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Synonyms

Big Data performance characterization

Definition

Evaluating the performance of Big Data systems
is the usual way of getting information about the
expected execution time of analytics applications.
These applications are generally used to extract
meaningful information from very large input
datasets. There exist many high-level frameworks
for Big Data analysis, each one oriented to differ-
ent fields like machine learning and data mining,
like Mahout (Apache Mahout 2009), or graph
analytics like Giraph (Avery 2011). These high-
level frameworks allow to define complex data
processing pipelines that are later decomposed
into more fine-grained operations in order to be
executed by Big Data processing frameworks like
Hadoop (Dean and Ghemawat 2008), Spark (Za-
haria et al. 2016), and Flink (Apache Flink 2014).

Therefore, the performance evaluation of these
frameworks is key to determine their suitability
for scalable Big Data analysis.

Big Data processing frameworks can be bro-
ken down in several layers, which typically in-
clude a data processing engine (e.g., Hadoop
MapReduce), a resource manager (e.g., YARN),
and a distributed storage system (e.g., HDFS). In
order to provide scalability, these frameworks are
deployed over the nodes of a cluster, which has
a certain set of characteristics (e.g., number of
nodes, CPU model, disk, and network technol-
ogy). Hence, the performance of Big Data sys-
tems is affected by multiple factors related both to
the software components of the frameworks and
the available resources in the cluster.

Most performance evaluation studies are ori-
ented to compare several Big Data frameworks
and/or different configuration alternatives. In or-
der to do so, a set of experiments is carried out,
which involves generating some input datasets,
process them using several representative Big
Data workloads and extract the corresponding
performance metrics. The obtained results are
then analyzed to find performance bottlenecks or
potential optimizations.

Overview

The performance evaluation of Big Data systems
typically takes into account at least one of the
following metrics:
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Execution Time
Execution time is generally regarded as the main
performance metric. It determines the wall-clock
time that users have to wait for the result of their
applications when executed with a particular Big
Data framework.

Scalability
Scalability is the ability of a Big Data system to
increase its performance when adding more re-
sources. Two different kinds of scalability can be
considered, vertical scalability (scaling up) and
horizontal scalability (scaling out). On the one
hand, vertical scalability involves obtaining faster
nodes with more powerful processors and more
memory. On the other hand, horizontal scalability
involves adding more nodes to the system and
operates in a distributed environment.

Resource Utilization
The leveraging of system resources (e.g., CPU,
network, disk) determines the adaptability of the
frameworks to a particular system. Performance
bottlenecks can be due to underutilization or
overloading of these resources.

Energy Efficiency
Performance is closely related to energy effi-
ciency, as the energy consumed when executing
a workload is determined by the power speci-
fications of the system and the execution time.
Modifying the underlying system by increasing
the cluster size or the computational capabilities
of the nodes can reduce execution time, but it may
increase the power consumption of the workload.
Therefore, determining whether an optimization
can improve energy efficiency requires a thor-
ough analysis.

Microarchitectural Behavior
Accessing hardware performance counters that
are present in modern processors, like the number
of instructions executed or cache misses, can pro-
vide meaningful information to characterize the
interaction between frameworks and hardware.
Moreover, these metrics can be utilized to com-
pare different alternatives in a more fine-grained
fashion than just considering overall metrics like

execution time. The values of the counters can be
accessed in several ways, using APIs like PAPI
(Browne et al. 2000) or monitoring tools like perf
and Oprofile.

Key Research Findings

Many works have assessed and optimized the
performance of Big Data systems taking into
account different factors. A summary of the main
results obtained is provided next.

Data Processing Engine
A crucial factor for the performance of Big Data
frameworks is the underlying data processing
engine, which defines the kind of operations
that the user can perform to process the input
dataset. MapReduce has been one of the most
popular batch engines so far, and Hadoop is
its de facto standard implementation. However,
Hadoop presents some performance overheads,
like the writing of intermediate results to disk,
which has led to the development of different
alternatives that optimize its performance. They
whether modify some of its components, like Na-
tiveTask (Yang et al. 2013), or redesign the entire
underlying architecture, like Flame-MR (Veiga
et al. 2016c). Although these works significantly
improve the performance of Hadoop, they are still
limited by the nature of the MapReduce model.

More advanced in-memory frameworks like
Spark and Flink are designed to provide a
wider range of data operators than MapReduce,
as well as support for other scenarios (e.g.,
real-time/streaming processing). Although they
support map and reduce functions, existing
MapReduce applications must be adapted to
their new programming model. The increased
flexibility of Spark and Flink along with the
caching of intermediate results in memory can
reduce Hadoop execution times by 77% and 70%
on average, respectively (Veiga et al. 2016a).

Other works have explored the possibilities
offered by paradigms traditionally oriented to
high-performance computing (HPC). For exam-
ple, parallel programming paradigms like the
message passing interface (MPI) can increase
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significantly the performance of Big Data work-
loads (Liang et al. 2014; González et al. 2017).
However, MPI offers a low-level API that pro-
vides poor programming productivity compared
to MapReduce, so its use is not feasible for real
Big Data scenarios.

File System
Big Data frameworks typically use the Hadoop
Distributed File System (HDFS) to distribute
the storage of large datasets over the nodes
of a cluster, collocating storage and compute
services on the same nodes. However, its use is
not widespread in HPC systems, which separate
compute and storage services by using parallel
file systems like GPFS, OrangeFS, or Lustre.
This situation has caused the appearance of
several works that evaluate the performance
of both storage approaches, concluding that
GPFS behaves better at low concurrency, while
HDFS is more suited to high concurrency
(Fadika et al. 2012). Some other works have
shown that parallel file systems can also provide
performance improvements, like MARIANE
(Fadika et al. 2014), which uses a custom
MapReduce implementation onto GPFS. Another
approach presented by Xuan et al. (2017) uses a
two-level storage system by integrating the in-
memory file system Tachyon with OrangeFS to
obtain higher performance than just using HDFS.

Disk Technology
Traditional hard disk drives (HDDs) are pro-
gressively being replaced by faster technologies
like solid-state drives (SSDs), which obtain sig-
nificantly better performance but at higher cost
per byte. Using SSDs has been reported to im-
prove the performance of Big Data frameworks.
Hadoop can store HDFS data and intermediate
results on SSDs to eliminate disk bottlenecks
when executing I/O-bound workloads. However,
SSD disks can increase dramatically the total cost
of the system components (Moon et al. 2014). Re-
garding Spark, its performance can be improved
by 23% when using SSDs to store intermediate
results compared to the memory-only approach
(Choi et al. 2015).

SSDs can also be leveraged actively, perform-
ing some simple operations over the stored data.
In Lee et al. (2016), a new technique called
external sorting utilizes SSDs to perform sort op-
erations during the MapReduce phase, reducing
the execution time of Hadoop by up to 36%.

Network Interconnects
Early works claimed that the use of high-
performance interconnects like InfiniBand would
not have a great impact on the execution time
of MapReduce workloads, unless the shuffle
algorithm and communication protocol were
modified (Fadika et al. 2012). However, more
modern evaluations have shown that up-to-
date Hadoop versions can leverage this kind
of networks by using IP over InfiniBand (IPoIB),
obtaining significant performance improvements
(Veiga et al. 2016b).

Other works modify the shuffle components to
take advantage of remote direct memory access
(RDMA) communications. That is the case of the
network-levitated merge algorithm (Wang et al.
2011) and RDMA-Hadoop (Wasi-Ur-Rahman
et al. 2013). The latter claims to reduce the
execution time of Hadoop and the network-
levitated merge algorithm by 32% and 21%,
respectively, for the TeraSort benchmark. The
use of RDMA has also been studied for Spark,
showing up to 46% performance improvement
for several workloads (Lu et al. 2016b).

Memory Management
As Big Data applications read and generate a
lot of data, managing the available memory re-
sources correctly is key to achieve good perfor-
mance and avoid memory overflows. Most Big
Data frameworks are written in some managed
language (e.g., Java, Scala) executed by the Java
virtual machine (JVM). In this context, objects
are tracked to release their memory once they
stop being referenced. This process is performed
by the garbage collector and can cause significant
performance overheads when processing large
datasets.

Modifying the original JVM memory man-
agement to adapt it to the characteristics of Big
Data systems can lead to significant performance
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improvement. That is shown by proposals like
Broom (Gog et al. 2015), which uses a region-
based algorithm to allocate data objects. Another
example, Yak (Nguyen et al. 2016), implements
a hybrid approach that utilizes generation-based
and region-based algorithms for control and data
objects, respectively. As these memory managers
are implemented in Java, they can be generically
applied to any JVM-based framework.

Other solutions are specific to a certain frame-
work, like Deca (Lu et al. 2016a), which modifies
the management of data containers in Spark to
estimate their lifetime, allocating memory re-
gions accordingly. This mechanism, combined
with other optimizations like the use of byte
arrays to store data objects, is able to achieve up
to 41:6� speedup in cases with data spilling.

Manycore Accelerators
The great majority of Big Data frameworks rely
only on CPUs to perform the computations. How-
ever, some works propose the use of manycore
accelerators, typically available in heterogeneous
systems, like GPUs, FPGAs, or Xeon Phi accel-
erators.

GPUs are a suitable option to accelerate Big
Data workloads due to their widespread use and
high degree of data parallelism. For example,
Mars (Fang et al. 2011) supports the processing
of MapReduce workloads using CPU, GPU,
or hybrid computations. The combination of
Hadoop with Mars can provide a maximum
speedup of 2.8. GPUs have also been employed
to improve the performance of Spark (Yuan et al.
2016) and Flink (Chen et al. 2017).

Another popular type of accelerator is the
Xeon Phi manycore processor that can execute
unmodified CPU code. However, the source code
of Big Data frameworks must be adapted in order
to fully leverage the computational power of this
accelerator, as presented by Lu et al. (2015).

Finally, FPGAs are hardware devices that can
be programmed to build custom accelerators.
Neshatpour et al. (2015) assess the benefits of
accelerating typical machine learning and data
mining applications by offloading some of their
kernels to FPGAs. They obtain a speedup of
2.72, although it must be taken into account that

the accelerated framework is highly application-
specific.

System Architecture
Some studies have evaluated the performance of
“big” Intel Xeon nodes compared to the use of
“small” nodes like ARM or Intel Atom. Loghin
et al. (2015) state that “big” nodes are more
efficient for CPU-intensive jobs, while “small”
ones perform better for I/O-intensive workloads.
Malik et al. (2015) conclude that “big” nodes are
more efficient as the computational size of the
problem increases.

Other evaluations focus on determining
whether horizontal scalability is more beneficial
than vertical scalability. The results are
highly dependent on the framework used
and the workload characterization. In general
terms, horizontal scalability provides better
performance for Hadoop (Li and Shen 2017),
while Spark presents better energy efficiency
when using vertical scalability (Yoo et al. 2016).

Examples of Application

A wide range of tools have been developed to
evaluate the performance of Big Data systems
and frameworks. Most of them are benchmark
suites that provide multiple kinds of workloads
to assess the performance of different use
cases. Although the great majority is oriented
to Hadoop, like HiBench (Huang et al. 2010)
or BigDataBench (Wang et al. 2014), some
new ones target in-memory frameworks, like
SparkBench (Li et al. 2017) for Spark.

Other evaluation tools not only provide a set
of benchmarks but also ease the execution of the
experiments. That is the case of MRBS (Sangroya
et al. 2012), which is able to automatically set
up a Hadoop cluster in a public cloud provider.
Once the cluster is running, it injects the dataset
and executes the workloads, obtaining execution
time, throughput, and cost metrics.

BDEv (formerly MREv, Veiga et al. 2015)
is another evaluation tool that supports several
flavors of Hadoop, Spark, and Flink. Once the
user configures a set of experimental parameters,
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it launches the frameworks, generates the input
datasets, and performs the experiments. It also
automatically records several metrics, including
execution time, resource utilization, energy effi-
ciency, and hardware performance counters.

Big Data Watchdog (BDWatchdog) (Enes
et al. 2017) is another tool that enables to record
resource utilization statistics for the individual
processes involved in the execution of the
frameworks (e.g., DataNode, Spark Executor).
Moreover, it can provide real-time profiling
information about the execution of the JVM
code.

Future Directions for Research

As explained in previous sections, performance is
affected by multiple factors. Although different
studies have addressed the performance evalua-
tion of Big Data analysis, end users rarely benefit
from the research findings provided by these
studies. There is still work to be done regarding
the development of tools that can bring more
meaningful insights to users.

Users that want to select a Big Data framework
to utilize in a certain infrastructure can compare
their options by performing several experiments.
This involves the deployment of several frame-
works (e.g., Hadoop, Spark) and testing their
performance. In addition to the effort associated
to this evaluation, the optimal choice may still
require a more thorough analysis, taking also
into account different classes of workloads that
the user may be willing to execute (e.g., CPU-
intensive, I/O-intensive) and varying the config-
uration parameters of the frameworks (e.g., maps
per node, executors per node). Furthermore, some
information must be given to the user regarding
the performance bottlenecks that may exist and
which system resource may be the best option for
improving.

Although there are some evaluation tools that
ease the execution of these tasks, future ones
must incorporate some knowledge to help users
to make decisions, not only retrieving raw perfor-
mance information.

Cross-References

� Big Data Benchmarking
� Energy Efficiency in Big Data Analysis
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