmarking suite.

GABRIEL RODRÍGUEZ is currently an Associate
Professor with the Department of Computer Engi-
neering, University of A Coruña, where he is a
member of the Computer Architecture Group and
a CITIC Research. His main research interests
include in the field of optimizing compilers, archi-
tectural support for high-performance computing,
and power-aware computing.

JUAN TOURIÑO (Senior Member, IEEE) is cur-
rently a Full Professor with the Department of
Computer Engineering, University of A Coruña,
where he also leads the Computer Architecture
Group. He has extensively published in the area
of High Performance Computing (HPC): pro-
gramming languages and compilers for HPC,
high-performance architectures and networks, par-
allel algorithms, and applications. He is a coauthor
of more than 170 papers on these topics in interna-

tional conferences and journals. He has also served in the Program Commit-
tee of 70 international conferences.

VOLUME 9, 2021 28945


