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Abstract

Next-Generation Sequencing (NGS) technologies have revolutionized genomics research over the last decade,
bringing new opportunities for scientists to perform groundbreaking biological studies. Error correction in
NGS datasets is considered an important preprocessing step in many workflows as sequencing errors can
severely affect the quality of downstream analysis. Although current error correction approaches provide
reasonably high accuracies, their computational cost can be still unacceptable when processing large datasets.
In this paper we propose SparkMusket (SMusket), a Big Data tool built upon the open-source Apache Spark
cluster computing framework to boost the performance of Musket, one of the most widely adopted and top-
performing multithreaded correctors. Our tool efficiently exploits Spark features to implement a scalable
error correction algorithm intended for distributed-memory systems built using commodity hardware. The
experimental evaluation on a 16-node cluster using four publicly available datasets has shown that SMusket
is up to 15.3 times faster than previous state-of-the-art MPI-based tools, also providing a maximum speedup
of 29.8 over its multithreaded counterpart. SMusket is publicly available under an open-source license at
https://github.com/rreye/smusket.

Keywords: Next-Generation Sequencing (NGS), Sequence analysis, Big Data, Apache Spark, Error
correction

1. Introduction

In recent years, the volume of biological data has increased exponentially due to significant advances in
throughput and cost of Next-Generation Sequencing (NGS) platforms [1]. These advances are providing new
opportunities to researchers to better understand genetic variation among individuals, helping to characterize
complicated diseases like cancer at the genomic level. Nowadays, NGS technologies are able to generate up
to terabytes of raw data in a single sequencing run, and this trend is expected to continue to increase in
the coming years [2]. Apart from lower cost and increased throughput, NGS technologies also introduce,
as a downside, higher error rates in the DNA sequence fragments (so-called reads) compared to traditional
Sanger sequencing methods [3], which degrades the quality of downstream analysis and complicates the
data processing for many biological studies such as de novo genome assembly [4] or short-read mapping [5].
Therefore, an important but computationally intensive and time-consuming preprocessing step in many
NGS pipelines is read error correction, which improves not only the quality of downstream analysis but also
the accuracy and speed of all the tools used in the pipeline.

The explosion in the amount of available biological data is introducing heavy computational and storage
challenges on current systems. Many data analysis pipelines require significant runtimes to transform raw
data into valuable information for clinical diagnosis and discovery. Correcting sequencing errors in massive
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NGS datasets in reasonable time can be tackled by relying on parallel computing techniques. However, most
of the existing state-of-the-art error correction tools are limited to shared-memory systems or they require
specific hardware devices or features. The emergence of Big Data technologies such as the MapReduce
paradigm introduced by Google [6] has enabled the deployment of large applications on distributed-memory
systems built using commodity off-the-shelf hardware, which can be executed in a highly scalable manner. As
a consequence, Big Data and cloud computing have gained much attention in bioinformatics and biomedical
fields when dealing with challenges posed by abundant biological data [7, 8, 9, 10, 11].

In this paper we present SparkMusket (SMusket), an error correction tool built upon the open-source
Apache Spark framework [12] to exploit the parallel capabilities of Big Data technologies on distributed-
memory systems. Spark is a popular cluster computing framework that supports efficient in-memory compu-
tations by relying on a distributed-memory abstraction known as Resilient Distributed Datasets (RDD) [13],
which provide data parallelism and fault tolerance implicitly. Our tool reimplements on top of the Spark
programming model an accurate error correction algorithm from Musket [14], a top-performing and widely
used multithreaded corrector based on the k-mer spectrum-based method [15] that provides three correction
techniques in a multistage workflow. SMusket currently supports the processing of both single- and paired-
end DNA reads stored in standard unaligned sequence formats (FASTQ/FASTA). The main contributions
of this paper are:

• A thorough literature review and taxonomy on error correction methods and tools for DNA reads.

• A detailed description of SMusket, a distributed error correction tool that efficiently takes advantage
of several Spark features (e.g, RDDs, broadcast variables) to fully exploit the performance of Big Data
clusters.

• An extensive experimental evaluation of SMusket on a 16-node cluster using four publicly available
real datasets that demonstrates the performance benefits of the proposed Spark-based algorithm when
compared to previous state-of-the-art MPI- and multithreaded-based tools.

The remainder of the paper is structured as follows: Section 2 introduces the background of the paper.
Section 3 discusses the related work. The design and implementation of our tool is described in Section 4.
Section 5 presents the experimental results carried out on a Spark cluster to assess the performance of
SMusket together with a comparison with representative related tools. Finally, Section 6 concludes the
paper and proposes future work.

2. Background

This section introduces the main concepts and technologies involved that are necessary to understand our
proposal: the k-mer spectrum-based (or k-spectrum-based) correction method (Section 2.1), the MapReduce
model (Section 2.2) and the Apache Spark framework (Section 2.3).

2.1. k-spectrum-based error correction

Due to the importance of DNA error correction, multiple methods have been proposed to cope with
the variety of sequencing errors introduced by NGS technologies. The general idea to correct an error in
a specific genomic position is based on obtaining all the reads that cover such position and examining the
base in that position from all these reads. So, reads that contain an erroneous base can be corrected relying
on the majority of reads that have this base correct, as sequencing errors occur infrequently and randomly.
As the source genome is unknown, reads from the same genomic location are inferred by assuming that they
typically share subreads of a fixed length k, the so-called k-mers.

Based on this general idea, existing error correction methods can be categorized into three major classes
according to the literature [16, 17]: (1) the k-spectrum-based approach (Reptile [18], Quake [19], CUDA-
EC [20], DecGPU [21], SGA [22], RACER [23], Musket [14], Lighter [24], BLESS [25], BLESS2 [26],
BFC [27], FADE [28], RECKONER [29], SPECTR [30], ZEC [31]); (2) the suffix tree/array-based approach
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(SHREC [32], Hybrid-SHREC [33], HiTEC [34], Fiona [35]); and (3) the multiple sequence alignment-based
approach (Coral [36], ECHO [37], CloudRS [38], CloudEC [39], MEC [40]). Among them, the most advanced
and extended one is the k-spectrum-based approach due to its efficiency, high accuracy, good scalability and
competitive performance. So, we will focus only on this approach in the remainder of the paper.

The main idea of the k-spectrum-based method [15] consists of decomposing the input reads into the
set of all k-mers present in them. Next, the number of times each k-mer occurs in the input reads (i.e.,
its multiplicity) is counted (the k-mer counting step). Because multiple reads are generated from a similar
genomic location, it is highly probable that these reads contain the same k-mer. So, if the multiplicity of
a certain k-mer is very low we can assume that it contains erroneous bases. Following this assumption,
k-mers with multiplicity equal to or greater than a certain threshold M (the k-mer multiplicity threshold)
are called solid or trusted k-mers, whereas the remaining ones are called weak or untrusted k-mers. On
the one hand, solid k-mers are highly likely to occur in the genome, being unlikely to have been altered by
sequencing errors. Hence, reads that only contain solid k-mers are deemed to be error free. On the other
hand, reads that contain weak k-mers are corrected by repeatedly converting them into solid k-mers until
there are no more weak k-mers in the read (error correction step). After correction, only solid k-mers are
kept (if possible).

Although the k-mer multiplicity threshold (M) that separates solid k-mers from weak ones can be
generally specified by the user, most tools can also automatically determine an appropriate value for M
from the k-mer multiplicity histogram, but the specific algorithm used to determine M from such histogram
depends on each particular tool. Overall, k-spectrum-based tools mainly differ in the specific strategy used
for implementing the error correction routine for weak k-mers, which ultimately determines its accuracy and
computational efficiency.

2.2. MapReduce

MapReduce is a parallel programming model and an associated implementation proposed by Google
engineers [6] for the storage and processing of large datasets over a cluster of commodity machines. This
model allows transparent parallelization by relying on two user-defined functions that have existed for
decades in functional programming: Map and Reduce. MapReduce adopts a data-parallel approach that
first partitions the input dataset into multiple splits or chunks, each one containing many records in a
<key,value> pair format, and then processes those splits in parallel running multiple instances of the Map
and Reduce functions (the map and reduce tasks). The user-defined Map function is first applied to transform
the input <key,value> pairs into other intermediate ones. After all map tasks have been completed, the
intermediate pairs are sorted and grouped together according to their keys. Next, a shuffle phase is performed
to transfer the intermediate pairs across the network so that all the values with the same key are sent to the
same reduce task, which merges them into a single list to form the input of the Reduce function. Finally,
the reduce tasks produce the final output also in the form of <key,value> pairs by applying the user-
defined Reduce function. Overall, MapReduce automates and takes care of most of the heavy tasks from
the programmer’s point of view: data partitioning, execution scheduling, fault tolerance and management
of inter-process communications between map and reduce tasks.

In order to efficiently support the MapReduce model, Google developed the Google File System (GFS) [41].
GFS is a distributed, block-oriented file system specifically designed to provide high bandwidth by partition-
ing and replicating data across multiple commodity machines. This file system has built-in fault tolerance
by using a data block replication scheme, and the number of times that GFS replicates each block over the
cluster is defined as the replication factor. Relying on GFS, MapReduce attempts to schedule map tasks
on the cluster machines where the input data blocks reside, improving data locality and minimizing data
movements across the network.

Regarding open-source MapReduce projects, Apache Hadoop [42] is the most popular implementation
derived from Google’s proprietary one. Basically, Hadoop consists of three components or layers: (1) the
Hadoop MapReduce engine as data processing layer; (2) the Hadoop Distributed File System (HDFS) [43]
as storage layer that mimics GFS; and (3) Yet Another Resource Negotiator (YARN) [44] as resource
management layer. During the last decade, Hadoop and its vast ecosystem have become the most significant
platform for Big Data processing. This framework generally shows good performance and scalability when
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Figure 1: Overview of the Spark architecture and cluster deployment

executing embarrassingly parallel applications that require a single MapReduce job, provided that the volume
of intermediate data between the map and reduce phases is not huge. As Hadoop is a disk-based data
processing engine, one important limitation is its inefficiency for reusing intermediate results among several
computations or MapReduce jobs. Reusing intermediate results is important in many iterative workloads
such as machine learning and graph algorithms, which obtain poor performance as HDFS has to be used to
store such data in disk (i.e., different MapReduce jobs cannot share data directly).

2.3. Apache Spark

Apache Spark [12, 45] is a cluster computing framework that has been specifically designed to overcome
the Hadoop limitations. Spark supports efficient in-memory computations in a fault-tolerant manner by
introducing the core concept of Resilient Distributed Dataset (RDD) [13]. An RDD is an immutable,
partitioned collection of data distributed across the cluster that can be operated in parallel and cached
in memory to be reused in multiple MapReduce-like operations. RDDs can be created by parallelizing an
existing collection of objects (e.g., a list) or by loading an external dataset from a distributed file system (e.g.,
HDFS). By reusing RDDs, programmers can perform iterative computations without writing intermediate
results to disk, clearly outperforming Hadoop. Furthermore, another interesting feature is that RDDs recover
automatically from failure, providing fault tolerance without replication.

At a high level, Spark uses a master/worker architecture as depicted in Figure 1. On the one hand,
the Driver program, which usually runs on the master node, executes the main function of the Spark
application. For each application, the Driver first creates a SparkContext that acts as the central coordinator
and then defines the RDDs and parallel operations to be carried out over them. This Driver can be
written in any programming language currently supported by Spark (e.g., Scala, Java). On the other hand,
each worker node runs one or more Executor processes that are in charge of storing RDDs and effectively
performing the computations over them. Tasks are the smallest computational units that can be run in
parallel over an RDD by an Executor, and are scheduled on a per-core basis (i.e., one task per core). Hence,
a set of tasks form a Spark job and a set of jobs form a Spark application. The SparkContext entity is
responsible for creating, scheduling and sending individual tasks to be executed on Executors, allocating the
required computational resources through a cluster manager. Currently, Spark supports Hadoop YARN [44],
Mesos [46] and Kubernetes [47] as cluster managers, also providing its own implementation known as Spark
Standalone.
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Figure 2: Spark example of map transformation and reduce action

Spark also provides a richer programming API than Hadoop by extending the MapReduce model to
allow for more flexible data-parallel operations over RDDs. These operations can be classified into two
types: transformations and actions. On the one hand, transformations (e.g., map, filter, join) are operations
that create a new RDD from an existing one. For instance, the map transformation processes each RDD
element through a user-defined function and returns a new RDD representing the results. It is important
to note that transformations are lazily evaluated, so they do not compute anything until an action that
requires the result from them is triggered. Therefore, there is no need to worry about memory usage when
chaining a number of transformations. On the other hand, actions are operations that return non-RDD
values, converting the laziness of transformations into actual computation. They can be used to either
return a result to the Driver (e.g., reduce, collect), or to store the content of an RDD in external storage
after running a certain computation (e.g., saveAsTextFile). For instance, the reduce action aggregates all
the RDD elements according to a user-defined function and returns the final result to the Driver program.
Figure 2 shows a simple example of applying a map transformation chained with a reduce action over an
RDD of type Integer. The user-defined functions executed over the RDD are shown below the corresponding
boxes for the map and reduce operations.

Finally, each transformed RDD may be recomputed each time an action is performed on it. However,
Spark allows to explicitly persist (i.e., cache) an RDD in memory to keep the RDD elements on the cluster
for much faster access the next time they are queried.

3. Related work

The exploitation of Big Data technologies such as MapReduce and Spark to accelerate the storage,
processing and visualization of large datasets has transformed multiple disciplines through the new knowledge
these technologies help to generate. Representative examples in the literature include several fields such as
weather forecasting [48], healthcare [49], medical imaging simulation [50], social networks [51], industrial
IoT [52] and deep learning [53]. In the particular case of the bioinformatics field, the Big Data paradigm
is gaining increasing attention [7, 9, 54] as a key mechanism to deal with the severe challenges posed by
modern NGS technologies. As a consequence, many bioinformatics tools implemented on top of open-source
Big Data technologies have emerged in recent years, from DNA/RNA sequence alignment [55, 56, 57] to de
novo genome assembly [58, 59]. Next, we will focus on previous bioinformatics tools intended for NGS error
correction using the k-spectrum-based approach, both for shared- and distributed-memory systems.

3.1. k-spectrum-based parallel correctors

Although the accuracy of error correction provided by state-of-the-art k-spectrum-based tools has proved
to be relatively high [60], their throughput needs improvement when dealing with increasingly large NGS
datasets. In the k-spectrum-based method, correcting one read is independent of correcting the others,
which means that there is a lot of potential parallelism to be extracted from the algorithms if they are
efficiently implemented.

We can find in the literature some previous works that exploit parallel and distributed architectures
to increase the performance of error correction tools. In fact, most of the k-spectrum-based tools cited in
Section 2.1 provide a parallel implementation through multithreading to support shared-memory systems,
except Reptile [18] and BLESS [25] which are limited to a single core. The following tools fall into the
multithreading-based parallel approach: Quake [19], SGA [22], RACER [23], Musket [14], Lighter [24],
BLESS2 [26] (a parallel version of the original BLESS tool), BFC [27], RECKONER [29], SPECTR [30] and
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ZEC [31]. However, their main drawback is that their scalability is limited to a single node, except for three
of them (BLESS2, SPECTR and ZEC) that also provide support for distributed-memory systems using the
Message Passing Interface (MPI) [61]. On the one hand, SPECTR features a highly efficient vectorized
SIMD algorithm that has been designed to be executed on specific hardware. Concretely, SPECTR requires
a CPU microarchitecture that supports the AVX-512 instruction set or the availability of an Intel Xeon
Phi many-core accelerator (discontinued in mid-2018). On the other hand, both BLESS2 and ZEC combine
MPI with multithreading using the OpenMP standard [62], so they can be executed on any commodity
machine without specific hardware requirements. Finally, CUDA-EC [20], DecGPU [21] and FADE [28] are
other parallel tools that, similarly to SPECTR, also require specific hardware. CUDA-EC and DecGPU take
advantage of the computing power of NVIDIA GPUs by relying on the CUDA programming model [63],
whereas FADE exploits fine-grained parallelism in FPGA hardware.

Our main goal is to provide a scalable error correction tool intended for distributed-memory systems
based on commodity hardware without any specific requirement, similarly to BLESS2 and ZEC. Instead
of relying on the classical MPI+OpenMP hybrid parallel approach, we intend to fully exploit the features
of Spark to boost performance when correcting large datasets. To the best of our knowledge, SMusket is
the first publicly available tool that relies on Big Data technologies to implement the k-spectrum-based
method. More specifically, our tool is based on the error correction routine implemented by Musket, which
has proved to be one of the top-performing correctors in terms of accuracy among the multithreading-
based tools according to [60]. Furthermore, Musket is highly cited and widely used by researchers and
scientists. SMusket enables extending the good features of the correction algorithm implemented by Musket
to distributed-memory systems, significantly speeding up the execution times while providing the same
accuracy.

4. SMusket implementation

Musket is a command-line tool implemented in C++ and parallelized using threads [14]. Unfortunately,
Spark does not support C++ to write the Driver program, which would have greatly facilitated our imple-
mentation. Among the currently supported languages (Scala, Java, Python and R), we have selected Java to
implement SMusket in order to ease code conversion from C++ due to their comparable objected-oriented
models and some syntax similarities. However, it is important to remark that although the performance
of the Java Virtual Machine (JVM) has increased significantly over the last decade, the computational ef-
ficiency of Java is still lower than C++. Moreover, the memory management of both languages is rather
different. C++ relies on the programmer to manage memory explicitly, whereas Java provides automatic
memory management through the built-in Garbage Collector (GC) included in the JVM, which can consume
a considerable amount of computational resources and hinder application performance [64]. Anyway, these
drawbacks would be much the same for any of the other languages supported by Spark [65].

Basically, SMusket has been designed as a Java-based, command-line tool that receives as input some
arguments that are equivalent to those of Musket. For instance, the path to the input dataset to be corrected
or the k value for creating k-mers (the k-mer length). SMusket currently supports both single- and paired-
end reads stored in standard formats (FASTQ/FASTA). The submission of the Spark jobs to the cluster
to correct the input dataset is facilitated by the smusketrun command included in the SMusket bundle
distribution. Our tool includes a detailed README file that explains all the available input arguments for
smusketrun, provides execution and compilation instructions, and describes advanced configuration options.

4.1. Overall workflow

At the highest level of abstraction, SMusket divides the computation into two main phases as depicted
in Figure 3: k-spectrum construction and error correction. During the k-spectrum construction phase,
SMusket first creates all the k-mers available in the input dataset and counts their number of occurrences
(i.e., their multiplicity). Second, unique k-mers (i.e., k-mers with multiplicity = 1) are filtered out since
they are considered to be largely untrusted. The k-mer multiplicity histogram is then generated from the
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Figure 3: High-level workflow performed by SMusket

multiplicities of non-unique k-mers to determine the k-mer multiplicity threshold (M) that separates solid k-
mers from weak ones. To determine such threshold M from the histogram, SMusket uses the same algorithm
as Musket, which is described in detail in [14].

For the error correction phase, SMusket adopts a multistage correction workflow to correct each input
read based on three techniques originally introduced by Musket: (1) a two-sided conservative correction
that corrects at most one sequencing error in any k-mer of a read. For an error occurring at position i,
the two-sided correction aims to find a unique alternative base that makes all k-mers that cover position i
trusted by evaluating both the leftmost and the righmost k-mers that cover such position. This technique
is performed for a fixed number of iterations (two iterations by default) that can be specified through a
command-line option, or until no base is changed. (2) A one-sided aggressive correction in the case that
more than one error occurs in a single k-mer. To confine false-positive errors, the number of corrections
allowed in any k-mer of a read are limited to four by default, and this value can also be specified through
a command-line option. And (3) a voting-based refinement, which is performed after completing the one-
sided correction, attempts to find the correct base by replacing all possible bases at each position of the
k-mer and checking the solidity of the resulting k-mers. This technique aims to reduce the number of new
errors that can be introduced during the one-sided correction. The combination of techniques 2 and 3 is
also conducted iteratively (2 iterations by default). More specific details about these correction techniques
can be obtained from [14]. Basically, SMusket reimplements in Java the whole C++-based error correction
routine of Musket, but taking into account the specific features of the JVM as mentioned at the beginning
of Section 4. As general guidelines, we have paid special attention to minimize the impact of the GC on
performance by reusing Java objects inside methods as much as possible to avoid excessive GC activity at
runtime.

It is important to remark that by estimating the k-mer multiplicity threshold in the same way as Musket
and by reimplementing its correction routine, the sequencing errors corrected by SMusket for a particular
input dataset are identical to those corrected by its multithreaded counterpart. By doing so, the accuracy
and quality of error correction provided by SMusket is ensured. Specifically, we have checked that the output
files generated by SMusket are exact, byte-by-byte replicas of those generated by Musket.

4.2. RDD creation

As explained in Section 2.3, the fundamental Spark feature that enables parallel processing is the concept
of RDD [13], a partitioned and fault-tolerant collection of elements distributed across the Executors running
on the cluster. In order to construct the k-mer spectrum, the input dataset must be first translated into an
RDD to be operated on by using RDD operations (transformations and actions). As mentioned previously,
RDDs can be created either by parallelizing an existing collection of objects or by loading an external
dataset from a distributed file system, the second option being the appropriate one in our context as the
input DNA reads are stored in a text file. As HDFS is the cornerstone of the Hadoop storage subsystem,
which allows data to be processed in a distributed manner, we assume it as the distributed file system in
this work. Furthermore, HDFS is not only fully supported by Spark since its inception but also by most of
the existing Big Data frameworks and tools.

The most straightforward way to create an RDD from an input text file stored in HDFS is calling the
textFile method provided by Spark. This method relies on the default implementation provided by Hadoop
for processing text-based files stored in HDFS: TextInputFormat. This class is a concrete implementation
of the abstract FileInputFormat class. Unfortunately, TextInputFormat is not able to handle properly the
FASTQ/FASTA formats due to their specific structure. These sequence formats are text-based files that
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@SRR317060.19 PAN_0038_FC625T2AAXX:5:3:7882:1292/1

@SRR317060.20 PAN_0038_FC625T2AAXX:5:3:3604:1297/1

@SRR317060.21 PAN_0038_FC625T2AAXX:5:3:5688:1308/1

TACAGTATTTTCATTANAGAATTCTTTTATCTTTTCTACATTTTTTAATATGTTCGTAATAATGTATTTTGATTTT

GDBBGGDGGGDEGGB@%@3@45773B9<<<+CA4<?<<BBDG3<G@@EFD8BEDB*/27;GDGGGGG>GDDGB@DG

+

+

AGTACAAGACTTCATCNCAAAAAAAAAAAAAAAACCAAATTTCCCTTTTGCCAAAAAAAATAAGTTCGCAAAAAAA

AAAAAGAGCCCGCATTNCCTATTTAATCTTTAGCCAAAATAACAAATCGTGATTCATCACGCTACCTGAGTTCAAA

GDBBGGDGGGDEGGB@%@3@45773B9<<<+CA4<?<<BBDG3<G@@EFD8BEDB*/27;GDGGGGG>GDDGB@DG

DD>9DB=BA?BDD?D4%1>;==@+?=B@B47<74(-0424==;=6./*2.>0+24??;<1<==?*BD>DDDD<DD?

+

Figure 4: Example of a FASTQ file containing three reads

involve multiple lines per read (see Figure 4 for an example). However, Hadoop is mainly designed to
process line-based text formats where identifying individual records is simple as line boundaries are denoted
by newline characters (i.e., one record per line). Although the record delimiter can be changed to use the
character that separates single reads in the input file (e.g., ‘@’ for FASTQ), this would not work since
such character can also occur in the quality string. In fact, none of the other built-in FileInputFormat
subclasses provided by Hadoop for processing text-based files (e.g., KeyValueTextInputFormat) can handle
those sequence formats straightforwardly.

One simple but inefficient way to overcome this issue is to convert the input sequence files into the appro-
priate line-by-line format required by TextInputFormat (i.e., one read per line) and then copy the converted
files to HDFS. This has been the preferred approach for many bioinformatics tools based on Hadoop/Spark
that process input datasets in FASTQ/FASTA format, such as BigBWA [55], DistMap [66] and CloudEC [39].
However, this preprocessing of the input files incurs high disk overhead and degrades performance signifi-
cantly [57]. A more advanced approach consists in using specialized libraries that provide specific routines to
parse these file formats directly from HDFS. Hadoop-BAM [67], BioPig [68], FASTdoop [69] and HSP [70] are
the available alternatives. All these Java-based libraries provide custom implementations of the FileInput-
Format class that allow to handle single-end datasets in FASTQ/FASTA formats. However, Hadoop-BAM,
BioPig and FASTdoop do not provide specific support for paired-end datasets, so a preprocessing step is
still required in this case. Furthermore, Hadoop-BAM and FASTdoop do not support compressed datasets.
BioPig provides this support, but it has proved to be the most inefficient library among them according
to [69]. To the best of our knowledge, HSP is the only library that allows avoiding any preprocessing of the
input files both for single- and paired-end datasets. Therefore, SMusket relies on HSP to create the initial
RDD from the input files in an efficient and simple way, as briefly described next.

4.2.1. HSP library

Basically, our Hadoop Sequence Parser (HSP) library [70] provides two classes that extend the Hadoop
FileInputFormat class for single- and paired-end datasets: SingleEndSequenceInputFormat and PairedEndSe-
quenceInputFormat, respectively. On the one hand, the former provides specific implementations for FASTQ
(FastQInputFormat) and FASTA (FastAInputFormat) to support single-end datasets (i.e., one input file).
On the other hand, the latter supports paired-end datasets, where the two ends of paired reads are dis-
tributed in two separate files, one of them containing the forward reads (i.e., the “left” file) and the other
one containing the corresponding reverse reads (i.e., the “right” file). Regarding data types, HSP generates
<key,value> pairs of type <Long,Text>. In single-end mode, the key is a unique self-generated identifier
for each read and the value is the text-based content of the read (e.g., read name, bases and qualities for
FASTQ). In paired-end mode, the key provides the length (in bytes) of a single read in the pair and the
value is the merged content of both reads. If needed, HSP provides static methods that allow programmers
to obtain “left” and “right” reads separately as String objects (getLeftRead and getRightRead, respectively).

As illustrative examples of the simplicity of using HSP, Listings 1 and 2 show the Java code required to
create RDDs for single- and paired-end datasets, respectively, using the newAPIHadoopFile method provided
by Spark. This method allows programmers to define an RDD for a given input file that conforms with a
custom FileInputFormat implementation.
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Listing 1: Basic Java code to create an RDD from a single-end dataset in FASTQ format using HSP

1 SparkSess ion sparkSe s s i on = SparkSess ion . b u i l d e r ( ) . c o n f i g (new SparkConf ( ) ) . getOrCreate ( ) ;
2 JavaSparkContext j s c = JavaSparkContext . fromSparkContext ( sparkSe s s i on . sparkContext ( ) ) ;
3 Conf igurat ion c o n f i g = j s c . hadoopConf igurat ion ( ) ;
4

5 Class inputFormat = FastQInputFormat . class ;
6 JavaPairRDD<LongWritable , Text> readsRDD = j s c . newAPIHadoopFile ( ‘ / path/ to / f i l e ’ ,
7 inputFormat , LongWritable . c l a s s , Text . c l a s s , c o n f i g ) ;

Listing 2: Basic Java code to create an RDD from a paired-end dataset in FASTA format using HSP

1 SparkSess ion sparkSe s s i on = SparkSess ion . b u i l d e r ( ) . c o n f i g (new SparkConf ( ) ) . getOrCreate ( ) ;
2 JavaSparkContext j s c = JavaSparkContext . fromSparkContext ( sparkSe s s i on . sparkContext ( ) ) ;
3 Conf igurat ion c o n f i g = j s c . hadoopConf igurat ion ( ) ;
4

5 // Set l e f t and r i g h t input paths f o r HSP
6 Class inputFormat = FastAInputFormat . class ;
7 PairedEndSequenceInputFormat . se tLe f t InputPath ( con f i g , ‘/ path/ to / f i l e 1 ’ , inputFormat ) ;
8 PairedEndSequenceInputFormat . setRightInputPath ( con f i g , ‘/ path/ to / f i l e 2 ’ , inputFormat ) ;
9

10 JavaPairRDD<LongWritable , Text> readsRDD = j s c . newAPIHadoopFile ( ‘ path/ to / f i l e 1 ’ ,
11 PairedEndSequenceInputFormat . c l a s s , LongWritable . c l a s s , Text . c l a s s , c o n f i g ) ;

4.2.2. RDD partitioning

Once an RDD is created, transformations and actions can be performed in parallel over it. It is important
to remark that an RDD is a partitioned collection of elements distributed across the cluster, and such number
of RDD partitions can affect performance significantly as Spark can only run a single concurrent task for
each partition up to nc tasks, nc being the total number of cores in the cluster. By default, Spark creates
one RDD partition per HDFS data block in the file, but partitioning is also configurable. However, there
is no straight rule to determine the optimum number of RDD partitions. To ensure a minimum level of
parallelism, this value must be equal to (or greater than) the total number of tasks that can be executed
by all Executors (i.e., equal to nc). To increase the level of parallelism, it is generally beneficial to create
multiple partitions per core so that the workload gets distributed more evenly among Executors, but the
optimum value still depends to a great extent on each specific workload. In the case of SMusket, users can
easily specify the desired number of RDD partitions via a command-line option, and the impact of varying
such value on performance will be assessed in detail in Section 5.1.

4.3. Spark algorithm

This section presents the algorithm performed by SMusket to implement on top of Spark the workflow
described in Section 4.1. Figure 5 shows a high-level overview of the algorithm for single-end correction. As
can be observed, it can be divided into three main stages: (1) k-spectrum construction, (2) k-mers broadcast,
and (3) error correction. Stages 1 and 3 correspond directly with the Spark implementation of the two phases
of the workflow shown in Figure 3. Stage 2 arises as a requirement to perform the error correction in parallel
on a distributed-memory system, as will be explained later. The three stages of the algorithm and the
operations they perform are detailed in Sections 4.3.1, 4.3.2 and 4.3.3, respectively. Finally, although the
algorithm shown in Figure 5 is intended for correcting single-end datasets, paired-end correction requires
minor changes that are explained separately in Section 4.3.4.
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Figure 5: Overview of the parallel algorithm performed by SMusket on top of Spark for single-end correction

4.3.1. k-spectrum construction

First of all, an RDD must be created from the input sequence file stored in HDFS. To do so, the
newAPIHadoopFile method from Spark and the input formats provided by the HSP library are used as
described in Section 4.2.1. This step returns a <key,value> RDD of type <Long,Text> (named readsHSP

in Figure 5). In our scenario, the read identifier generated by HSP as key is not needed. So, a values
transformation is then applied on the previously generated RDD, which returns a new RDD with only the
values of each pair. As mentioned before, HSP provides as value the whole content of the read as a Text
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Figure 6: k-mer counting and filtering out unique k-mers on an RDD with five reads (k = 4)

object, which is a Hadoop custom class similar to String in Java. To obtain separately the necessary data
for each read (e.g., the bases to be corrected), the text contained in the values is parsed accordingly by
applying a map transformation that converts each RDD element (i.e., each Text object) into an object of
our custom Sequence class with the appropriate attributes. The map transformation returns a new RDD
formed by passing each element of the source RDD (readsHSP) to a user-defined function that performs the
conversion between both objects. As a result, a new RDD of Sequence objects is returned (named reads in
the figure).

Once the reads RDD has been created from the input file, all the k-mers for each read are generated by
applying a flatMapToPair transformation. This operation is a special version of map where each element
in the source RDD can be mapped to 0 or more <key,value> pairs in the target RDD, whereas in a map
operation the correspondence is always one-to-one. Concretely, the function executed by flatMapToPair
generates all the k-mers for each read: L - k + 1 k-mers in a read of length L (i.e., L bases or nucleotides).
This function outputs each k-mer as key using our custom Kmer object together with a multiplicity of
one as value. Hence, flatMapToPair returns a <key,value> RDD of type <Kmer,Long>. To perform k-
mer counting, a reduceByKey transformation is then applied on this RDD so that the values for each key
are aggregated based on a given user-defined function. In this case, our reduce function simply sums all
the values (i.e., multiplicities) together for each key (i.e., k-mer). Next, unique k-mers are filtered out by
applying a filter transformation that returns a new RDD formed by selecting only those elements of the
source RDD on which a user-defined function returns true. This function simply selects those k-mers whose
multiplicity is greater than one. After the filtering step, the resulting RDD is also of type <Kmer,Long>
(kmers in the figure), containing all non-unique k-mers and their corresponding accumulated multiplicities.
For the sake of clarity, Figure 6 illustrates the procedure of k-mer counting and filtering with a simple
example that uses a k-mer length of four (k = 4) on an input RDD that contains five reads of length seven.
Four k-mers (7 − 4 + 1) are thus generated for each read (20 in total).

After k-mer counting, the k-mer multiplicity histogram can be easily generated from the kmers RDD
using the histogram action provided by Spark. However, this action can only be executed on RDDs of
type Double. So, the keys from kmers RDD are first discarded using a values transformation and then the
multiplicities are converted from Long to Double by chaining a mapToDouble transformation. Next, the
histogram action can be performed. It is worth noting that all RDD operations prior to histogram were
transformations that are lazily evaluated (i.e., no computation has actually been done yet). As mentioned
in Section 2.3, actions are Spark operations that trigger computations over RDDs, and the values returned
by these operations are stored in the Driver or in external storage (e.g., HDFS). In the case of the histogram
action, an array representing the histogram computed on the Executors is returned to the Driver.

Following the example presented in Figure 6, Figure 7 shows how the histogram is generated using the
kmers RDD, from which the k-mer multiplicity threshold M can be determined. Note that M is computed
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Figure 7: k-mer multiplicity histogram generated from non-unique k-mers

on the Driver (i.e., in a non-parallel way), but the time needed to do so is totally negligible. Once M is
computed, its value must also be made available to the Executors as it is needed during the error correction
stage to separate solid k-mers from weak ones. Rather than sending a copy of M together with each task
that needs it from Driver to Executors, which increases network overhead, its value is sent only once using
a broadcast variable. Broadcast variables in Spark are a handy mechanism for sharing read-only variables
among Executors. These variables are sent across the network using efficient broadcast algorithms to reduce
communication cost. Hence, the k-spectrum construction stage finishes by defining a broadcast variable for
M to make it available to Executors for subsequent stages.

4.3.2. k-mers broadcast

During the error correction stage, the reads RDD is processed to test the solidity of all the k-mers for
each read by comparing their multiplicity with threshold M . Solid k-mers (those with multiplicity >= M)
are deemed to be error free, whereas weak or untrusted k-mers are considered for error correction. This
means that all Executors running in the cluster must be able to check the multiplicity of any possible k-mer
that can be generated from any input read. However, the multiplicities of non-unique k-mers are stored
in an RDD (kmers) so that their values are actually distributed across Executors (i.e., each Executor only
has part of the data). Note that this issue does not arise in a parallel implementation for shared-memory
systems such as Musket, where non-unique k-mers are stored in local hash tables shared by all threads.

In a similar way as before for threshold M , this stage is in charge of sending non-unique k-mers and
their multiplicities to the Executors by using a broadcast variable. However, this mechanism requires to
have all the data to be sent available on the Driver. Therefore, the kmers RDD must be first sent from the
Executors to the Driver by applying a collectAsMap operation. This operation is an RDD action that brings
all the RDD elements as a Java Map collection to the Driver side. Once this action has been completed,
the broadcast mechanism can be used to send the Map collection to all Executors so that they can test the
solidity of any k-mer by simply querying the Map using the get method.

In the previous operations, it is crucial to minimize the amount of data to be sent across the network from
the Executors to the Driver during the collectAsMap action and the other way around during the broadcast.
After analyzing in detail the error correction routine in Musket, we have checked that multiplicity is only
actually used for solid k-mers. In order to reduce network overhead, a filter transformation is first applied to
the kmers RDD to discard weak k-mers (those with multiplicity < M) and thus select solid k-mers. When
testing the solidity of a k-mer during error correction, if the Map does not contain such k-mer it means that
is considered weak; otherwise, it is solid and its corresponding multiplicity can be obtained from the Map.
It is important to note that the filtering operation not only reduces network overhead but also minimizes
the amount of memory needed to store the Map.

4.3.3. Error correction

Basically, this stage processes each input read to correct potential sequencing errors relying on the
data already available on each Executor as a result of the previous stages: the threshold M and the Map
collection that contains solid k-mers and their multiplicities. To do so, the RDD that contains the input
reads (reads in Figure 5) is operated by applying a map transformation that processes each element through
a function that implements the three error correction techniques from Musket, as mentioned in Section 4.1
(see Figure 3). Another option would be to apply three chained map transformations on the reads RDD,
each one performing one technique. However, this can lead to lower performance as it increases the overhead
associated with creating and scheduling a considerably greater number of tasks.
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Figure 8: Storing an RDD with five reads in HDFS after performing the error correction routine

Finally, the corrected RDD of Sequence objects that is returned from the previous map transformation
must be stored back in HDFS. Spark provides a specific operation for this purpose: saveAsTextFile. This
RDD action writes all the RDD elements as a text file in a given path in HDFS (see Figure 8 for an example),
or in any other Hadoop-supported file system. More specifically, each RDD element is first converted to a
String object through the toString method before writing it to the file system. Our custom Sequence class
overrides this method accordingly to provide a specific implementation that conforms with the corresponding
sequence format of the reads contained in the RDD (FASTQ/FASTA).

4.3.4. Paired-end correction

The algorithm previously described allows performing single-end correction. For paired-end datasets,
two changes are required as depicted in Figure 9. The first one is related with the creation of the RDD that
contains the input reads. It is necessary to take into account that the two ends of paired reads are distributed
in two separate files, with one of them containing the forward reads (i.e., the “left” file) and the other one
containing the corresponding reverse reads (i.e., the “right” file). As explained in Section 4.2.1, HSP supports
paired-end datasets straightforwardly by using the PairedEndSequenceInputFormat class (see Listing 2).
The <key,value> RDD returned from the newAPIHadoopFile method is also of type <Long,Text> as in
the case of single-end correction. However, the Text object now contains both ends of a paired read. To
convert from this single Text object containing both reads into two separate Sequence objects, a mapToPair
transformation is applied to the readsHSP RDD. This transformation is similar to map as it also creates
a one-to-one mapping between elements of the source RDD and the target RDD, but it allows to return
a <key,value> RDD. In this case, the function executed by mapToPair is in charge of parsing the Text
object accordingly to create two Sequence objects representing both ends of a paired read. Hence, the RDD
returned from mapToPair is of type <Sequence,Sequence> (reads in the figure). During k-mer counting,
a flatMapToPair transformation is also applied to the reads RDD as in single-end correction, but now the
function executed by this transformation must generate all the k-mers for each read of the pair.

The second change is needed during the error correction stage. As reads is now a <key,value> RDD,
both ends contained in each element must be processed to correct potential errors. This can be done in
a similar way as before by applying a map transformation to the reads RDD in order to execute the
correction routine on each RDD element, but now separately in each Sequence object of the pair. To do so,
it is necessary to apply a previous keys or values transformation to the reads RDD to discard forward or
reverse reads, respectively. In this way, both ends are corrected and returned in separate RDDs in order to
be written back to HDFS.
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Figure 9: Overview of the parallel algorithm performed by SMusket on top of Spark for paired-end correction (trimmed)

5. Performance evaluation

As mentioned in Section 4.1, the quality of error correction provided by SMusket remains the same as that
of Musket, whose accuracy has already been thoroughly assessed in multiple previous studies [14, 24, 29, 60].
Therefore, the experimental evaluation of SMusket has focused on performance in terms of execution time,
as our main goal is to provide a scalable parallel tool. In order to evaluate performance and scalability, a
16-node commodity cluster running Spark version 2.3.1 has been used as testbed. Each cluster node consists
of two Intel Xeon E5-2660 octa-core processors at 2.2 GHz (i.e., 16 cores per node), 64 GiB of memory,
and one 800 GiB local disk intended for both HDFS and intermediate data storage during the executions.
Nodes are interconnected through Gigabit Ethernet (1 Gbps) and InfiniBand FDR (56 Gbps). The system
runs Linux CentOS 6.10 with kernel 2.6.32-754 and the JVM version is Oracle 1.8.0 201. Regarding HDFS
settings, the block size and the replication factor were set to 128 MiB and 3, respectively. To deploy Spark
on the cluster, the Big Data Evaluator (BDEv) tool [71, 72] has been used running one Executor per node
and 16 cores per Executor (256 cores in total), since our preliminary experiments proved it to be the best
configuration for this system. Finally, the Driver runs on the master node of the cluster.

As shown in Table 1, four publicly available datasets with different characteristics have been used in the
experiments, named after their accession numbers in the European Nucleotide Archive [73, 74] and tagged
accordingly for the sake of clarity (see second column). The number of reads (fifth column) refers to the
number of input DNA sequences to be corrected, whereas the read length (last column) is expressed in terms
of the number of base pairs (bp). All the results shown in this section correspond to the median value for
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Table 1: Public datasets used in the experimental evaluation of SMusket

Dataset Tag Instrument model Organism #Reads Read length

SRR507810 SRR50 Illumina HiSeq 2000 Mus musculus 96x106 101 bp

SRR534301 SRR53 Illumina HiSeq 2000 Homo sapiens 108x106 101 bp

SRR567455 SRR56 Illumina HiSeq 2000 Homo sapiens 251x106 76 bp

SRR317060 SRR31 Illumina Genome Analyzer II Homo sapiens 110x106 76 bp

a set of 10 executions for each experiment using the default k-mer length (k = 21), although the observed
variance was not significant.

Regarding the experiments, Section 5.1 first analyzes the impact of varying the number of RDD partitions
on the performance of SMusket when using 4, 8, 12 and 16 nodes. This first set of experiments considers
both single-end and paired-end correction so that one and two input files, respectively, are processed for
each dataset. Next, Section 5.2 presents an in-depth breakdown of the runtimes obtained by SMusket for
paired-end correction, which is the most computationally intensive scenario under evaluation. Section 5.3
compares the performance of SMusket with its multithreaded counterpart in order to measure the speedups
obtained when distributing the workload across the cluster. Finally, a performance comparison with other
state-of-the-art parallel tools is provided in Section 5.4.

5.1. Impact of RDD partitioning

Figure 10 presents the runtimes of SMusket for single-end (left graphs) and paired-end correction (right
graphs) when varying the number of partitions of the input RDD, which contains the reads to be corrected.
The number of partitions (NP ) varies from 8 to 48, expressed in terms of partitions created per Executor
core. Therefore, each Executor processes NP × 16 partitions and the total number of partitions can be
calculated as NP × 16 × #nodes when using one Executor per node as in our testbed.

The most important conclusion that can be drawn from these results is that increasing the number of
partitions generally improves performance for all datasets, especially in the range from 8 to 24 partitions per
core. The main reason is that some partitions are more computationally intensive to correct than others,
which coincide with those regions of the input file that contain reads with more errors. This in turn causes
slight workload imbalance among Executors. The increase in the total number of partitions reduces the
size of each one so that the workload gets distributed more evenly among Executors. As can be observed,
the performance improvement when creating more partitions decreases as the number of nodes increases
since more Executors are available for running tasks, which benefits a more balanced workload. In fact, the
performance differences are generally small from 24 partitions onwards, especially when using more than
8 nodes. The optimum value is generally in the range from 32 to 48, but it depends on each dataset and
number of nodes. We have also checked that performance does not improve from 48 partitions onwards, and
it may even worsen slightly due to the overhead of creating and scheduling more tasks. These results also
confirm that our tool provides excellent scalability, both for single- and paired-end correction, as performance
improves proportionally when using more hardware resources. From here on, all the experimental results
shown below have been obtained with the best partitioning configuration for each dataset.

5.2. Runtime breakdown

Figure 11 shows the runtime breakdown of SMusket for paired-end correction when varying the number
of nodes from 4 to 16. These graphs allow assessing separately the three stages of the algorithm described
in Section 4.3. Roughly speaking, stages 1 and 3 take similar times, especially when using 8 or more
nodes. The exception is the SRR50 dataset (see Figure 11(a)), in which the error correction stage is the
most computationally demanding: ranging from 60% and 77% of the total runtime. This behaviour can be
explained by the number of non-unique k-mers that are generated from this dataset, which is an order of
magnitude higher than in the others. Consequently, many more weak k-mers need to be processed during
stage 3 for correcting potential errors on them. This makes SRR50 the most computationally intensive
dataset even when it is the smallest one in terms of number of reads (see Table 1).
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Figure 10: Runtimes of SMusket for single- (left) and paired-end (right) correction when varying the number of RDD partitions
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Figure 11: Runtime breakdown of SMusket for paired-end correction

These results validate our approach for implementing stage 2 based on the broadcast mechanism provided
by Spark (see Section 4.3.2), which makes all solid k-mers and their multiplicities available to all Executors.
Note that this is a network-intensive stage that consists of first collecting all solid k-mers at the Driver side
after filtering out the weak ones, which introduces a global synchronization point in the algorithm. Next,
solid k-mers are broadcast to all Executors through the network. As can be seen in Figure 11, its impact on
the total runtime can be considered negligible regardless of the dataset and number of nodes. The biggest
impact occurs for the SRR53 dataset (see Figure 11(b)). Nevertheless, this stage only represents up to 5.7%
of the total runtime when using 16 nodes (about 35 seconds). The SRR53 dataset contains an order of
magnitude more solid k-mers than the others and thus much more data must be sent across the network.

5.3. Performance comparison with Musket

Table 2 shows the runtimes of SMusket for paired-end correction when using from 1 to 16 nodes, and
compares them with those of Musket on a single node using all the available cores (16). This scenario allows
measuring the maximum performance benefits of distributing the workload across the cluster. When using
the same hardware resources (1 node), SMusket obtains very competitive results taking into account the
performance differences between Java and C++, even outperforming Musket for the most computationally
intensive dataset (SRR50). From one node onwards, SMusket provides significant speedups over its multi-
threaded counterpart: from a minimum of 1.5x on 2 nodes to a maximum of 29.8x on 16. The maximum
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Table 2: Runtimes (in seconds) of SMusket and corresponding speedups over Musket for paired-end correction

SRR50 SRR53 SRR56 SRR31

Musket SMusket Musket SMusket Musket SMusket Musket SMusket

Time Nodes Time Speedup Time Nodes Time Speedup Time Nodes Time Speedup Time Nodes Time Speedup

41506

1 37185 1.1x

10427

1 14534 0.7x

12479

1 13298 0.9x

9626

1 12399 0.8x

2 16493 2.5x 2 7165 1.5x 2 6112 2.0x 2 5322 1.8x

4 7127 5.8x 4 3186 3.3x 4 3080 4.1x 4 2487 3.9x

8 2850 14.6x 8 1178 8.9x 8 1310 9.5x 8 955 10.1x

12 1835 22.6x 12 812 12.8x 12 810 15.4x 12 656 14.7x

16 1395 29.8x 16 618 16.9x 16 614 20.3x 16 469 20.5x

speedups for each dataset and cluster size are always obtained for SRR50, whereas the minimum ones corre-
spond with the most network-intensive dataset (SRR53). The average speedups are 1.9x, 4.3x, 10.8x, 16.4x
and 21.9x when using 2, 4, 8, 12 and 16 nodes, respectively, which allows significantly reducing runtimes
from several hours to a few minutes.

5.4. Performance comparison with other tools

In this section, the performance of SMusket is compared with several publicly available state-of-the-art
correctors based on the k-spectrum approach (see Section 3): Lighter (v1.1.2) [24], BLESS2 (v1.02) [26]
and ZEC (v0.99) [31]. Lighter is a fast multithreaded corrector for shared-memory systems, whose main
characteristic is that it uses sampling rather than counting to obtain a set of k-mers that are likely from the
genome. BLESS2 and ZEC are MPI-based tools that provide support for distributed-memory systems with
no specific hardware requirements as SMusket. Both tools perform k-mer counting by relying on the KMC
library [75]. For all tools, we have used the default settings and disabled read trimming, and the k-mer
length has been set to 21 (k = 21) as in SMusket. Results are shown using one node for Lighter and from
1 to 16 nodes for the distributed-memory tools (BLESS2, ZEC and SMusket). We have also included the
results of Musket on one node to be used as reference. It is important to remark when analyzing these results
that each tool implements its specific error correction routine, so they can differ greatly in the amount of
computation done to correct each read.

Figure 12 reports the measured runtimes for paired-end correction. Note that the results of ZEC on
one node for the SRR50 and SRR56 datasets could not be obtained due to runtime failures. On a single
node, Lighter clearly outperforms Musket as it avoids counting k-mers and implements a lightweight error
correction routine, although its accuracy has been proved to be lower [60]. Lighter also outperforms SMusket
using up to 4 nodes except for the SRR56 dataset (see Figure 12(c)), where it only outperforms the SMusket
single-node configuration. This dataset is the largest one in terms of the total number of input reads
(see Table 1), showing the ability of our tool to handle large datasets. Regarding distributed-memory
implementations, BLESS2 is generally the fastest tool up to 4 nodes, obtaining very similar performance
to Lighter on a single node. However, the scalability of BLESS2 is rather poor since this tool only takes
advantage of up to 4 nodes, showing no scalability from that point on, mainly limited by I/O performance
when handling large datasets. ZEC is the slowest tool, although it has moderate scalability: up to 8
times faster for the SRR53 and SRR31 datasets when increasing the number of nodes from 1 to 16 (see
Figures 12(b) and 12(d)). SMusket is clearly the fastest tool from 8 nodes onwards except for SRR50 (from
12 nodes in this case), showing an excellent scalability trend. More specifically, SMusket is on average
around 24.6 times faster on 16 nodes than on a single node.

As a summary, Table 3 provides the runtimes of SMusket for single- and paired-end correction using 16
nodes and the corresponding speedups obtained over all the evaluated tools. As can be observed, SMusket
achieves significant speedups of up to 6.2x, 15.3x, 10x and 29.8x over BLESS2, ZEC, Lighter and Musket,
respectively. These results validate our Spark-based algorithm as they prove that SMusket is on average
3.4 and 10.1 times faster than previous MPI-based tools (BLESS2 and ZEC, respectively). This in turn
reinforces the suitability of Big Data technologies such as Spark to tackle the expected growth in the size of
genomic datasets.
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Figure 12: Runtimes of several state-of-the-art parallel tools for paired-end correction (logarithmic scale)

Table 3: Runtimes (in seconds) of all the tools and corresponding speedups obtained by SMusket

Dataset

16 nodes 1 node

SMusket
BLESS2 ZEC Lighter Musket

Runtime Speedup Runtime Speedup Runtime Speedup Runtime Speedup

Single-end

SRR50 710 1148 1.6x 7020 9.9x 1424 2.0x 14875 21.0x

SRR53 321 893 2.8x 1740 5.4x 846 2.6x 3690 11.5x

SRR56 270 1667 6.2x 4120 15.3x 1987 7.4x 4522 16.7x

SRR31 245 827 3.4x 3240 13.2x 854 3.5x 4410 18.0x

Paired-end

SRR50 1395 2234 1.6x 9480 6.8x 3810 2.7x 41506 29.8x

SRR53 618 1725 2.8x 3360 5.4x 2548 4.1x 10427 16.9x

SRR56 614 3300 5.4x 8520 13.9x 6120 10.0x 12479 20.3x

SRR31 469 1673 3.6x 5100 10.9x 2195 4.7x 9626 20.5x

Average speedup 3.4x 10.1x 4.6x 19.3x
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6. Conclusions

The massive amount of data produced by modern NGS technologies reinforces the need for scalable tools
with the ability to perform parallel computations by taking advantage of distributed-memory systems. In
this paper we have presented SMusket, a Big Data tool that fully exploits the features of Apache Spark to
boost the performance of Musket, a popular and accurate DNA read error corrector. Our tool extends the
correction capabilities of Musket to distributed-memory systems obtaining high scalability and providing the
same accuracy as its counterpart. Moreover, SMusket is especially intended for clusters based on commodity
processing nodes, as it does not require any specific hardware device or feature.

The performance of our tool has been extensively evaluated on a 16-node cluster using four publicly
available datasets. The experimental results have shown that SMusket provides significant performance
improvements that range from 11.5 to 29.8 times faster than its multithreaded counterpart. Furthermore,
a comparison between SMusket and previous MPI-based correctors was also carried out, showing that our
tool is the fastest one achieving speedups of up to 6.2x and 15.3x over BLESS2 and ZEC, respectively, when
executed on the same hardware. SMusket is distributed as free open-source software released under the
GNU GPLv3 license and is publicly available at https://github.com/rreye/smusket.

As future work, we aim to evaluate the performance of our tool on public cloud platforms such as Amazon
EMR and Azure HDInsight. Furthermore, we intend to add support for other correction routines based on
other k-spectrum techniques, turning SMusket into a generic error correction tool.
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[36] L. Salmela, J. Schröder, Correcting errors in short reads by multiple alignments, Bioinformatics 27 (11) (2011) 1455–1461.
[37] W.-C. Kao, A. H. Chan, Y. S. Song, ECHO: a reference-free short-read error correction algorithm, Genome Res 21 (7)

(2011) 1181–1192.
[38] C.-C. Chen, Y.-J. Chang, W.-C. Chung, D. T. Lee, J.-M. Ho, CloudRS: an error correction algorithm of high-throughput

sequencing data based on scalable framework, in: Proceedings of the IEEE International Conference on Big Data (IEEE
BigData 2013), Santa Clara, CA, USA, 2013, pp. 717–722.

[39] W.-C. Chung, J.-M. Ho, C.-Y. Lin, D. T. Lee, CloudEC: a MapReduce-based algorithm for correcting errors in next-
generation sequencing Big Data, in: Proceedings of the IEEE International Conference on Big Data (IEEE BigData
2017), Boston, MA, USA, 2017, pp. 2836–2842.

[40] L. Zhao, Q. Chen, W. Li, P. Jiang, L. Wong, J. Li, MapReduce for accurate error correction of next-generation sequencing
data, Bioinformatics 33 (23) (2017) 3844–3851.

[41] S. Ghemawat, H. Gobioff, S.-T. Leung, The Google file system, SIGOPS Oper Syst Rev 37 (5) (2003) 29–43.
[42] The Apache Software Foundation, Apache Hadoop, http://hadoop.apache.org, [cited 28 August 2019].
[43] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop distributed file system, in: Proceedings of the IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST’2010), Incline Village, NV, USA, 2010, pp. 1–10.
[44] V. K. Vavilapalli, et al., Apache Hadoop YARN: Yet Another Resource Negotiator, in: Proceedings of the 4th Annual

Symposium on Cloud Computing (SOCC’13), Santa Clara, CA, USA, 2013, pp. 5:1–5:16.
[45] The Apache Software Foundation, Apache Spark: lightning-fast cluster computing, https://spark.apache.org, [cited 28

August 2019].
[46] B. Hindman, et al., Mesos: a platform for fine-grained resource sharing in the data center, in: Proceedings of the 8th

USENIX Symposium on Networked Systems Design and Implementation (NSDI’11), Boston, MA, USA, 2011, pp. 295–308.
[47] E. A. Brewer, Kubernetes and the path to cloud native, in: Proceedings of the Sixth ACM Symposium on Cloud Computing

(SoCC’15), Kohala Coast, HI, USA, 2015, p. 167.
[48] V. Chang, Towards data analysis for weather cloud computing, Knowl Based Syst 127 (2017) 29–45.
[49] Y. Wang, L. Kung, T. A. Byrd, Big Data analytics: understanding its capabilities and potential benefits for healthcare

organizations, Technol Forecast Soc Change 126 (2018) 3–13.
[50] V. Chang, Computational intelligence for medical imaging simulations, J Med Syst 42 (1) (2018) 10.
[51] S. Peng, S. Yu, P. Mueller, Social networking Big Data: opportunities, solutions, and challenges, Future Gener Comput

Syst 86 (2018) 1456–1458.
[52] M. H. ur Rehman, I. Yaqoob, K. Salah, M. Imran, P. P. Jayaraman, C. Perera, The role of Big Data analytics in industrial

Internet of Things, Future Gener Comput Syst 99 (2019) 247–259.
[53] S. Min, B. Lee, S. Yoon, Deep learning in bioinformatics, Brief Bioinform 18 (5) (2016) 851–869.
[54] V. Chang, Data analytics and visualization for inspecting cancers and genes, Multimed Tools Appl 77 (14) (2018) 17693–

21

http://hadoop.apache.org
https://spark.apache.org


17707.
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[56] J. M. Abúın, J. C. Pichel, T. F. Pena, J. Amigo, SparkBWA: speeding up the alignment of high-throughput DNA

sequencing data, PLoS ONE 11 (5) (2016) e0155461.
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[70] R. R. Expósito, J. González-Domı́nguez, J. Touriño, Hadoop Sequence Parser (HSP) library for FASTQ/FASTA datasets,
https://github.com/rreye/hsp, [cited 28 August 2019].

[71] J. Veiga, J. Enes, R. R. Expósito, J. Touriño, BDEv 3.0: energy efficiency and microarchitectural characterization of Big
Data processing frameworks, Future Gener Comput Syst 86 (2018) 565–581.

[72] J. Veiga, R. R. Expósito, G. L. Taboada, J. Touriño, BDEv: Big Data Evaluator tool, http://bdev.des.udc.es, [cited 28
August 2019].

[73] R. Leinonen, et al., The European Nucleotide Archive, Nucleic Acids Res 39 (suppl 1) (2010) D28–D31.
[74] The European Bioinformatics Institute, The European Nucleotide Archive (ENA), https://www.ebi.ac.uk/ena, [cited 28

August 2019].
[75] S. Deorowicz, M. Kokot, S. Grabowski, A. Debudaj-Grabysz, KMC 2: fast and resource-frugal k-mer counting, Bioinfor-

matics 31 (10) (2015) 1569–1576.

22

http://www.mpi-forum.org
https://github.com/rreye/hsp
http://bdev.des.udc.es
https://www.ebi.ac.uk/ena

