
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2006; 00:1–15 Prepared using cpeauth.cls [Version: 2002/09/19
v2.02]

Automated and accurate

cache behavior analysis for

codes with irregular access

patterns

Diego Andrade∗, Manuel Arenaz,
Basilio B. Fraguela, Juan Touriño and
Ramón Doallo

Computer Architecture Group, Department of Electronics and Systems
University of A Coruña, A Coruña, Spain
{dcanosa,arenaz,basilio,juan,doallo}@udc.es

SUMMARY

The memory hierarchy plays an essential role in the performance of current computers,
thus good analysis tools that help predict and understand its behavior are required.
Analytical modeling is the ideal base for such tools if its traditional limitations in
accuracy and scope of application are overcome. While there has been extensive research
on the modeling of codes with regular access patterns, less attention has been paid
to codes with irregular patterns due to the increased difficulty to analyze them.
Nevertheless, many important applications exhibit this kind of patterns, and their lack of
locality make them more cache-demanding, which makes their study more relevant. The
focus of this paper is the automation of the Probabilistic Miss Equations (PME) model,
an analytical model of the cache behavior that provides fast and accurate predictions for
codes with irregular access patterns. The paper defines the information requirements
of the PME model and describes its integration in the XARK compiler, a research
compiler oriented to automatic kernel recognition in scientific codes. We show how to
exploit the powerful information-gathering capabilities provided by this compiler to allow
automated modeling of loop-oriented scientific codes. Experimental results that validate
the correctness of the automated PME model are also presented.
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2 D. ANDRADE ET AL.

1. INTRODUCTION

The ever-growing gap between the memory speed and the processor speed is cushioned
by means of memory hierarchies that combine different types of memory technologies. The
performance of a program is highly dependent on the way it uses the cache memory. For this
reason, different strategies that study the cache behavior have been proposed in the literature.
Hardware counters [1] can measure the events related to cache behavior during the execution of
the code. Their main limitations are the high computational cost and the lack of explanations
about the observed behavior. Besides, they are not available or conveniently accessible in all
architectures. Another well known approach is trace-driven simulation [15], where the code is
executed to generate a trace that is used by a simulator to study the cache behavior.

Analytical modeling [9, 10, 16] is an alternative method that avoids the execution of the
program by building a model of the cache behavior from its source code. Analytical models
enjoy limited accuracy due to the difficulty of finding a precise mathematical representation
of the cache behavior whose calculation requires less time than the execution of the code. Due
to the complexity of this modeling, most existing analytical models restrict themselves to the
analysis of codes with regular access patterns and simple control flows. Our work is nevertheless
capable of analyzing codes with irregular access patterns accurately and automatically, which
is an important step forward to widen the applicability of analytical models. From now on,
the existing model for regular access patterns will be referred as the original PME model.

The main contribution of this paper is the automation of the PME model for codes with
irregular access patterns due to indirections [3] using the XARK compiler [4], an extensible
framework for automatic kernel recognition that can be used as a powerful and efficient
information-gathering tool [5]. The well-known formalism of chains of recurrences is used for
the representation of the access patterns followed by the references in the code.

The paper is organized as follows. Section 2 presents a motivation example that will be
used throughout the paper. Section 3 introduces chains of recurrences for the characterization
of the access patterns. Section 4 describes the algorithm to build the PME model from the
point of view of the information to be retrieved by the XARK compiler. Section 5 presents
an extension of XARK that retrieves the information required by the model. Section 6 shows
validation results. Finally, Section 7 discusses related work, and Section 8 concludes the paper.

2. MOTIVATING EXAMPLE

The original Probabilistic Miss Equations (PME) analytical model [9] was aimed to analyze
codes with regular access patterns, for which it provides very accurate estimations of the cache
behavior. Later extensions enabled handling codes with irregular access patterns due to the
existence of conditional statements [2] and indirections [3]. The development of this model has
been driven by a set of well-known codes that contain regular and irregular access patterns.
A manual analysis of such codes revealed that the automation of the model from scratch is a
difficult task, specially in the scope of irregular applications, as advanced symbolic analysis is
needed to retrieve the necessary information.
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AUTOMATED CACHE ANALYSIS FOR IRREGULAR CODES 3

Figure 1: Sparse Matrix - Dense Matrix Product (IKJ)

For illustrative purposes, consider the computation of the product of a MxN sparse matrix
in CRS format [6] † and a NxH dense matrix B shown in the code of Figure 1. The outermost
loop doI presents array references with regular access patterns that can be rewritten as affine
functions of the enclosing loop indices. For instance, the subscript of R(I + 1) takes increasing
values in the interval [2,M + 1]. Current commercial and research compilers can gather this
information. However, irregular access patterns due to indirections require advanced symbolic
analysis techniques. For example, reference B(REG1, J) follows an irregular access pattern
because the values of REG1 are determined by C(K), whose values are not known at compile-
time. Note that K introduces a higher level of indirection because it takes values in the interval
[R(I),R(I + 1) − 1] in each doI iteration. Further analysis of the headers of doI and doK reveals
that the code traverses the whole array of row indices of the sparse CRS matrix. The recognition
of this programming construct, usually referred in the literature as offset and length [13], leads
to conclude that K takes a strictly monotonically increasing set of values during the execution
of doI and, thus, different elements of array C are referenced at run-time. The accuracy of
the model would increase if the compiler could retrieve this information. The XARK compiler
represents access patterns by means of the chains of recurrences formalism, which will be
introduced in Section 3. From these chains of recurrences the PME model will build the
equations that characterize the cache behavior for such access patterns. The corresponding
algorithm will be described at high level in Section 4. The details about the recognition of
programming constructs such as offset and length will be presented in Section 5.

†The CRS (Compressed Row Storage) format stores sparse matrices by rows in a compressed way using three
vectors. One vector stores the nonzeros of the sparse matrix ordered by rows, another vector stores the column
indices of the corresponding nonzeros, and finally another vector stores the position in the other two vectors
where the nonzeros of each row begin. In the example code these vectors are called A, C and R, respectively.
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4 D. ANDRADE ET AL.

3. CHAINS OF RECURRENCES

Chains of recurrences (CR) is a formalism to represent closed-form functions [17] that is used in
different computer algebra systems, optimizing compilers and stand-alone C and Java libraries.
Chains of recurrences have been successfully used to expedite function evaluation at a number
of points in a regular interval. Given a constant φ0, a function g defined over the natural
numbers and zero, N ∪ {0}, and the operator +, a Basic Recurrence (BR) f , represented by
the tuple f = {φ0,+, g}, is defined as a function over N ∪ {0} by

{φ0,+, g}(i) = φ0 +
i−1∑

j=0

g(j) with i ∈ N ∪ {0} (1)

For example, the loop index of doI in Figure 1 takes integer values in the regular interval
[1,M]. The BR f = {1,+, 1} provides a closed-form function to compute the value of I at
each doI iteration and thus to determine the affine memory access pattern 1 + I of array
reference R(I). The algebraic properties of BRs provide rules for carrying out arithmetic
operations with them [17]. For instance, the addition of a BR and a constant c is given by
{φ0,+, g} + c = {φ0 + c,+, g}. This rule enables the representation of the access pattern of
R(I + 1) as {1,+, 1} + 1 = {2,+, 1}.

Multidimensional Chains of Recurrences (MCR) [11] provide a formalism to describe
memory access patterns of multidimensional arrays. In the following, an intuitive description of
MCRs based on their interpretation is presented. Consider the bi-dimensional array reference
D(I, J) of Figure 1. In the scope of doI, a row-major traversal of matrix D is performed, M and
H being the number of rows and columns, respectively. As both rows and columns are accessed
sequentially one after another, the BR {1,+, 1} captures the access pattern defined by the
subscript expressions I and J. However, from the point of view of the cache behavior, the
description of the access pattern of the multidimensional array mapped onto a linear memory
model is required. Assuming column-major storage, the MCR J{I{1,+, 1},+, M}, composed
of two nested BRs, provides such information as follows. First, the inner BR I{1,+, 1} is
evaluated according to equation (1) in order to locate the beginning of row number I. Next,
the outermost BR J{I,+, M} is evaluated to access the row elements stored in memory locations
with stride M. Within MCRs, the subscript on the left of each BR indicates the source code
variable used to evaluate the BR. In this work only BRs and MCRs with constant g function
are used as they enable the representation of the access patterns handled by the PME model.
Note that CRs provide a powerful representation that will capture more complex cases that
are expected to appear in full-scale real applications, like triangular access patterns. Besides,
chains of recurrences are a well-known and widely used formalism that has an extensive research
associated to it which can be used in future extensions of our work.

Figure 2 summarizes the information requirements of the PME model for the code of
Figure 1. For each loop, a graph of dependence relations (represented as use-def chains) between
array references and loop indices is depicted. Use-def chains starting from array references are
labeled with the array dimension where the target reference appears. BRs that capture loop
index values and access patterns for each dimension of each array reference are shown. When
enough information is available, multidimensional arrays are also annotated with MCRs and
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AUTOMATED CACHE ANALYSIS FOR IRREGULAR CODES 5

Figure 2: Information requirements of the PME model for the code of Figure 1. The symbol
nnz stands for the number of nonzeros of the sparse matrix, and β is the average number of
iterations of doK

linearized MCRs. The superscript on the right of the BRs represents an average of the number
of times that the chain of recurrences is evaluated. The notation ? within BRs reflects that the
corresponding information cannot be determined to be a constant expression at compile-time.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2006; 00:1–15
Prepared using cpeauth.cls



6 D. ANDRADE ET AL.

4. INFORMATION REQUIREMENTS OF THE EXTENDED PME MODEL

The PME model [3] uses its probabilistic nature to build formulae that estimate accurately
the number of misses from statistical information about access patterns. This section describes
a high-level algorithm of the PME model as well as the information requirements of its
implementation in a compiler. Section 4.1 focuses on the construction of the formulae of the
model and Section 4.2 on the computation of the interference regions, that is, the memory
regions accessed by each given reference during a period of the execution of the code.

4.1. CONSTRUCTING THE FORMULAE

The pseudo-code of Figure 3 gives an overview of the PME model. As shown in the top-
level procedure analyze code, the references that appear in each loop nest of the source code
are studied one by one. Each reference R is analyzed in several scopes. At each nesting
level, the procedure number of misses computes a formula that calculates the number of
misses produced by that reference in that nesting level. This formula is expressed in terms
of the formula of the immediately inner loop. A reference may exhibit different access
patterns with respect to different loops. These access patterns are modeled by the following
formulae: the regular access PME for regular patterns, the monotonic irregular access PME
for irregular patterns that access a monotonic sequence of memory positions, and the non-
monotonic irregular access PME for irregular patterns that cannot be predicted at compile-
time. Procedure number of misses selects the appropriate formula by analyzing the BRs
associated with each dimension of R as follows:

• The regular access PME is applied if the BR matches {φ0,+, g} with constant function
g.

• The monotonic irregular access PME is applied if (1) a BR characterizing one of the
dimensions has a non-constant g, and (2) there is a path of use-def chains between R and
the loop index of the current loop that contains at least another different array reference.
The first step of this path must be a use-def chain with a target array reference whose
values can be determined to be monotonic.

• Otherwise, the non-monotonic irregular access PME is selected.

As an example, consider the array reference B(REG1, J) in Figure 1. In the analysis of the
innermost loop doJ, the BRs that describe every dimension of the reference are explored. As
shown in Figure 2, the BR {REG1}, simplified representation of {REG1,+, 0}, that describes
the access pattern in the first dimension, is an invariant BR. In addition, as the BR {1,+, 1}
associated with the second dimension has a constant function g = 1, the subscript is known
to be an affine function of J. Thus, a regular access PME models the behavior of the reference
in this loop.

A different situation arises in the scope of doK at nesting level one. The BR for the first
dimension has unknown φ0 and g, which is represented as {?,+, ?} in Figure 2. Besides, the
graph of dependence relations depicted in Figure 2 shows that there is a path from the first
dimension of B(REG1, J) to loop index K that contains another array reference C(K) whose values
are stored in the scalar REG1 (see lines 2, 4 and 6 of Figure 1). Thus, the subscript REG1 is
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procedure analyze code() {

1 foreach loop nest of the code {

2 foreach reference in the loop nest {

3 misses+ = number of misses(reference, outermost loop(loop nest), Rfull)

4 }

5 }

}

procedure number of misses(reference, loop, region) {

1 if is regular(reference, loop) {

2 return regular access PME(reference, loop, region)

3 } else {

4 if is monotonic(reference, loop) {

5 return irregular monotonic access PME(reference, loop, region)

6 } else {

7 return irregular nonmonotonic access PME(reference, loop, region)

8 }

9 }

}

procedure irregular monotonic access PME(reference, loop, region) {

1 if is innermost loop containing(loop, reference) {

2 return LRi ∗ miss probability(region) + (Ni − LRi) ∗ miss probability(interference region(loop, 1))

3 } else {

4 misses=0.0

5 foreach inner loop in inner loops containing(loop, reference) {

6 misses+ = LRi ∗ number of misses(reference, inner loop, region)

7 +(Ni − LRi) ∗ number of misses(reference, inner loop, interference region(loop, 1))

8 }

9 return misses

10 }

}

procedure interference region(loop, num iterations) {

1 region set = ∅

2 foreach reference in loop

3 if reference has one dimension {

4 case BR from reference in num iterations of loop {

5 { , +, 1}M : R = Rs(M) // M consecutive elements. The wildcard can take any value

6 { , +, N}M : R = Rr( M
N

, 1, N) // M
N

groups of 1 element separated by a distance N

7 ...

8 }

9 } else {

10 case MCR from reference in num iterations of loop {

11 {{ , +, 1}N , +, M}P : return R = Rr( P
M

, N, M) // P
M

groups of N elements separated by a distance M

12 {{ }, +, 1}N : return R = Rs(N) // N consecutive elements

13 ...

14 }

15 }

16 region set = region set ∪ R

17 }

18 return region set

}

Figure 3: The PME model algorithm
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8 D. ANDRADE ET AL.

known to be irregular. The accuracy of the prediction can be raised by taking advantage of
the knowledge that C is the column array of a sparse CRS matrix since, assuming that the
column indices are ordered within each matrix row, the sequence of values of C(K) is known
to be monotonic. As a result, the monotonic irregular access PME is applied. Note that such
information is not available in the scope of the outermost loop because C(K) is not monotonic
across different iterations of doI. In this case, the non-monotonic irregular access PME is used.

Two parameters are required to build a PME at nesting level i: Ni, the number of iterations
of the loop and SRi, the stride between the elements that reference R accesses in two consecutive
loop iterations. Using these values LRi, the number of loop iterations for which R cannot exploit
any reuse, can be calculated. In our algorithm, Ni is the average number of times that the
BR that characterizes the values of the loop index is evaluated. As for SRi, if there is not any
dependence path between the reference and the loop index, SRi = 0. Otherwise, it is calculated
as the product of the constant g of the BR associated with the loop index by the distance
between two consecutive elements of the array referenced by R in the dimension indexed by
the loop index. This latter value is calculated using the dimensions of the affected array and
the mapping of the array into the linear memory model (i.e., row-major or column-major).
Finally, LRi is calculated as a function of Ni and SRi (see the details in [3]).

In regular codes, Ni is usually available at compile time, and thus the average number of
times that the BR of the loop index is evaluated can be computed (see the BR {1,+, 1}H of
doJ in Figure 2). However, this is not the case in irregular codes. Consider the loop index K

of the offset and length construct of Figure 1. In the scope of doI, K is used in A(K) and C(K)

to access the whole sparse CRS matrix. Thus, Ni is the number of nonzeros nnz, as shown in
the BR {1,+, 1}nnz of Figure 2. In contrast, in the scope of doK, Ni is given by the symbolic
expression R(I + 1)−R(I). In general, this expression takes a different value in each iteration
of the outer loop doI. However, from a statistical point of view, Ni = β = nnz

M
can be a good

approximation for CRS sparse matrices with a uniform distribution of the entries, M being
the number of rows of the sparse matrix. Thus, as doK traverses the elements of a row of the
CRS matrix, the values taken by K could be represented by {R(I),+, 1}R(I)+β . This situation
also affects the calculation of the stride for the array reference C(K) in the scope of doI. Loop
index I affects C(K) through its dependence with the loop index K. As a result, the stride of
C(K) with respect to loop doI will be the number of iterations of doK (i.e., β), because both
loops define an offset and length construct.

4.2. COMPUTING THE INTERFERENCE REGIONS

The PME model estimates how different array references interfere in the use of the cache. For
this purpose, the model maps the chains of recurrences that represent the access patterns of
each reference in the scope of each enclosing loop into regions of a linear memory model. For
instance, it considers the region Rs(N), that represents the access to N consecutive elements
of a data structure; and Rr(Nr, Tr, Lr), that represents the access to Nr groups of Tr elements
each separated by a distance Lr. Notice that both BR functions and region functions do not
hold information about the order in which accesses take place. This order is in fact taken into
account during the construction of the formulae (covered in Section 4.1) as they determine the
reuse distances between two consecutive accesses to a same cache line. However, interference
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AUTOMATED CACHE ANALYSIS FOR IRREGULAR CODES 9

Figure 4: Matrix mapping in memory and in cache for reference D(I, J) of Figure 1 during 2
iterations of loop doI

regions correspond to the cache footprint of the accesses that take place during a given reuse
distance. This way, they do not depend on the order in which such accesses take place. Our
model estimates the miss probability of the attempts of reuse from these footprints. Figure 4
shows an example memory region using the array reference D(I, J) of the loop doI of Figure 1.

The information supplied by the BRs and the MCRs is used in the procedure
interference region (see Figure 3) to identify memory regions as follows:

• Let {φ0,+, g}Γ be the BR of a unidimensional array reference. If g = 1, a region Rs(Γ)
is computed. Otherwise a region Rr(

Γ
g
, 1, g) is associated with the array reference.

• In the case of multi-dimensional arrays, the analysis focuses on the MCR that represents
the access pattern once the array has been mapped onto the linear memory model. For the
sake of the explanations, consider the MCR {{φ1,+, g1}

Γ1 ,+, g2}
Γ2 of a bi-dimensional

array reference, where φ1, g1 and Γ1 are associated with the first array dimension, and
g2 and Γ2 with the second dimension. In this case, a region Rr(

Γ2

g2
, Γ1

g1
, g2) is computed.

Sometimes a simplified representation of the access pattern described by the MCR can
be obtained by linearizing the MCR. The resulting BR is processed as described for
unidimensional arrays.

The PME model estimates the impact on the cache of a set of regions in terms of a probability
of interference in the call to the function miss probability in Figure 3. The miss probability
estimation is based on the calculation of the distribution of the number of cache lines of the
footprints per cache set. The details about this process can be found in [2]. In the example
code of Figure 1, during the analysis of the reference D(I, J) in the scope of the loop doJ, the
BR for the first dimension {I} indicates that the index is a loop invariant, while that of the
second dimension {1,+, 1}H shows that the subscript J takes consecutive values in the regular
interval [1, H]. As shown in Figure 2, the MCR J{I{I},+, M}M∗H of D(I, J) can be linearized as
the BR {?,+,M}M∗H , the unknown φ0 indicating that doJ is analyzed in the scope of an
undetermined doI iteration. Applying the rule of unidimensional array references, the memory
region Rr(H, 1,M) of a row of array D is computed. When the access pattern for D(I, J) is
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10 D. ANDRADE ET AL.

analyzed in the next outer loop doK, at nesting level 1, the BRs and MCRs for both dimensions
are the same ones as in the innermost loop doJ because none of the dimensions depend on loop
index K. Thus, the same region Rr(H, 1,M) is computed. A different situation arises in the
scope of the outermost loop, where there is a different BR {1,+, 1}M for the first dimension.
As the M rows of the matrix are accessed, the linearized MCR {1,+, 1}M∗H contains a φ0 = 1
that reflects the access to the whole array D resulting in a region Rs(M ∗ H).

5. XARK EXTENSION FOR THE PME MODEL AUTOMATION

The automation of the PME model is addressed using the XARK compiler [4] as a
powerful information-gathering framework. XARK operates on top of a high-level intermediate
representation resembling the original source code that consists of the forest of abstract syntax
trees (ASTs) that represent the statements of the Gated Single Assignment (GSA) form of the
code. In an AST, a tree represents an operation so that the root node is the operator (e.g.,
assignment, scalar fetch, array reference, plus, product) and its children are the operands. The
intermediate representation is completed with use-def chains that exhibit the dependences
between the statements of the code. XARK performs a demand-driven analysis that proceeds
as follows. A post-order traversal is carried out on each AST. At each node, a transfer function
that gathers information about each operator in the program is applied once the analysis of
the children subtrees has finished. When an occurrence of a variable defined in a different
AST is found, the post-order traversal is deferred until the analysis of that AST is completed.
This demand-driven behavior assures that all the information needed at a given node has been
computed before the transfer function is actually executed.

Transfer functions are organized in layers devoted to specific tasks. The bottom layer
addresses the recognition of the kernels computed in the source code (e.g., generalized induction
variables, irregular reductions, array recurrences), which includes the characterization of the
regular and irregular access patterns of the array references that appear in the source code.
Upper layers implement extensions of the XARK compiler that benefit from the information
recognized in the source code. Information interchange between layers is carried out by means
of three containers that are available in all the transfer functions: pgm holds information at the
program unit level; stm at the statement level; and node in the scope of a node of the AST of a
statement. The pseudo-code of the extension that builds the interface between XARK and the
PME model is shown in Figure 5. Due to space limitations, the details about the computation
of the BRs and the MCRs have been omitted from the transfer functions. The containers are
represented as data structures whose fields correspond to pieces of information retrieved from
the source code.

In order to illustrate the operation of XARK, consider the forest of ASTs and the use-
def chains (dashed arrows) depicted in Figure 6. The details about the GSA form have been
omitted for the sake of clarity. The picture shows the last step of the post-order traversal
of the AST that represents the loop header DO K=R(I),R(I+1)-1. Hatched nodes highlight
expressions and statements whose analysis has already been completed. When transfer function
Tdo is applied, the kernel recognition layer characterizes R(I) and R(I+1)-1 as loop-variant
expressions whose value is not known at compile-time. This is denoted by the annotation
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AUTOMATED CACHE ANALYSIS FOR IRREGULAR CODES 11

struct {... struct {... struct {...

graph of array refs; set of array refs; set of array refs;

} pgm; } stm; } node;

procedure Ta(s1,...,sn) { // Extensions of transfer function of array references

1 insert a(s1, ..., sn) in pgm.graph of array refs

2 foreach si with subscripted access pattern {

3 foreach reference ∈ nodesi
.set of array refs {

4 insert a use-def chain from a(s1, ..., sn) to reference in pgm.graph of array refs

5 }

6 }

7 insert a(s1, ..., sn) in node.set of array refs

}

procedure Tx { // Extensions of transfer function of identifiers

1 if x is not invariant {

2 foreach reference ∈ set of array refs of the definition statement of x {

3 insert reference in node.set of array refs

4 }

5 }

}

procedure Tdo { // Extensions of transfer function of loop headers

1 stm.set of array refs = nodeinit.set of array refs ∪ nodelimit.set of array refs ∪ nodestep.set of array refs

2 if stm is an offset and length construct {

3 if stm at nesting level 1 {

4 rewrite symbolic BR {R(I), +, 1}R(I+1)−1 as {1, +, 1}nnz

5 }

6 }

}

procedure Tstm { // Extensions of transfer function of assignment statements

1 stm.set of array refs = noderhs.set of array refs

}

Figure 5: Extension of XARK for building the interface with the PME model

subscripted in the corresponding nodes of the AST. Expressions corresponding to invariant
and linear access patterns are annotated as invariant and linear, respectively. It is also
attached to each node the BR that captures the interval in which the expression takes values,
which is computed by applying the rules defined in the CR algebra [17] (see the example
in Section 3). Next, the extension of Tdo presented in Figure 5 is executed. First, the loop
header DO K=R(I),R(I+1)-1 is recognized as an offset and length construct because R(I)

and R(I+1)-1 are subscripted accesses to consecutive elements of a unique array R, and each
expression is the source of a use-def chain whose target is the outermost loop doI. Under these
conditions, Tdo rewrites the BR {R(I),+, 1}R(I+1)−1 as {1,+, 1}nnz to indicate that the loop
index K traverses the whole sparse matrix during the execution of doI (see lines 2 to 6 of
procedure Tdo in Figure 5). The demand-driven analysis of the forest of ASTs continues, and
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12 D. ANDRADE ET AL.

Figure 6: Forest of ASTs and use-def chains of the offset and length construct and the array
reference B(REG1, J) of the example code of Figure 1.

the access pattern of array reference C(K) is characterized as a linear pattern given by the BR
{1,+, 1}nnz.

5.1. CONSTRUCTION OF THE GRAPH OF REFERENCES

Apart from the characterization of the access patterns of array references, the interface between
XARK and the PME model exhibits the dependence relationships between array references
and loop indices. As shown in Section 4, such information is used to build the formulae that
capture the cache behavior of the source code. The graph of dependences is built as follows.
Each time the transfer function of array references Ta(s1,...,sn) is executed, the corresponding
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AUTOMATED CACHE ANALYSIS FOR IRREGULAR CODES 13

array reference is inserted in pgm.graph of array refs (see line 1 of procedure Ta(s1,...,sn) in
Figure 5). Thus, when Tdo is applied in Figure 6, pgm.graph of array refs is {R(I), R(I + 1)}.
As a result, a list of all array references in the source code has been built.

In order to construct the graph, it is necessary to identify indirections as well as the array
references that appear in subscript expressions. This task is accomplished by taking advantage
of the access pattern characterization provided by the kernel recognition layer. The demand-
driven nature of XARK assures that the access pattern of each subscript sl (1 ≤ l ≤ n)
has been characterized before the transfer function is applied. Thus, Ta(s1,...,sn) recognizes
array references that are not indirections by checking that there is not any subscripted
access pattern, and inserts the reference in the container available for each node of the
ASTs, in particular, in node.set of array refs (line 7 of Ta(s1,...,sn) in Figure 5). If an
indirection is recognized, the demand-driven analysis carried out by XARK assures that
nodesj

.set of array refs contains the array references that appear in the subscript expression
of the j−th array dimension. Next, Ta(s1,...,sn) inserts in pgm.graph of array refs a set of use-
def chains whose source is a(s1, ..., sn) and whose targets are the array references included in
nodesj

.set of array refs (lines 2-6 of Ta(s1,...,sn) in Figure 5). Note that the sets of array
references are transferred through scalar definition statements and loop headers. On the one
hand, Tx transfers information from the container of the AST where x is defined (see lines 2-4
of Tx in Figure 5) to the local container node associated with the node where x is referenced.
On the other hand, Tstm and Tdo annotate the statements of the code with the list of array
references that appear as operands of the right-hand side operators (see noderhs, nodeinit,
nodelimit and nodestep in Figure 5). As the ASTs are analyzed only once during the demand-
driven analysis, the annotation of statements enables the retrieval of the set of array references
for different occurrences of a scalar variable.

For illustrative purposes, consider the construction of the graph depicted in Figure 2 for the
scope doK. In particular, focus on the subscript REG1 of the first dimension of B(REG1, J). When
the AST of REG1 = C(K) is analyzed, Ta(s1,...,sn) inserts C(K) in noderhs.set of array refs

and later Tstm annotates the statement by copying C(K) into stm.set of array refs. Next,
the occurrence REG1 in B(REG1, J) is processed by Tx, which obtains C(K) from the AST
container of the statement where REG1 is defined. As a result, the array reference C(K)
is available at Tx, which copies C(K) in the local container nodeREG1.set of array refs

to expose such information to Ta(s1,...,sn). Finally, Ta(s1,...,sn) updates the global container
pgm.graph of array refs with a use-def chain from B(REG1, J) to C(K).

6. EXPERIMENTAL RESULTS

The automation of the PME model within the XARK compiler was tested with a set of
benchmarks that carry out operations with sparse CRS matrices: sparse matrix-dense matrix
product with IKJ (shown in Figure 1), JIK and IJK loop orderings, sparse matrix-vector
product, and sparse matrix transposition. The model was validated against a trace-driven
simulation for a variety of sparse matrices and cache configurations.

The accuracy of the PME model is measured by the metric ∆MR%, the absolute value of
the difference between the miss rate obtained by a trace-driven simulation and the miss rate
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Table I. MRSim%, MRMod% and ∆MR% values obtained for the benchmarks performing
more than 12800 tests for all the possible cache configurations combining cache sizes from
8KBytes to 1MByte, lines from 16 to 128 bytes and associativity degree from 1 to 8, using
in these parameters only powers of two. All the cache configurations were tested with sizes
per dimension of the involved arrays varying from 500 to 5000 with step 500 using only

square matrices and sparse matrix densities from 0.5% to 25.5% with step 2.5%.

Code MRSim% MRMod% ∆MR%

SPMXV 9.64% 9.45% 0.92%

SPMXDMIKJ 48.95% 47.92% 1.41%

SPMXDMIJK 22.20% 21.42% 0.79%

SPMXDMJIK 11.68% 11.28% 0.70%

TRANSPOSE 18.98% 19.22% 1.60%
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Figure 7: Miss rate as a function of the
matrix density for the sparse matrix-dense
matrix product with IJK ordering, where
M = N = H = 500 in a cache of 64KB with
line size 64 bytes and associativity degree 4

Figure 8: ∆MR% as a function of the matrix
density and the cache configuration for the
sparse matrix-dense matrix product (IKJ),
for M = N = H = 750. Cache configuration
is expressed as Cs,Ls,k where Cs is the cache
size in bytes, Ls is the line size in bytes and
k is the associativity degree

predicted by the model expressed as a percentage. The average values of ∆MR% presented
in Table I show that the accuracy of the prediction is good for all the tests performed with
the benchmarks. The prediction is a little worse for the sparse matrix transposition, the most
complex code studied in this paper. Columns MRSim% and MRMod% contain the average
values of the miss rate simulated by a trace-driven simulation and the miss rate predicted by
the PME model in the set of experiments, respectively. They show that the relative error of
our prediction is also small in relation to the measured miss rate.

Our prediction errors are smaller than those of the comparable works in this field. In Figure 7,
the sparse matrix-dense matrix product with IJK loop ordering is used to compare the miss
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rate simulated and the miss rate predicted, an upper bound of the prediction considering all
irregular accesses as misses in the PME model, and a lower bound obtained by ignoring the
irregular accesses that appear in the code. The sizes of the data structures that appear in the
code and the cache configuration were kept constant, while the density of the sparse matrix
took values between 1% and 100%. Figure 7 shows that the PME model estimates the miss
rate accurately, while the other two simple approaches provide poor estimations. This justifies
the interest of our model.

Figure 8 shows the evolution of ∆MR% for the sparse matrix-dense matrix product with IKJ
ordering, keeping the sizes of the data structures constant and changing not only the matrix
density but also the cache configuration. Note that the deviation of the model is always less
than 2.75%. For each code there is a cache configuration where the maximum error is achieved
for a given input data set, because the relative positions of the involved arrays can have a
big influence on the final number of misses. Larger caches diminish this effect, since they are
big enough to avoid the overlapping of large pieces of the involved arrays. This effect is also
attenuated in smaller caches because the involved array regions fully overlap in the cache, no
matter which their relative positions are. Figure 8 shows that the tested code suffers from this
effect for the 32K,32,1 cache configuration when the input data set size M=N=H=750 is used.

The accuracy of the model and its low computational cost, less than 1 second for each test
(including XARK and PME model times), makes it suitable for driving compiler optimizations.
As an example, we used our tool to predict at compile-time which is the optimal loop ordering
for the sparse matrix-dense matrix product in terms of the lowest number of CPU idle cycles
caused by cache misses in the memory hierarchy. The experiments were conducted both on
a PowerPC 7447A and an Itanium 2 at 1.5Ghz using 7 different matrix configurations. Our
model always predicted JIK as the optimal loop ordering (see Table I), which was confirmed by
the execution time obtained by compiling the codes with g77 3.4.3 and a -O3 optimization
level.

7. RELATED WORK

While there are several models that predict accurately the cache behavior for codes with
regular access patterns in an automated way [9, 10, 16], only the PME model has achieved
this purpose for codes with irregular access patterns. Some works that have faced this kind
of models [12, 8] are not systematic enough to be automated. For example, [12] is an ad-hoc
model whose scope of application is limited only to direct-mapped caches, and it does not
consider the interaction between different interleaved access patterns. These limitations were
overcome in our probabilistic model [8] which was not systematic enough to be automatable.

Other works [7, 14] model this kind of codes automatically, but their accuracy is low in many
cases. Cascaval’s indirect accesses model [7] is integrated in a compiler framework, but it is
an inaccurate heuristic that estimates the number of cache lines accessed rather than the real
number of misses. For example, it does not take into account the distribution of the irregular
accesses and it does not account for conflict misses, since it assumes a fully-associative cache.
The interface with the compiler framework is a simple dependence graph between references
that access the same data position, the arcs being labeled with the number of different memory
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locations accessed between the source and the target of the dependence. This approach gives
an ad-hoc representation that is not so extensible and manageable as the one used in the PME
model, based on chains of recurrences. Another automated approach is SPLAT [14], a tool that
analyzes codes in several phases. The reuse and volume phases, where compulsory and capacity
misses are computed, respectively, considering a fully-associative cache; and the interference
phase, where conflict misses are calculated assuming a direct-mapped cache. Irregular accesses
due to conditional statements and loops with a variable number of iterations are modeled using
the information derived from a previous code profiling, something that is not necessary in our
model.

8. CONCLUSIONS

Codes with irregular access patterns due to indirections are difficult to analyze automatically
and require advanced symbolic analysis techniques. This work addresses the automation of the
modeling of the cache memory behavior for this kind of codes using the XARK compiler. Most
previous analytical models for irregular codes were not automatable. The few automatable
ones did not provide accurate estimations of the cache behavior. The model presented in this
work is the first one that has been automated and that provides good degrees of accuracy
in its predictions of the cache behavior of irregular codes. The paper has shown how to take
advantage of the demand-driven nature of the XARK compiler in order to meet the hard
information requirements of the PME model. An interface between XARK and the PME
model has been defined using graphs of dependences between data structures and the chains
of recurrences formalism for the representation of the access patterns. Our experiments have
shown that XARK and the PME model can work together to obtain accurate cache behavior
estimations. The experiments have also shown that the model can be used as a compile-time
tool to guide code optimizations without any human aid, even in codes with indirections. As
future work, the automated PME model will be evaluated for a wider set of representative
irregular codes, and complex optimization processes will be driven using the information
provided by XARK.
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