
Automated approach for accurate CPU power
modelling

Tomé Maseda, Jonatan Enes, Roberto R. Expósito, Juan Touriño
Universidade da Coruña, CITIC, Computer Architecture Group, Campus de Elviña, 15071 A Coruña, Spain

Email: {tome.maseda,jonatan.enes,roberto.rey.exposito,juan}@udc.es

Abstract—Power supply is a limiting factor when increasing
the computing capacity of supercomputers. As a consequence,
power consumption has become one of the biggest challenges in
the field of High Performance Computing (HPC). In order to
develop energy-efficient tools (e.g., frameworks, applications), it
is essential to have an accurate power consumption modelling. Al-
though previous works proposed a wide variety of approaches to
model CPU power consumption, building models in an automated
and adaptable way to changing scenarios and predicting power
with high precision remains complex due to multiple factors (e.g.,
training and test workloads, model variables). In this paper, we
present a set of tools to fully automate the process of modelling
power consumption using CPU time series data. More specifically,
our proposal includes two tools: (1) CPUPowerWatcher, which
gathers CPU metrics during the execution of user-configurable
workloads; and (2) CPUPowerSeer, which builds models to
predict CPU power consumption (e.g., polynomial regression)
from different CPU variables (e.g., usage, clock frequency) using
time series data. Thus, multiple models can be created and
evaluated easily, allowing the selection of an optimal model for
a specific workload. The experiments conducted by combining
these tools allow analys ing the impact of novel factors on CPU
power consumption, such as the type of CPU usage generated by
different workloads or how the CPU cores are allocated to them.
In addition, the accuracy of six regression models is compared
when predicting CPU- and I/O-intensive workloads using two
different core allocations.

Index Terms—CPU power modelling, Time series, Energy
consumption

I. INTRODUCTION

Power consumption has become one of the biggest chal-
lenges in many fields of computer science, such as High
Performance Computing (HPC). Frequently, the economic
cost of the energy consumed by supercomputers represents
a significant portion of the total expenses over their lifespan
(e.g., initial acquisition, staff, maintenance). Therefore, energy
consumption is a constraint on the expansion or acquisition
of computing infrastructures, not only because of its costs but
also due to its environmental impact. Similarly, this also affects
software developers, who seek to enhance the energy efficiency
of their codes before deploying them on larger infrastructures.

To address this challenge, both manufacturers (hardware)
and administrators/developers (software) are making a joint
effort to provide more efficient approaches. On the one hand,
hardware designers implement methods to reduce consumption
such as Dynamic Voltage and Frequency Scaling (DVFS) [35],
automatic shutdown techniques for inactive processor units
(power gating), or clock masking techniques (clock gating).

On the other hand, the scientific community explores different
ways to efficiently manage energy, such as task scheduling
based on potential power consumption [26] or more ground-
breaking techniques such as power budgeting [21]. A common
aspect to all of these approaches is the need for obtaining
accurate estimations of power consumption from different
hardware resources. In this work we will focus on the CPU,
considering it as one of the most energy-demanding resources
of a server, along with the GPU. One approach to estimate
and predict CPU power consumption is through modelling,
that is, the creation of mathematical models that correlate
energy consumption with other CPU metrics (e.g., usage
percentage, clock frequency, cache hits). Once implemented,
this method can be easily integrated into other tools with
different objectives related to improve energy management.
However, building such models requires the efficient collection
and storage of a set of metrics to approximate the relationship
between the variables involved as accurately as possible. To
perform these tasks, it is necessary to extract, process and
analyse time series data using various technologies and tools,
as well as to carefully select the variables (i.e., CPU metrics)
and the training workloads involved in the models to fine-
tune their accuracy. Performing these tasks manually makes
power consumption modelling a potentially tedious and error-
prone process, which complicates the agile creation of multiple
models in order to use them with particular workloads. To
overcome these limitations, this paper presents an all-in-one
solution to seamlessly generate models to predict a wide range
of workloads of different types and intensities.

We summarise our main contributions as follows:

• A toolkit to fully automate the whole process of mod-
elling power consumption (i.e., data collection and fit-
ting). Our solution eases the building of models by
monitoring the CPU to be modelled during the execution
of a set of synthetic workloads. The resulting models
can then be used to estimate the power consumption of
any workload executed on that CPU with high accuracy
(MAPE lower than 10% across all evaluated scenarios).

• An experimental analysis of the impact of novel factors
that directly affect CPU power modelling when using
high-level CPU metrics, such as considering the different
CPU states (e.g., user, iowait) and the specific cores
allocated to workloads (e.g., physical or logical) from
a single or multiple CPUs. Up to our knowledge, these



factors have not been taken into account in the literature.
• An experimental evaluation of six polynomial regression

models that use different variables and/or training work-
loads. Our goal is to determine whether it is possible
to accurately estimate CPU power consumption relying
only on high-level CPU metrics together with modelling
methods that are easy to implement and interpret, as well
as being computationally efficient.

The remainder of the paper is organised as follows. First,
Section II discusses the related work. Next, Section III de-
scribes the implementation of the tools developed, while
Section IV analyses the impact of novel factors on CPU
power modelling and presents the proposed models. Section V
compares the accuracy of the models; and finally, Section VI
summarises our concluding remarks.

II. RELATED WORK

This section presents the characteristics and methods used
in previous works to implement power consumption modelling
(Section II-A), as well as those works related to software-based
power monitoring and management (Section II-B).

A. Power consumption modelling

When it comes to model generation, there is a wide variety
of approaches described in the current literature. First, it is
important to distinguish between modelling a whole infras-
tructure, such as a distributed computing system [14] or a data
centre [19], and modelling a specific component, as described
for a server [33], CPU [17], memory [18] or GPU [16].

Considering the heavy role that the CPU plays in the energy
consumption of current servers [19], particularly in the context
of a supercomputer, we focus on CPU power models, and
more specifically, on architecture-level models that work at a
high level of abstraction. The level of abstraction of a model
is based on the data used to predict power consumption and
the prediction target. Gate-level models work at a low level
and typically predict the consumption of digital circuits (e.g.,
an adder) based on the activity of their logic gates [20].
Similarly, register-transfer-level models are commonly used
to predict the energy consumption of CPU units (e.g., an
ALU) based on the activity of signals and registers [38].
Finally, architecture-level models work at a higher level and
are often used to predict the whole CPU consumption based on
microarchitecture events and/or high-level CPU metrics (e.g.,
cache hits, CPU usage) [23]. Low abstraction levels require
very long simulation times and involve many challenges to
deploy the necessary simulation tools across different CPUs
(e.g., compatibility between microarchitectures). Therefore,
architecture-level models have been selected in order to build
them in a more flexible and adaptable way to changing
scenarios.

Focusing now on the creation of architecture-level models,
some previous approaches are based on event counters inte-
grated into the CPU hardware called Performance Monitoring
Counters (PMC). These counters determine the activity fac-
tor of specific components [15], essentially measuring how

frequently they are accessed to estimate their power con-
sumption. However, a major drawback of PMC-based models
is their lack of portability, since the available PMCs vary
with each CPU microarchitecture. Statistical models have also
been extensively used, many of them developed considering
a linear correlation between power consumption and system
resource activity factors (e.g., CPU usage, CPU frequency, I/O
bandwidth). While some of these models are simple and based
on just a few factors [37], others are more complex, even com-
bining these factors with microarchitecture-level events using
PMC counters [30]. Aiming to further increase the accuracy,
other models include novel parameters such as the concurrency
level of a workload along with the average power dissipation of
each thread [32], or the complexity of an algorithm in addition
to the number of parallel memory accesses it performs [31].
It is also possible to incorporate non-linearity through the
explicit use of methods such as polynomial regressions, where
power consumption is expressed as a non-linear function
of model variables [17]. Finally, recent works make use of
machine learning to express this non-linearity using artificial
neural networks and support vector regressions [36], graph
neural networks [41] or convolutional neural networks [42],
amongst others. However, these methods require more com-
putational resources, and they must use larger training datasets
along with a set of tuned hyperparameters in order to obtain
good accuracy, which reduces their portability. In addition,
obtaining optimal hyperparameters is also a difficult task.

Our work proposes non-linear statistical models based on
second-degree polynomial regressions that predict CPU power
consumption from its usage and frequency. This approach
provides a good balance between accuracy, portability and
computational efficiency, allowing for the construction of
simple and understandable models that can be easily integrated
into other energy management workflows.

B. Power monitoring and management

It must be mentioned that hardware vendors offer soft-
ware interfaces to measure and manage energy, such as the
Running Average Power Limit (RAPL) interface [11]. This
API reports energy measurements of various system-on-chip
power domains that can be accessed through model specific
registers [28]. From this point, similar works emerged using
RAPL as a data source to model CPU power consumption [27].
RAPL has been widely used to monitor power consumption
and its accuracy has been validated across different architec-
tures [29] and workloads [39], demonstrating its ability to
isolate CPU power consumption from the rest of the system
with low overhead and high scalability [24]. Energy capping
techniques through RAPL have also been implemented to
enforce memory [18] or CPU [40] power limits.

III. IMPLEMENTATION

Building regression-based models for CPU power consump-
tion mainly requires two essential steps: (1) data collection,
that is, monitoring the target CPU to obtain a set of met-
rics (i.e., regression variables) and store them properly and



CPU Data

CPU Usage (%)
+ Temperature CPU Frequency (MHZ)

Run in a containerRun directly on the host

CPUFREQ PAPIGLANCES INFLUXDB GRAFANA

Power
consumption (W)

DATA QUERY API

CPU Time series

Fig. 1: Monitoring infrastructure for CPU data collection

efficiently; and (2) data fitting, which consists of estimating
the correlation between power consumption and the previously
retrieved variables. This fact motivates the use of different
technologies and tools to perform each step. This section
describes in detail the implementation of both steps, as well
as the automation of the whole process, which is one of the
advantages of our proposal.

A. Data collection and generation

In order to gather CPU metrics several monitoring tools
were deployed and orchestrated, as shown in Fig. 1.
Glances [5] is in charge of monitoring CPU usage and
temperature, the latter being useful to detect thermal throt-
tling. At the same time, the CPUFREQ script retrieves CPU
clock frequency from the cores used by the workload being
modelled. Finally, a C program using the PAPI library [10]
provides access to different RAPL hardware counters that
contain information about the CPU energy consumption.

This monitoring solution consists of lightweight agents that
can be deployed on different architectures and environments
in a simple way, which contributes to enhance the portability
of our proposal. These agents can also be executed inside
Docker [4] or Apptainer [1] containers, although the latter
was used in the experiments of this paper due to its bet-
ter compatibility with HPC systems. The monitoring agents
read and send data with a default sampling period of one
second, thus accurately capturing the power variations and
their correlation with the CPU metrics when running different
operations. To store the metrics, InfluxDB [7] is deployed
as a time series database, which can efficiently ingest the
received data even when a large number of agents are sending
them. To avoid the need for perfectly synchronised update
intervals between metrics, InfluxDB data is retrieved using 2-
second time windows (i.e., higher than the sampling period).
Thus, slightly desynchronised metrics are still retrieved within
the same time window [27]. Finally, Grafana [6] is deployed
as a visualisation tool, so that InfluxDB time series can be
manually analysed when necessary.

When it comes to establishing a relationship between CPU
metrics and its power consumption, it is crucial to collect
representative data. These data must reflect CPU power con-
sumption over the largest possible range of values for each
regressor variable. Therefore, the target CPU must be stressed

using different numbers of cores and running diverse types
and intensities of workloads, which overall results in varying
levels of CPU usage and frequency. To achieve this purpose,
a CLI tool named ‘stress-system’ was developed [13], which
stresses the target CPU using the cores and usage percentage
specified by the user. The CPU usage (-l option) must be set
in absolute terms (i.e., 700% usage corresponds to 7 cores
being used at 100%). Additionally, the user can provide a list
of specific cores to be stressed (-c option), so that the user-
defined usage is sequentially distributed among the selected
cores. For instance, if the user specifies a 530% usage and a
list of six cores, 100% of the usage is assigned to the first
five cores and the remaining 30% to the last one. To actually
stress the target CPU, our tool executes stress-ng [12] in the
background by translating the parameters specified by the user
into the required stress-ng executions. Finally, the type and
intensity of the workload executed to stress the CPU can also
be specified (-s option), currently supporting different stress
mechanisms or ‘stressors’ from stress-ng (e.g., ‘all’, ‘sysinfo’,
or a mix of both).

B. Data fitting
This process involves determining the specific coefficients

of the polynomial regression that are used to model CPU
power consumption using the previously obtained metrics.
To do so, the CPUPowerSeer tool [2] has been developed
to ease the burden of creating regression models from a
given dataset using the Scikit-Learn library. Our tool extracts
two datasets from InfluxDB to train and test the model,
respectively. To identify the start and end periods of the
experiments used to obtain the metrics (e.g., running stress-
system), CPUPowerSeer requires two timestamp files as input
(one per dataset). While each experiment corresponds to a
single workload execution under a specific usage percentage,
it is worth noting that the training and evaluation of the models
involves the execution of multiple experiments. Consequently,
timestamp files include several start and end periods. For each
period, CPUPowerSeer conducts some queries to InfluxDB in
order to gather the required CPU variables for the training or
evaluation of the models.

C. Automated model building
In order to be able to automatically create the models we

developed another tool: CPUPowerWatcher [3]. This tool is



Timestamp
files

Time
series

InfluxDB

Grafana

Target server CPU(s)

External server CPUPowerSeer

CPUPowerWatcher

Glances
CPUFREQ

PAPI

stress-system

Fig. 2: Architecture for automated model building

in charge of automatically deploying the CPU monitoring
infrastructure during the execution of experiments running
stress-system or any other workload (see Section III-A).
Additionally, CPUPowerWatcher automatically logs the start
and end timestamps of each experiment, so that they can be
later used by CPUPowerSeer to train and test the models (see
Section III-B). As shown in Fig. 2, the proposed methodology
involves running Glances, PAPI and CPUFREQ on the target
CPU while running the workloads using CPUPowerWatcher.
Ideally, InfluxDB and Grafana containers are deployed on
separate hardware to reduce noise. Finally, CPUPowerSeer can
be executed on any computer with access to the InfluxDB
container, in order to be able to retrieve the time series data
and automatically build the models.

IV. CPU POWER MODELLING

Leveraging the automated model building previously de-
scribed, several models can be proposed to explore the most
effective approach to estimate power consumption for a wide
range of workloads using high-level metrics and straightfor-
ward modelling methods. However, for them to be accurate
and comprehensive, it is important to take into account some
key factors that directly affect CPU power modelling such as
the different ways of distributing a workload across available
cores, the different CPU usage types, the correlation between
power and frequency, the training/test datasets used, or the
variables selected to predict power.

A. CPU core distribution

In multisocket servers, workloads can be distributed across
the available cores in many different ways, as these systems
feature several multicore CPUs. Accordingly, processes or
threads of a given workload can use cores from a single or
multiple CPUs. Furthermore, these cores can also be physi-
cal or logical, with a second thread/process running on the
same core through the use of the simultaneous multithreading
technology, supported by most current CPUs. Considering that
any CPU that has at least one active core incurs a base power
consumption and that running two processes on the same
physical core through simultaneous multithreading potentially
consumes less energy than running them on two separate
physical cores, grouping CPU resources as much as possible
should reduce consumption and increase power efficiency.
Therefore, the specific order in which CPU cores are allocated

to workloads, referred to as ‘core distribution’ from now on,
is an important aspect to consider when modelling.

To that end, our stress-system tool was used to conduct a
preliminary experiment where we analysed the impact on CPU
power consumption when using different core distributions by
stressing the CPU incrementally, initially using two cores and
allocating two new cores at each two-minute step. To do so,
a two-socket server with 16 physical cores per CPU (i.e., 32
logical cores) was stressed running the ‘all’ stressor for each
core distribution shown in Table I (one after the other). It is
worth noting that if single-socket servers are used only a subset
of distributions are possible (i.e., Group P, Group P&L and
Group 1P 2L). The results obtained for these experiments are
shown in Fig. 3, where CPU usage (user+system) is computed
as the average across all core distributions (see the blue line).
Group P has been omitted from the results because, as it
only uses physical cores one CPU at a time, it is a subset
of Group PP LL and their time series would overlap up to
half of the execution. Spread P results are limited to 32 cores
(3200% usage) since this distribution only uses physical cores
(i.e., 16 per CPU). As can be seen, there is an initial jump
in power consumption between 0% and 200% usage (from 50
W to 80 W approximately) due to the differences between an
idle and an active CPU. The two distributions that initially
use only a single CPU (Group P&L and Group 1P 2L) find
a local maximum (around 130 W) before 3200% usage (max-
imum value for a single 16-core CPU). While Group P&L
(violet circles) reaches this peak at around 2600% usage,
Group 1P 2L (red squares) reaches it earlier (around 1600%),
just when all the physical cores of a single CPU have been
allocated. Note that both distributions converge to around 120
W from their maximums when they reach 3200% usage, due to
operating at slightly lower frequencies since thermal throttling
was not detected. The other three distributions, which use
both CPUs from the beginning, present significantly higher
power values than the previous ones at 3200% usage. At that
point, Spread P&L (orange crosses) is using 16 physical and
16 logical cores taken from both CPUs and consuming about
150 W, while Group PP LL (green diamonds) and Spread P
(brown stars), both using 32 physical cores, consume even
more (about 180 W).

Overall, the distributions that assign pairs of physical and
logical cores increase their consumption more linearly, while
those that initially use only physical cores show a more
logarithmic behaviour, as adding them leads to a greater
consumption increase than just adding logical cores.

B. CPU states

When analysing CPU usage, it is crucial to distinguish
between its subcategories: (1) ‘idle’, which is the percentage
of time the CPU is running the special OS idle task when the
CPU has nothing to do; (2) ‘user’ and ‘system’, which are the
percentages of time the CPU is running user- and kernel-space
code, respectively (i.e., the CPU is active); and (3) ‘iowait’,
the percentage of time the CPU is idle but there is at least one
I/O operation in progress (i.e., the CPU is waiting for I/O).



TABLE I: CPU core distributions used to train the models

Distribution Description
Group P Only physical cores, one CPU at a time
Group P&L Pairs of physical and logical cores, one CPU at a time
Group 1P 2L Physical cores first, then logical cores, one CPU at a time
Group PP LL Physical cores first, one CPU at a time, then logical cores
Spread P Only physical cores, alternating between CPUs
Spread P&L Pairs of physical and logical cores, alternating between CPUs

0 25 50 75 100 125 150
Time (minutes)

0

1000

2000

3000

4000

5000

6000

CP
U 

Us
ag

e 
(%

)

3200%

Avg. usage
Group_P&L
Group_1P_2L
Spread_P&L
Group_PP_LL
Spread_P 50

75

100

125

150

175

200

Po
we

r C
on

su
m

pt
io

n 
(W

)

Fig. 3: CPU average usage and power consumption for differ-
ent core distributions

Considering the huge differences in power consumption
between an ‘idle’ CPU (i.e., usage is close to 0%) and an
‘active’ CPU (e.g., during workload execution), we decided to
model these two states separately to increase the precision
of the proposed models using exclusively time series data
corresponding to active CPU periods. However, idle con-
sumption was also determined as the average consumption
during idle CPU periods. Although it has not been used,
these idle measurements can still be useful for evaluating
resource and infrastructure management policies, such as the
potential benefits of consolidating an infrastructure rather than
decentralising its resources.

To analyse the potential differences in power consumption
among user, system and iowait states (idle is ignored as
previously explained), our stress-system tool was executed
using three different stressors from stress-ng: (1) ‘all’, that
iterates over all CPU stress methods to run a balanced load that
uses all the processor units, mainly contributing to increase
CPU user; (2) ‘sysinfo’, which runs an OS system call (i.e.,
times), thus increasing CPU system values; and (3) ‘iomix’,
which performs a mix of sequential, random and memory-
mapped I/O operations that contribute to CPU iowait.

Fig. 4a shows the power consumption for the executions
of ‘all’ and ‘sysinfo’ stressors at different levels of CPU
usage and frequency using the two-socket server described in
Section IV-A and Group P&L as core distribution. CPU usage
is presented as the sum of both user+system usages (X-axis),
and frequency as the average of all CPU cores being used

by the corresponding stressor (right axis). It can be seen that
system state consumes less energy than user at comparable
frequency and usage levels. For instance, the ‘all’ stressor
consumes around 195 W when using all CPU cores with a
sustained frequency of 2700 MHz, while ‘sysinfo’ consumes
about 18% less energy (160 W) under the same conditions.

Fig. 4b shows the power consumption for the executions
of ‘all’ and ‘iomix’ stressors using the same hardware and
Group P&L as core distribution. It should be noted that
‘iomix’ usage levels do not exceed 1500%, as this stressor
mainly generates CPU iowait usage (instead of user or system).
It can be seen that while iowait does not directly affect
CPU power consumption, it does have a significant impact
on frequency. High iowait values are associated with low
frequencies and, consequently, reduced power consumption.
These frequency variations are directly related to disk speed.
Each disk I/O operation is handled by the OS (i.e., using the
CPU), which can account for a significant portion of the total
access time (I/O latency). According to [25], as fast disks
perform more I/O operations per second than slower ones, the
CPU, in turn, must increase its frequency to keep I/O latencies
low (i.e., low CPU iowait). This behaviour was confirmed by
comparing iomix executions on HDD and SSD disks, as shown
in Figs. 5a and 5b. Note that Fig. 5b displays iowait usage on
the right axis instead of frequency. From both figures, it can
be concluded that SSDs show lower iowait values but higher
frequencies and power consumptions at similar CPU usage
levels.

Therefore, workloads that cause high iowait are typically
associated with low user and system values, the latter reflecting
the I/O operations processed by the OS. This fact motivated
the exclusion of iowait from the models proposed in this work,
as its effects are captured in the frequency and the other usage
metrics.

C. Correlation between CPU power and frequency
The relationship between CPU clock frequency and power

consumption is complex. Generally speaking, as the number
of active cores increases, power consumption likewise rises,
but their average frequency usually decreases following an in-
versely proportional relationship. This scenario can be seen in
Fig. 4a, where frequency decreases and consumption increases
as usage does (from left to right). This behaviour is due to the
dynamic frequency scaling performed by modern CPUs, where
cores can run at different maximum frequencies depending on
the number of active cores and the current processor conditions
(e.g., power and thermal limits). For instance, increasing the
number of active cores on an Intel Xeon Silver 4216 from 1



0 1000 2000 3000 4000 5000 6000
CPU Usage (%)

0

25

50

75

100

125

150

175

200
Po

we
r C

on
su

m
pt

io
n 

(W
)

Power (all)
Power (sysinfo)
Avg Frequency (all)
Avg Frequency (sysinfo)

0

500

1000

1500

2000

2500

3000

CP
U 

Fr
eq

ue
nc

y 
(M

Hz
)

(a) ‘all’ and ‘sysinfo’

0

500

1000

1500

2000

2500

3000

CP
U 

Fr
eq

ue
nc

y 
(M

Hz
)

0 1000 2000 3000 4000 5000 6000
CPU Usage (%)

0

25

50

75

100

125

150

175

200

Po
we

r C
on

su
m

pt
io

n 
(W

)

Power (all)
Power (iomix)
Avg Frequency (all)
Avg Frequency (iomix)

(b) ‘all’ and ‘iomix’

Fig. 4: Power consumption and frequency for different CPU usage levels during stressor executions

0

500

1000

1500

2000

2500

3000
CP

U 
Fr

eq
ue

nc
y 

(M
Hz

)

0 250 500 750 1000 1250 1500 1750 2000
CPU Usage (%)

0

25

50

75

100

125

150

175

200

Po
we

r C
on

su
m

pt
io

n 
(W

)

Power (HDD)
Power (SSD)
Avg Frequency (HDD)
Avg Frequency (SSD)

(a) Behaviour of CPU frequency (see right axis)

0

100

200

300

400

500

600

I/O
 W

ai
t (

%
)

0 250 500 750 1000 1250 1500 1750 2000
CPU Usage (%)

0

25

50

75

100

125

150

175

200

Po
we

r C
on

su
m

pt
io

n 
(W

)

Power (HDD)
Power (SSD)
I/O Wait (HDD)
I/O Wait (SSD)

(b) Behaviour of CPU iowait (see right axis)

Fig. 5: Power consumption for different CPU usage levels during the ‘iomix’ stressor execution on HDD and SSD disks

to 16 automatically triggers a slow-down of their maximum
average frequency from 3.2 to 2.7 GHz [8]. Conversely,
when active cores are running mainly I/O-intensive workloads,
there is a decrease in the CPU usage, frequency and power
consumption. In such scenarios, power consumption follows
a direct and proportional relationship with frequency. This
pattern can be seen in Fig. 5a, where at some points of the
execution (e.g., from 0% usage to 750%) all resources increase
linearly. In the end, this relationship between consumption and
frequency may be directly or indirectly proportional depending
on the workload used, so the modelling could be non-trivial.
In fact, our preliminary models using average frequency as a
variable showed lower accuracy with I/O-intensive workloads.
To overcome this issue, we propose the use of the summation
of all the frequencies of the active cores as an alternative

metric for CPU frequency. This value has a directly propor-
tional relationship with power consumption in both scenarios,
as it sums the frequencies of more cores when the CPU
usage increases. This approach simplifies power consumption
modelling using regression techniques and will be validated
in the experiments presented in Section V.

D. Training/test datasets and variable selection

The workload used to generate the training dataset must
be representative (similar) to the one used in the actual
scenario being modelled, as this typically leads to high ac-
curacy. Furthermore, it is essential for the test datasets to
depict realistic scenarios where modelling the CPU power
consumption is relevant. This implies not only the execution
of CPU-intensive workloads such as scientific simulations, but
also I/O-intensive ones, since many real-world codes involve



TABLE II: Proposed CPU power models

Model CPU model variables Training workload
M1 Uuser , Usystem

all, sysinfo, all+sysinfoM2 Uuser , Usystem, Favg

M3 Uuser , Usystem, Fsum

M4 Uuser , Usystem

all, sysinfo, all+sysinfo, iomixM5 Uuser , Usystem, Favg

M6 Uuser , Usystem, Fsum

heavy disk I/O operations while still making intensive CPU
usage (e.g., Big Data applications). Once the training and test
datasets are known, it is necessary to choose the appropriate
model variables. Considering that regression models adjust the
weight of each variable based on training data, it is critical
that the selected variables are sufficiently represented in these
data. Otherwise, the model may assign inconsistent weights
to missing variables in the training data. For instance, models
trained with workloads that involve both user and system usage
are supposed to include both types as independent variables,
while avoiding the use of other variables not represented in
the data (e.g., iowait).

Considering all these constraints, both user and system
usage have always been selected, adding frequency for some
models, as they are resources strongly correlated with CPU
power consumption according to the literature [17], [30], [36],
[37]. Note that iowait was excluded from the proposed models,
as its role in defining power consumption is captured by the
CPU frequency and usage metrics (see Section IV-B). Other
variables, such as temperature, were also discarded as they can
be influenced by external factors (e.g., the facilities where the
server is hosted).

E. Proposed models

Taking into account all the previously explained factors,
we rely on polynomial regressions because they are simple
and easy to understand and integrate, as well as low de-
manding in terms of computational resources and training
time. These methods are preferable over more complex ones,
such as neural networks, which have several drawbacks: they
require careful hyperparameter selection and optimisation,
which is difficult and complicates automation; they demand
more computational resources for training, even including
specific hardware such as GPUs; and our initial tests during
implementation showed no significant improvements.

This work proposes six models using a second-degree
polynomial regression, which are divided into two groups
according to their training workloads (see Table II). These
workloads were named after the stress-ng stressors that were
executed during data collection, where the ‘all+sysinfo’ work-
load represents an equal mix from both stressors. All the
models were trained with data corresponding to the execu-
tion of these stressors, while the CPU usage was gradually
increased according to each of the core distributions shown
in Table I. Regarding model variables, Uuser and Usystem

stand for CPU user and system usage, respectively, while Favg

and Fsum represent the average and summation frequencies

of active cores. While the first model (M1) is the most basic
one, including only user and system usage, M2 and M3 add
Favg and Fsum as an additional variable, respectively. M3
uses Fsum instead of Favg to check if solving the CPU power-
frequency inconsistencies can improve the results, as explained
in Section IV-C.

To achieve better accuracy, the variables of a regression
model must be independent. The existence of a strong cor-
relation between regression variables is known as multi-
collinearity, which can both reduce the accuracy of a model
and make it difficult to interpret. To avoid this, interaction
terms can be removed for those variables that are strongly
correlated. In our scenario, interaction terms for Fsum with
Uuser and Usystem were excluded in M3 and M6, considering
that Fsum directly depends on the number of active cores
(Fsum ≈ Favg ∗ Uuser+Usystem

100 ). The quadratic term was also
excluded for Fsum, as it was observed to worsen the results
in our preliminary experiments. Finally, to assess potential
accuracy variations when adding workloads that present high
iowait values, the ‘iomix’ stressor using an SSD disk was
added to the training workloads of M4, M5 and M6.

V. EXPERIMENTS

The models proposed in this paper were evaluated using two
multisocket servers that have 2 CPUs with 16 physical cores
each (i.e., 32 logical), 256 GiB of memory and one SATA
SSD disk. The first server (Server 1) has Intel Xeon Silver
4216 CPUs running at 2.1/3.2GHz base/turbo frequencies,
whereas the second one (Server 2) has Intel Xeon Gold 5218
CPUs running at 2.3/3.9GHz. In addition to CPU-intensive
workloads, I/O-intensive ones were also evaluated to analyse
their impact on power consumption. To test the models un-
der CPU-intensive workloads, the NAS Parallel Benchmarks
(NPB) suite [9] was used, and specifically the kernels IS,
FT, MG, CG, and BT. Regarding I/O-intensive workloads, the
models were tested using the BTIO kernel from NPB and
SMusket [22], a DNA error correction tool that represents
a real-world Big Data application implemented with Apache
Spark. All the workloads were run using two different core
distributions: Group PP LL and Group 1P 2L (see Table I),
in order to assess their impact on the accuracy of the models.
These distributions were selected as they are widely used
to run HPC workloads. This accuracy was measured using
the Mean Absolute Percentage Error (MAPE), an easy-to-
interpret metric that does not depend on the scale of the
data. We also report the adjusted R-Squared (R2

adj) as a
complementary metric, as it has been widely used in previous



TABLE III: Average model accuracies (MAPE in % and R2
adj) using Group PP LL

Model CPU-intensive I/O-intensive Total
Server 1 Server 2 Average Server 1 Server 2 Average Average

M1 6.68 0.89 5.91 0.91 6.30 0.90 6.20 0.87 6.28 0.87 6.24 0.87 6.27 0.89
M2 6.37 0.89 6.18 0.89 6.28 0.89 7.75 0.81 10.43 0.51 9.09 0.66 7.69 0.78
M3 6.63 0.89 6.30 0.89 6.47 0.89 7.31 0.76 7.56 0.79 7.44 0.78 6.96 0.83
M4 7.04 0.89 6.83 0.90 6.94 0.90 6.32 0.87 5.96 0.87 6.14 0.87 6.54 0.89
M5 6.69 0.88 6.27 0.89 6.48 0.89 7.80 0.81 7.87 0.83 7.84 0.82 7.16 0.86
M6 6.75 0.89 6.63 0.90 6.69 0.90 6.47 0.86 5.74 0.88 6.11 0.87 6.40 0.88

TABLE IV: Average model accuracies (MAPE in % and R2
adj) using Group 1P 2L

Model CPU-intensive I/O-intensive Total
Server 1 Server 2 Average Server 1 Server 2 Average Average

M1 8.18 0.82 8.32 0.76 8.25 0.79 5.55 0.90 5.51 0.87 5.53 0.88 6.89 0.84
M2 7.52 0.83 7.40 0.82 7.46 0.82 6.64 0.84 9.12 0.42 7.88 0.63 7.67 0.73
M3 8.62 0.77 8.24 0.77 8.43 0.77 7.01 0.75 6.84 0.74 6.93 0.75 7.68 0.76
M4 8.54 0.82 9.35 0.73 8.95 0.77 5.67 0.89 5.49 0.87 5.58 0.88 7.27 0.83
M5 7.32 0.84 7.54 0.82 7.43 0.83 6.39 0.86 6.46 0.87 6.43 0.87 6.93 0.85
M6 8.44 0.80 9.08 0.74 8.76 0.77 5.74 0.89 5.38 0.86 5.56 0.88 7.16 0.82

works, even though this metric is not suitable for non-linear
model evaluation [34].

A. Results

Table III presents the average accuracies of the proposed
models across all CPU- and I/O-intensive workloads on both
servers, and using Group PP LL core distribution. The inclu-
sion of the ‘iomix’ stressor in the training workloads (M4,
M5 and M6 models) led to decreased accuracy for CPU-
intensive codes, as these workloads became less representative
of the NPB kernels being predicted. In both servers, M4-M6
models achieve a higher average MAPE (lower accuracy) than
those not using ‘iomix’ (M1-M3). Conversely, their accuracy
increases for I/O-intensive codes due to the inclusion of the
‘iomix’ stressor. It is worth noting that the decrease between
M1 and M4 was notably smaller compared to the others
(M2 compared to M5, and M3 to M6), as these models do
not use frequency, which is the most affected variable when
running I/O-intensive workloads (see Section IV-C). When
comparing models that define frequency as Favg (M2 and
M5) against Fsum (M3 and M6), we find that models using
Fsum are more accurate for I/O-intensive workloads, but less
accurate for CPU-intensive ones, as the CPU power-frequency
inconsistencies solved using Fsum only appear when the
CPU runs operations that involve both CPU user/system and
iowait (see Section IV-C). Similar results are obtained when
using Group 1P 2L, as shown in Table IV. Including the
‘iomix’ stressor in the training workloads generally worsens
the predictions of CPU-intensive codes (except for M2-M5),
while improving those of I/O-intensive ones (except for M1-
M4). Again, M3 and M6 show increased accuracy with I/O-
intensive codes compared to M2 and M5, but they underper-
form with CPU-intensive ones. Overall, M1 has the lowest
average MAPE: 6.27% and 6.89% for Group PP LL and
Group 1P 2L, respectively, being the best choice for unknown
workloads. M2 seems optimal for CPU-intensive codes, with
errors of 6.28% and 7.46%, respectively. Finally, M6 is the

most accurate model for I/O-intensive workloads, reporting
errors of 6.11% and 5.56%.

To further analyse the predictions when running real-world
codes, Fig. 6 shows the results for SMusket using 1, 16, 32
and 64 threads and the Group PP LL core distribution on
the first server, along with the predicted values by the most
accurate model for I/O-intensive workloads (M6). Note that
Favg is shown in the plots even though M6 relies on Fsum,
just to avoid having a very large scale on the left axis (i.e.,
CPU model variables), since Fsum can achieve values up to
172800 MHz. The MAPEs for each execution are 1.27% (1
thread), 6.12% (16 threads), 10.80% (32 threads), and 10.06%
(64 threads). M6 increases its accuracy for low usage and
power values.

When using one thread (Fig. 6a), the model variables
and power consumption show low variability throughout the
whole execution, and the model fits power behaviour perfectly.
However, when increasing the number of threads to 16, 32,
or 64 (Figs. 6b, 6c and 6d), the variability of the metrics
and the errors of the model increase. In general, M6 tends to
achieve better predictions for 16 and 64 threads than for 32.
Using 32 threads, a first computing phase can be identified
(around minutes 0-2), where the consumption is higher and
the model predicts worse. In later phases, the consumption
decreases while the predictions improve. When 64 threads are
used, five phases can be distinguished. The first, fourth and
fifth phases, corresponding to minutes 0-2, 5-7 and 7-8, respec-
tively, show low variability, especially the first and fifth phases,
where M6 predictions are very accurate. In contrast, the
second phase (minutes 2-4) is characterised by high variability,
worsening the model predictions. Finally, in the third phase
(minutes 4-5) Uuser and Favg show minimal values, which
are coherently correlated with low power consumption. This
third phase corresponds to stages in the SMusket execution
where all threads are performing network operations (e.g.,
‘collectAsMap’ Spark jobs). Overall, M6 predictions seem to
follow the pattern of power consumption, although they may



0 5 10 15 20 25 30 35 40 45 50
Time (minutes)

0

1000

2000

3000

4000

5000

6000
CP

U 
M

od
el

 V
ar

ia
bl

es
Uuser = User Usage (%)
Usystem = System Usage (%)
Favg = Avg Frequency (MHz)
Power Consumption (W)
Predicted Power Consumption (W)

50

75

100

125

150

175

200

Po
we

r C
on

su
m

pt
io

n 
(W

)

(a) 1 thread

0 1 2 3 4 5 6 7 8
Time (minutes)

0

1000

2000

3000

4000

5000

6000

CP
U 

M
od

el
 V

ar
ia

bl
es

50

75

100

125

150

175

200

Po
we

r C
on

su
m

pt
io

n 
(W

)

(b) 16 threads

0 1 2 3 4 5 6 7
Time (minutes)

0

1000

2000

3000

4000

5000

6000

CP
U 

M
od

el
 V

ar
ia

bl
es

50

75

100

125

150

175

200

Po
we

r C
on

su
m

pt
io

n 
(W

)

(c) 32 threads

0 1 2 3 4 5 6 7
Time (minutes)

0

1000

2000

3000

4000

5000

6000

CP
U 

M
od

el
 V

ar
ia

bl
es

50

75

100

125

150

175

200

Po
we

r C
on

su
m

pt
io

n 
(W

)

(d) 64 threads

Fig. 6: Prediction results for the M6 model running the SMusket application on Server 1

exhibit some offset when variability increases, highlighting its
impact on prediction accuracy.

Regarding CPU model variables, there is a direct correla-
tion between them and power consumption, since the latter
increases or decreases as Uuser, Usystem or Favg do. An
example of such behaviour can be seen from minute 0 to 2
during the SMusket execution with 16 threads (see Fig. 6b),
where there are two sharp drops for both Uuser and Favg ,
leading to a decrease in consumption as well, which is also
accurately replicated by M6. In contrast, the relationship
between Favg and power consumption varies across different
executions. When using one thread (Fig. 6a), Favg keeps
values close to 3200 MHz, which corresponds to the turbo
frequency, while power remains around 80 W (i.e., the highest
frequency but low power consumption). When increasing the
number of threads to 16, 32 and 64 (Figs. 6b, 6c and 6d),
Favg does not exceed 2700 MHz in any scenario, while power
reaches values around 130 W, 180 W and 190 W, respectively
(i.e., lower frequency but higher consumption). Therefore,
Favg shows a directly proportional relationship with power
consumption for a constant number of threads, while this
relation becomes inversely proportional across executions with
different number of threads. However, M6 uses Fsum precisely
to overcome this issue, as explained in Section IV-C.

Finally, in order to prove the effectiveness of the solution
on other CPU architectures, the proposed models were also
trained and evaluated on an AMD Ryzen 9 3900X with 12
physical cores (24 logical), 64 GiB of memory and one SATA
SSD disk. To further analyse the predictions when using this
CPU, Fig. 7 shows the results for SMusket using 1, 6, 12 and
24 threads, along with the predicted values by the M1 model,

which was the most accurate for SMusket on this architecture.
Note that frequency is not shown in this figure as the M1
model only relies on Uuser and Usystem variables. The MAPEs
for each execution are 5.31% (1 thread), 5.57% (6 threads),
10.13% (12 threads), and 13.13% (24 threads).

Similarly to Server 1, the model variables and power con-
sumption show low variability at low usage levels. However,
power varies slightly between minutes 20 and 30 during the
execution with one thread on this CPU (Fig. 7a) and between
minutes 6 and 10 when using six threads (Fig. 7b), resulting
in lower model accuracy. These variations correspond to the
execution of the ‘collectAsMap’ jobs previously mentioned.
As the number of threads increases, the variability caused by
the execution of these jobs increases as well (see Fig. 7c, min-
utes 4-6, and Fig. 7d, minutes 3-5). Nevertheless, the model
accurately follows the variable patterns of power consumption,
while it shows higher inaccuracies when predicting power for
high usage levels (see Fig. 7c, minutes 6-9, and Fig. 7d,
minutes 5-7). Regardless, the model shows a relatively low
MAPE considering that it requires low training times and few
computing resources, which further proves that the proposed
solution can be adapted to different CPU vendors with ease.
Additionally, the main advantage of this methodology lies in
its ability to evaluate and compare new models in an agile
way, thus choosing the one that best fits the target CPU.

VI. CONCLUSIONS

Modelling CPU power consumption from time series data
is influenced by several complex factors. Previous works
have explored aspects such as the correlation between CPU
power consumption, usage and frequency. This paper intro-
duces additional factors, including the relationship between



0 5 10 15 20 25 30 35 40 45 50
Time (minutes)

0

500

1000

1500

2000
CP

U 
M

od
el

 V
ar

ia
bl

es
Uuser = User Usage (%)
Usystem = System Usage (%)
Power Consumption (W)
Predicted Power Consumption (W)

50

75

100

125

Po
we

r C
on

su
m

pt
io

n 
(W

)

(a) 1 thread

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Time (minutes)

0

500

1000

1500

2000

CP
U 

M
od

el
 V

ar
ia

bl
es

50

75

100

125

Po
we

r C
on

su
m

pt
io

n 
(W

)

(b) 6 threads

0 1 2 3 4 5 6 7 8 9
Time (minutes)

0

500

1000

1500

2000

CP
U 

M
od

el
 V

ar
ia

bl
es

50

75

100

125

Po
we

r C
on

su
m

pt
io

n 
(W

)

(c) 12 threads

0 1 2 3 4 5 6 7
Time (minutes)

0

500

1000

1500

2000

CP
U 

M
od

el
 V

ar
ia

bl
es

50

75

100

125

Po
we

r C
on

su
m

pt
io

n 
(W

)

(d) 24 threads

Fig. 7: Prediction results for the M1 model running the SMusket application on an AMD Ryzen 9 3900X

the workload’s power consumption and its core distribution
and the differences in power consumption across CPU usage
types (i.e., user, system, iowait). Considering the various
factors involved in modelling, a generic model is preferable
for unknown workloads, aiming for good average accuracy
across different scenarios. Otherwise, if workloads are known
in advance, using multiple specific models trained on similar
workloads can yield optimal accuracy in each scenario. In both
instances, agile model building and evaluation is critical to
select the most appropriate model for a particular case. There-
fore, this work also proposes a set of tools to fully automate
the whole process, enabling the evaluation of multiple models
using different variables (e.g., CPU usage and frequency),
prediction methods (e.g., linear or polynomial regression),
core distributions (e.g., Group PP LL, Group 1P 2L), and
training/test workloads (e.g., benchmarks, real applications).

This toolkit is designed to be flexible, allowing easy mod-
ification of any of these features and providing support for
modelling CPUs from different vendors. One potential future
work of the resulting models may be the dynamic control of
the energy consumed by an application based on limiting its
CPU usage. Furthermore, in scenarios where multiple applica-
tions are running on the same CPU, different models could be
applied to each one based on its core distribution. The tools
developed and presented in this work are publicly available at
https://github.com/UDC-GAC/AutoPowerModeling.

ACKNOWLEDGMENT

This work was supported by grant PID2022-136435NB-
I00, funded by MCIN/AEI/10.13039/501100011033 and by
“ERDF A way of making Europe”, EU. CITIC, as a centre

accredited for excellence within the Galician University Sys-
tem and a member of the CIGUS Network, receives subsidies
from the Department of Education, Science, Universities, and
Vocational Training of the Xunta de Galicia. Additionally, it
is co-financed by the EU through the FEDER Galicia 2021-
27 operational program (ref. ED431G 2023/01). This work
was also funded by Xunta de Galicia through a predoctoral
fellowship (ref. ED481A-2023-035).

REFERENCES

[1] Apptainer, https://apptainer.org/, [Visited July 2024]
[2] CPUPowerSeer, https://github.com/TomeMD/CPUPowerSeer.git
[3] CPUPowerWatcher, https://github.com/TomeMD/CPUPowerWatcher.git
[4] Docker, https://www.docker.com/, [Visited July 2024]
[5] Glances, https://nicolargo.github.io/glances, [Visited July 2024]
[6] Grafana, https://grafana.com, [Visited July 2024]
[7] InfluxDB, https://www.influxdata.com, [Visited July 2024]
[8] Intel Xeon Silver 4126 frequencies, https://en.wikichip.org/wiki/intel/

xeon silver/4216#Frequencies, [Visited July 2024]
[9] NAS Parallel Benchmarks, https://www.nas.nasa.gov/software/npb.html,

[Visited July 2024]
[10] Performance Application Programming Interface (PAPI), https://icl.utk.

edu/papi, [Visited July 2024]
[11] Reading RAPL energy measurements from Linux, https://web.eece.

maine.edu/∼vweaver/projects/rapl/, [Visited July 2024]
[12] stress-ng, https://github.com/ColinIanKing/stress-ng, [Visited July 2024]
[13] stress-system, https://github.com/TomeMD/stress-system.git
[14] Almeida, F., et al.: Energy monitoring as an essential building block

towards sustainable ultrascale systems. Sustainable Computing: Infor-
matics and Systems 17, 27–42 (2018)

[15] Bertran, R., et al.: Energy accounting for shared virtualized environ-
ments under DVFS using PMC-based power models. Future Generation
Computer Systems 28(2), 457–468 (2012)

[16] Bridges, R.A., Imam, N., Mintz, T.M.: Understanding GPU power: A
survey of profiling, modeling, and simulation methods. ACM Computing
Surveys 49(3), 41:1–41:27 (2016)

[17] Dargie, W.: A stochastic model for estimating the power consumption of
a processor. IEEE Transactions on Computers 64(5), 1311–1322 (2014)



[18] David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: RAPL:
Memory power estimation and capping. In: 16th ACM/IEEE Intl. Symp.
on Low Power Electronics and Design (ISLPED 2010). pp. 189–194.
Downton, TX, USA (2010)

[19] Dayarathna, M., Wen, Y., Fan, R.: Data center energy consumption
modeling: A survey. IEEE Communications Surveys & Tutorials 18(1),
732–794 (2015)

[20] Ding, C.S., Tsui, C.Y., Pedram, M.: Gate-level power estimation using
tagged probabilistic simulation. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 17(11), 1099–1107 (1998)

[21] Enes, J., Fieni, G., Expósito, R.R., Rouvoy, R., Touriño, J.: Power
budgeting of Big Data applications in container-based clusters. In: IEEE
Intl. Conf. on Cluster Computing (CLUSTER 2020). pp. 281–287.
Virtual (2020)

[22] Expósito, R.R., González-Domı́nguez, J., Touriño, J.: SMusket: Spark-
based DNA error correction on distributed-memory systems. Future
Generation Computer Systems 111, 698–713 (2020)

[23] Fieni, G., Rouvoy, R., Seiturier, L.: Smartwatts: Self-calibrating
software-defined power meter for containers. In: 20th IEEE/ACM Intl.
Symp. on Cluster, Cloud and Internet Computing (CCGrid 2020). pp.
479–488. Virtual (2020)

[24] Ilsche, T., Hackenberg, D., Graul, S., Schöne, R., Schuchart, J.: Power
measurements for compute nodes: Improving sampling rates, granularity
and accuracy. In: Sixth Intl. Green and Sustainable Computing Conf.
(IGSC 2015). pp. 1–8. Las Vegas, NV, USA (2015)

[25] Imamura, S., Yoshida, E.: Reducing CPU power consumption for
low-latency SSDs. In: IEEE 7th Non-Volatile Memory Systems and
Applications Symp. (NVMSA). pp. 79–84. Hakodate, Japan (2018)

[26] Jaiantilal, A., Jiang, Y., Mishra, S.: Modeling CPU energy consumption
for energy efficient scheduling. In: 1st Workshop on Green Computing
(GCM’10). pp. 10–15. Bangalore, India (2010)

[27] Kavanagh, R., Djemame, K.: Rapid and accurate energy models through
calibration with IPMI and RAPL. Concurrency and Computation: Prac-
tice and Experience 31(13), e5124 (2019)

[28] Khan, K.N.: Energy measurement and modeling in high performance
computing with Intel’s RAPL. Ph.D. thesis, Aalto University (2018)

[29] Lawson, G., Sosonkina, M., Shen, Y.: Towards modeling energy con-
sumption of Xeon Phi. arXiv:1505.06539 (2015)

[30] Rivoire, S., Ranganathan, P., Kozyrakis, C.: A comparison of high-level
full-system power models. In: USENIX Workshop on Power Aware
Computing and Systems (HotPower’08). p. 5. San Diego, CA, USA
(2008)

[31] Roy, S., Rudra, A., Verma, A.: An energy complexity model for algo-
rithms. In: 4th Conf. on Innovations in Theoretical Computer Science
(ITCS 2013). pp. 283–304. Berkeley, CA, USA (2013)

[32] Shi, W., Wang, S., Luo, B.: CPT: An energy efficiency model for multi-
core computer systems. In: 5th Workshop on Energy-Efficient Design.
pp. 1–6. Tel-Aviv, Israel (2013)

[33] Sı̂rbu, A., Babaoglu, O.: Power consumption modeling and prediction in
a hybrid CPU-GPU-MIC supercomputer. In: 22nd Intl. Conf. on Parallel
and Distributed Computing (Euro-Par 2016). pp. 117–130. Grenoble,
France (2016)

[34] Spiess, A.N., Neumeyer, N.: An evaluation of R2 as an inadequate
measure for nonlinear models in pharmacological and biochemical
research: a Monte Carlo approach. BMC Pharmacology 10, 6:1–6:11
(2010)

[35] Suleiman, D., Ibrahim, M., Hamarash, I.: Dynamic voltage frequency
scaling (DVFS) for microprocessors power and energy reduction. In:
4th Intl. Conf. on Electrical and Electronics Engineering (ICEEE 2005)
(2005)

[36] Tarafdar, A., Sarkar, S., Das, R.K., Khatua, S.: Power modeling for
energy-efficient resource management in a cloud data center. Journal of
Grid Computing 21, 10:1–10:29 (2023)

[37] Wang, H., Jing, Q., Chen, R., He, B., Qian, Z., Zhou, L.: Distributed
systems meet economics: Pricing in the cloud. In: 2nd USENIX Work-
shop on Hot Topics in Cloud Computing (HotCloud’10). p. 6. Boston,
MA, USA (2010)

[38] Xie, Z., et al.: APOLLO: An automated power modeling framework
for runtime power introspection in high-volume commercial micropro-
cessors. In: 54th Annual IEEE/ACM Intl. Symp. on Microarchitecture
(MICRO-54). pp. 1–14. Athens, Greece (2021)

[39] Zhai, Y., Zhang, X., Eranian, S., Tang, L., Mars, J.: HaPPy: Hyperthread-
aware power profiling dynamically. In: 2014 USENIX Annual Technical
Conf. (USENIX ATC 14). pp. 211–217. Philadelphia, PA, USA (2014)

[40] Zhang, H., Hoffman, H.: A quantitative evaluation of the RAPL power
control system. In: 10th Intl. Workshop on Feedback Computing. pp. 1–
6. Seattle, WA, USA (2015)

[41] Zhang, Y., Ren, H., Khailany, B.: GRANNITE: Graph neural network
inference for transferable power estimation. In: 57th ACM/IEEE Design
Automation Conf. (DAC’20). pp. 1–6. Virtual (2020)

[42] Zhou, Y., Ren, H., Zhang, Y., Keller, B., Khailany, B., Zhang, Z.:
PRIMAL: Power inference using machine learning. In: 56th ACM/IEEE
Design Automation Conf. (DAC’19). pp. 1–6. Las Vegas, NV, USA
(2019)


