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Abstract

The popularity of Partitioned Global Address Space (PGAS) languages has increased during the last
years thanks to their high programmability and performance through an efficient exploitation of data
locality, especially on hierarchical architectures such as multicore clusters. This paper describes UP-
CBLAS, a parallel numerical library for dense matrix computations using the PGAS Unified Parallel
C (UPC) language. The routines developed in UPCBLAS are built on top of sequential BLAS func-
tions and exploit the particularities of the PGAS paradigm, taking into account data locality in order to
achieve a good performance. Furthermore, the routines implement other optimization techniques, several
of them by automatically taking into account the hardware characteristics of the underlying systems on
which they are executed. The library has been experimentally evaluated on a multicore supercomputer
and compared to a message-passing based parallel numerical library, demonstrating good scalability and
efficiency.

keywords: Parallel Library; Matrix Computations; PGAS; UPC; BLAS

1 Introduction

The Partitioned Global Address Space (PGAS) programming model provides significant productivity advan-
tages over traditional parallel programming paradigms. In the PGAS model all threads share a global address
space, just as in the shared memory model. However, this space is logically partitioned among threads, just
as in the distributed memory model. Thus, the data locality exploitation increases performance, whereas
the shared memory space facilitates the development of parallel codes. As a consequence, the PGAS model
has been gaining rising attention. A number of PGAS languages are now ubiquitous, such as Titanium [1],
Co-Array Fortran [2] and Unified Parallel C (UPC) [3].

UPC is an extension of ANSI C for parallel computing. In [4] El-Ghazawi and Cantonnet established,
through an extensive evaluation of experimental results, that UPC can potentially perform at similar levels to
those of MPI. Besides, the one-sided communications present in languages such as UPC were demonstrated
to be able to obtain even better performance than the traditional two-sided communications [5]. Barton et
al. [6] further demonstrated that UPC codes can scale up to thousands of processors with the right support
from the compiler and the run-time system. More up-to-date evaluations [7,8] have confirmed this analysis.
Currently, there are commercial and open source UPC compilers, such as Berkeley UPC [9], GCC UPC [10],
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HP UPC [11] or IBM UPC [12], for nearly all parallel machines. However, a barrier to a more widespread
acceptance of UPC is the lack of parallel libraries for UPC developers.

This paper presents UPCBLAS, a parallel numerical library with a relevant subset of the BLAS rou-
tines [13, 14] implemented for UPC. The BLAS library provides standard building blocks for performing
basic vector and matrix operations and it is widely used by scientists and engineers as it usually obtains
good levels of performance through an efficient exploitation of the memory hierarchy. The developed UP-
CBLAS routines exploit the particularities of the PGAS paradigm and they call internally BLAS routines
to perform the sequential computations within each thread.

The rest of this paper is organized as follows. Section 2 summarizes the related work. Section 3 provides
an overview of the memory model in UPC, as background for the following sections. Section 4 describes the
UPCBLAS design, including the parallel algorithms to perform the most representative routines. Section 5
explains the optimization techniques used in the implementation in order to provide efficient BLAS routines
in UPC. Section 6 presents the analysis of the experimental results obtained on an HP supercomputer (Finis
Terrae), as well as their comparison with PBLAS, a parallel numerical library based on MPI. Section 7
analyzes the advantages and drawbacks of UPC to develop a parallel numerical library. Finally, conclusions
are discussed in Section 8.

2 Related Work

In the literature there are several numerical libraries with support for parallel dense matrix computations.
Among them, PBLAS [15, 16], a subset of BLAS, and ScaLAPACK [17], a subset of LAPACK [18], are
the most popular ones. Based on them, Aliaga et al. [19] made an effort to parallelize the open source
numerical library GSL [20]. Moreover, many vendors provide their own parallel numerical libraries, such as
Intel MKL [21], IBM PESSL [22] and HP MLIB [23]. All of them implement parallel numerical routines
using the message-passing paradigm, assisting programmers of distributed memory systems.

The main drawback of the message-passing based libraries is that they need an explicit data distribution
that increases the effort required to use them. Users are forced to deal with specific structures defined in the
library and to work in each process only with the part of the matrices and vectors stored in the local memory.
Therefore, users must be aware of the appropriate local indexes to use in each process, which increases the
complexity of developing parallel codes [24]. In the literature there exist some proposals that try to ease the
use of message-passing numerical libraries, such as PyScaLAPACK [25] and Elemental [26]. Following this
trend, one of the goals of UPCBLAS is to increase programmability. The PGAS languages in general, and
UPC in particular, offer productivity advantages compared to the message-passing model. In [27] the number
of lines of code needed by the MPI and the UPC implementations of the NAS Parallel Benchmarks and other
kernels are compared. Similar statistical studies with university students are presented in [28] and [29]. These
works have demonstrated that the effort needed to solve the same problem is lower in UPC than in MPI.
Furthermore, the global address space in UPC allows to hide the complex local index generation for matrices
and vectors as well as data movement issues present in the message-passing approaches. Experimental results
will show that simplicity does not significantly impact performance.

Regarding other PGAS libraries proposals, a parallel numerical library that combines the object-oriented-
like features of Fortran 95 with the parallel syntax of Co-Array Fortran was presented in [30]. However, its
object-oriented layer leads to use object maps, additional structures to work with distributed matrices
and vectors similarly to the message-passing based libraries, which increases the effort needed to parallelize
sequential numerical algorithms. Travinin and Kepner [31] developed pMatlab, a parallel library built on top
of MatlabMPI (a set of Matlab scripts that implement a subset of MPI). It works with matrices and vectors
distributed by simulating a pure PGAS scenario in order to take advantage of the ease of programming and
a higher level of abstraction.

Focusing on numerical computations in UPC, Bell and Nishtala present in [32] a sparse triangular solver
in UPC. In [33] Husbands and Yelick undertake the parallelization of the LU factorization. However, these
works do not take advantage of the ease of use of the global shared memory in UPC as the matrices and
vectors are initially distributed in the private memory of the threads, in the same way that in message-passing
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numerical libraries.
The main contribution of our work is to provide, for the first time, the design and implementation of

a parallel BLAS library for a pure PGAS language that directly exploits the characteristics of its memory
model. The starting point of this work is the one presented in [34], where a preliminary design and imple-
mentation of a dense PGAS-oriented BLAS library was shown. The design of the library has greatly evolved
in order to:

1. Simplify and improve the interface and thus facilitate the use of the library. In the preliminary design
the library had two types of functions per numerical routine: one function that worked with the
data replicated in the private memory of the threads and another one that used shared memory. This
duplicity of functions increased the difficulty of use of the library. As will be shown in the next sections,
the current design, based on shared arrays, gathers in a single version the benefits (programmability
and performance) provided separately by the previous function types.

2. Avoid some memory overheads due to the replication of matrices and vectors, especially important
in BLAS3 routines. The new implementation avoids these overheads by using an algorithm by blocks
obtaining even better performance. Besides, this algorithm adapts its behavior to the characteristics
of the machine, being suitable for different architectures.

3. Support consecutive calls to the same or different parallel BLAS routines (a common case in practice)
without needing to redistribute the data among the threads. With the previous design a data redistri-
bution was necessary between two consecutive calls. Now the distribution of the data can be reused,
avoiding the performance overhead due to redistributions.

4. Allow to work with submatrices, which is especially useful when using the BLAS routines in iterative
algorithms.

5. Include support for complex datatypes, widely extended in numerical codes.

6. Include new optimization techniques that increase the performance of the library. Some of these
techniques take advantage of the knowledge of some characteristics of the machine on which the library
is installed so the UPCBLAS routines can adapt themselves to different systems.

3 Background: Overview of the Memory Model in UPC

This section will explain the most important features of the memory model in UPC which were taken
into account to design the interface of the library, determine the most appropriate data distributions among
threads and implement the numerical routines. Besides, an overview of the different types of pointers present
in the language is also provided as their behavior is the basis for some of the optimization techniques included
in UPCBLAS.

All PGAS languages, and thus UPC, expose a global shared address space to the user which is logically
divided among threads, so each thread is associated or presents affinity to a part of the shared memory, as
shown in Figure 1. Moreover, UPC also provides a private memory space per thread for local computations.
Therefore, each thread has access to both its private memory and to the whole global space, even the parts
that do not present affinity to it. This memory specification combines the advantages of both the shared
and distributed programming models. On the one hand, the global shared memory space facilitates the
development of parallel codes, allowing all threads to directly read and write remote data without explicitly
notifying the owner. On the other hand, the performance of the codes can be increased by taking into
account data affinity. Typically the accesses to remote data will be much more expensive than the accesses
to local data (i.e. accesses to private memory and to shared memory with affinity to the thread).

Shared arrays are employed to implicitly distribute data among all threads, as shared arrays are spread
across the threads. The syntax to declare a shared array A is: shared [BLOCK FACTOR] type A[N], being
BLOCK FACTOR the number of consecutive elements with affinity to the same thread, type the datatype,
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Figure 1: Memory model in UPC

and N the array size. It means that the first BLOCK FACTOR elements are associated to thread 0, the next
BLOCK FACTOR ones to thread 1, and so on. Thus, the element i in the array has affinity to the thread
b i
BLOCK FACTORcmod(THREADS), being THREADS the total number of threads in the UPC execution.

If BLOCK FACTOR is not specified, it is assumed to be 1 (i.e. cyclic distribution).
As an extension of the C language, UPC provides functionality to access memory through pointers. Due

to the two types of memory available in the language, several types of pointers arise:

• Private pointers (from private to private). They are only available for the thread that stores them
in its private memory and can reference addresses in the same private memory or in the part of the
shared memory with affinity to the owner. Their syntax is the same of standard C pointers: type *p

• Private pointers to shared memory (from private to shared). They are only available for the thread
that stores them in its private memory, but can have access to any data in the shared space. They
contain three fields in order to know their exact position in the shared space: the thread where the data
is located, the block that contains the data and the phase (the location of the data within the block).
Thus, when performing pointer arithmetic on a pointer-to-shared all three fields will be updated,
making the operation slower than private pointer arithmetic. As in shared arrays, the BLOCK FACTOR

can be specified: shared [BLOCK FACTOR] type *p

• Shared pointers (from shared to shared). They are stored in shared memory (and therefore accessible
by all threads) and they can access any data in the shared memory. Their complexity is similar to
private pointers to shared memory. They are defined as: shared [BLOCK FACTOR] type *shared p

• Shared pointers to private memory (from shared to private). They are stored in shared memory and
point to the private space. However, their use is not advisable and they are not available in some
compiler implementations.

4 UPCBLAS Design

Parallel numerical libraries based on the message-passing paradigm force the user to distribute the elements
of the input vectors and matrices among processes. Therefore, new structures to handle these distributed
inputs need to be created and these structures are passed as parameters to the parallel BLAS functions. In
UPC shared arrays implicitly distribute their elements among the parts of the shared memory with affinity
to the different threads. Unlike message-passing based codes, which require the input data to be distributed
in the local memory of each process, PGAS functions can simplify this data distribution by using shared
arrays.

UPCBLAS contains a subset of representative BLAS routines. Table 1 lists all the implemented routines
grouped in three levels: BLAS1 (vector-vector operations), BLAS2 (matrix-vector operations) and BLAS3
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(matrix-matrix operations). A total of 56 different functions were implemented: 14 routines and 4 datatypes
per routine.

Table 1: UPCBLAS routines. All the functions follow the naming convention: upc blas Tblasname, where
“T” represents the data type (s=float; d=double; c=single precision complex; z=double precision complex)
and blasname is the name of the routine in the sequential BLAS library

BLAS level Tblasname Action

BLAS1

Tcopy Copies a vector
Tswap Swaps the elements of two vectors
Tscal Scales a vector by a scalar
Taxpy Updates a vector using another one:

y = α ∗ x+ y
Tdot Dot product between two vectors

Tnrm2 Euclidean norm of a vector
Tasum Sums the absolute value of the elements of a vector
iTamax Finds the index with the maximum value in a vector
iTamin Finds the index with the minimum value in a vector

BLAS2
Tgemv Matrix-vector product
Tger Outer product between two vectors
Ttrsv Solves a triangular system of equations

BLAS3
Tgemm Matrix-matrix product
Ttrsm Solves a block of triangular systems of equations

All the routines return a local integer error value which refers only to each thread execution. In order to
ensure that no error has happened in any thread, the global error checking must be made by the programmer
using the local error values. This is a usual practice in parallel libraries to avoid unnecessary synchronization
overheads.

4.1 BLAS1 Routines

In order to favor the adoption of UPCBLAS among PGAS programmers the syntax of these functions is
similar to the standard collectives library [3]. For instance, the syntax of the single precision dot product is:

int upc blas sdot(int block size, int size, shared void *x,

shared void *y, shared float *dst);

being x and y the source vectors of length size; dst the pointer to shared memory where the dot product
result will be written; and block size the block factor (see BLOCK FACTOR in Section 3) of the source vectors.
For performance reasons, the block factor must be the same for both vectors. This function treats pointers
x and y as if they had type shared [block size] float[size].

An important design decision in UPCBLAS is that, looking for efficiency, only one block size parameter
to indicate the same block factor for both shared arrays is included. Figure 2 shows two scenarios for the dot
product. When both vectors have the same block size, all the pairs of elements that must be multiplied
are stored in the shared memory with affinity to the same thread. Thus, each thread only has to perform its
partial dot product in a sequential way and the final result is obtained through a reduction operation over
all threads. However, in the second case, several remote accesses that affect performance are necessary so
that each thread can obtain all the data needed in its partial dot product.

Finally, in order to be able to work with subvectors, x and y do not need to point to the first element
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Figure 2: Remote and local accesses in upc blas sdot according to the block factor of the source vectors

Figure 3: Meaning of the parameters of upc blas sdot when working with subvectors

of a shared array. Figure 3 illustrates an example for a subvector that is stored from position 2 to 13 of a
shared array. The only restriction is that the subvector must start in the first position of a block (i.e. its
phase must be 0). This is also a restriction of the standard UPC libraries (e.g. the collectives library) and
the natural way to declare and allocate shared arrays.

4.2 BLAS2 Routines

Shared matrices in UPC can only be distributed in one dimension as the UPC syntax does not allow mul-
tidimensional layouts. The definition of multidimensional block factors has been proposed in [35], although
currently there are no plans to include this extension in the language specification. Therefore, all the
UPCBLAS routines rely on the one dimensional data distribution present in the standard. An additional
parameter (dimmDist) is needed in the routines to indicate the dimension used for the distribution of the ma-
trix. For instance, the UPCBLAS routine for the single precision matrix-vector product (y = α∗A∗x+β∗y) is:

int upc blas sgemv(UPCBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPCBLAS TRANSPOSE transpose,

int m, int n, float alpha, shared void *A,

int lda, shared void *x, float beta,

shared void *y);

being A and x the source matrix and vector, respectively; y the result vector; transpose an enumerated value
to indicate whether matrix A is transposed; m and n the number of rows and columns of the matrix; alpha
and beta the scale factors for A and y, respectively; and dimmDist another enumerated value to indicate
if the source matrix is distributed by rows or columns. lda is a parameter inherited from the sequential
BLAS library to work with submatrices. It expresses the memory distance between two elements in the same
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column and in consecutive rows of the submatrix. Figure 4 shows an example with the row and column
distributions when A is a submatrix that discards two rows and two columns of the global array. Thanks to
using arrays stored in shared memory and pointing directly to the first element of the submatrix, the lda

parameter is enough to specify all the information to work with submatrices, as in sequential BLAS routines.
Therefore, the syntax of the routines is simpler than in message-passing based numerical libraries where the
first row and column of the submatrix must be explicitly specified through additional parameters. Similarly
to the UPC BLAS1 routines, the only restriction is that the submatrix must start at the first row/column
of a block in the row/column distribution. This approach is followed in all the UPC BLAS2 and BLAS3
routines to work with submatrices.

Figure 4: Meaning of the parameters of upc blas sgemv when working with a submatrix

The meaning of the block size and sec block size parameters depends on the dimmDist value:

• If the source matrix A is distributed by rows (dimmDist=upcblas rowDist), block size is the number
of consecutive rows with affinity to the same thread and sec block size the block factor related to
the source vector x. For instance, in the non-transpose case, this function treats pointers:

– A as shared[block size*lda] float[m*lda]

– x as shared[sec block size] float[n]

– y as shared[block size] float[m]

• If the source matrix is distributed by columns (dimmDist=upcblas colDist), block size is the number
of consecutive columns with affinity to the same thread and sec block size the block factor related
to the result vector y:

– A: shared[block size] float[m*lda]

– x: shared[block size] float[n]

– y: shared[sec block size] float[m]

Figure 5 illustrates the behavior of the matrix-vector product when A is distributed by rows (in this
example block size=2). In order to exploit data locality as much as possible each thread only accesses the
rows of the matrix with affinity to that thread. Then, by applying a sequential partial matrix-vector product
with these rows and all the elements of x, each thread calculates a partial result that corresponds with its
rows of A. Thus, if the distribution of the result vector matches the distribution of the matrix, all the partial
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results can be copied to their correct final positions working only with local memory. This is the reason why
in the row case the parameter block size indicates not only the distribution of the matrix, but also the
distribution of the result vector. Thus, users are forced to declare y with a block factor equal to block size

in order to guarantee always a good performance. As all the elements of x must be used by all threads, its
block factor does not need to be linked to the distribution of the matrix, and it is indicated through the
sec block size parameter.

Figure 5: Matrix-vector product (Tgemv) using a row distribution for the matrix

Figure 6 shows the behavior of the routine with a column distribution. In this case the source vector x

must have always the same distribution (block size) as the matrix and the distribution of the result vector
y is passed through the sec block size parameter. In order to compute the ith element of the result, the
ith values of all partial results must be added. These additions need reduction operations involving all UPC
threads, so their performance is usually poor.

Figure 6: Matrix-vector product (Tgemv) using a column distribution for the matrix

The approach to parallelize the outer product (Tger) within UPCBLAS is very similar to the matrix-
vector product. However, the routine to solve a triangular system of equations M ∗x = b (Ttrsv) is a special
case because there are a lot of data dependencies in the internal algorithm. An exhaustive study of the
different parallel alternatives for this algorithm can be found in [36]. In the BLAS interface vector b is
always overwritten by the solution vector x, so both are represented by the same parameter. According to
this assumption, the syntax of the UPC BLAS2 triangular solver for single precision is:

upc blas strsv(UPCBLAS DIMMDIST dimmDist, int block size,

UPCBLAS UPLO uplo, UPCBLAS TRANSPOSE transpose,

UPCBLAS DIAG diag, int n, shared void *M, int ldm,

shared void *x);

being nxn the size of the triangular matrix M and n the length of x. The enumerated values uplo, transpose
and diag are included to determine the characteristics of M (upper/lower triangular, transpose/non-transpose,
elements of the diagonal equal to one or not). In this routine, all the distributions are specified by block size

and the vector and the matrix must be stored in shared arrays with the following syntax:

− M: shared[block size*ldm] float[n*ldm] if row distribution
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− M: shared[block size] float[n*ldm] if column distribution

− x: shared[block size] float[n] in both cases

Figure 7 shows an example of the distribution by rows of a lower triangular coefficient matrix using two
threads and two blocks per thread. The triangular matrix is logically divided in square blocks Mij . These
blocks are triangular submatrices if i = j, square submatrices if i > j, and null submatrices if i < j. The
right part of Figure 7 shows the parallel algorithm for this example. Once one thread computes its part of
the solution (output of the sequential trsv routine), it is broadcast to all threads so that they can update
their local parts of b with the sequential product (gemv). Thanks to specifying the distribution of both M

and x with the same parameter (block size), all sequential trsv and gemv computations can be performed
without any communication except the broadcast. Note that all operations between two synchronizations
(broadcasts) can be performed in parallel.

Figure 7: Matrix distribution and algorithm for the parallel BLAS2 triangular solver (Ttrsv)

The column distribution would involve a nearly sequential algorithm with poor performance due to the
characteristics of its dependencies. However, it is also available in the Ttrsv routine to allow a distribution
reuse just in case the source matrix uses that distribution in other UPCBLAS routines within the same
application.

4.3 BLAS3 Routines

In the BLAS3 routines, as there is more than one matrix, the number of possible combinations of distributions
of the matrices grows. In the design of UPCBLAS programmability is a must and thus, in order to simplify
the understanding and use of the UPC BLAS3 routines, the parameter dimmDist makes always reference to
the result matrix. Moreover, this choice allows to reuse the output data as input matrices in consecutive
calls to UPCBLAS routines.

The interface of the UPCBLAS routine for a single precision matrix-matrix product (C = α∗A∗B+β∗C)
is:

upc blas sgemm(UPCBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPCBLAS TRANSPOSE transposeA,

UPCBLAS TRANSPOSE transposeB, int m, int n, int k,

float alpha, shared void *A, int lda,

shared void *B, int ldb, float beta, shared void *C,

int ldc);

being mxk, kxn and mxn the sizes of A, B and C, respectively. block size means the number of consecutive rows
or columns of C (depending on the dimmDist value) with affinity to the same thread. Besides, sec block size

is related to B in the row distribution and to A in the column one. The meaning of the rest of parameters
is similar to the BLAS2 routine explained in the previous section. Thus, UPCBLAS sgemm with the row
distribution treats pointers:
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− A as shared[block size*lda] float[m*lda]

− B as shared[sec block size] float[k*ldb]

− C as shared[block size*ldc] float[m*ldc]

If the column distribution is used, the matrices must be stored in arrays declared as follows:

− A: shared[sec block size] float[m*lda]

− B: shared[block size] float[k*ldb]

− C: shared[block size] float[m*ldc]

Figure 8 shows an example for the row distribution of the matrix-matrix product. As block size is
related to the result matrix C, in order to perform its sequential partial matrix-matrix product each thread
only needs to access the same rows of A than those of C with affinity to that thread, but all the elements
of B. So, as in the equivalent distribution of the BLAS2 routine (Tgemv), block size is related to C and A,
and the distribution of B is determined by sec block size.

Figure 8: Matrix-matrix product (Tgemm) using a row distribution for matrix C

Figure 9 shows the same example when matrix C is distributed by columns. In order to perform the
partial sequential matrix-matrix product each thread needs the whole matrix A but only the same columns
of B than those of C with affinity to that thread. Thus, block size also defines the distribution of B and
sec block size is related to A. Unlike the column distribution of the BLAS2 routine (see Figure 6), no
reductions are necessary in this case, avoiding the associated overhead at the end of the routine.

Figure 9: Matrix-matrix product (Tgemm) using a column distribution for matrix C

Regarding the BLAS3 triangular solver (M ∗X = α ∗B, with B overwritten by the result matrix X), the
parameters are quite similar to those of the BLAS2 counterpart, only changing the vectors by matrices and
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adding a new enumerated parameter (side) to indicate if the triangular matrix M is in the left or in the right
part of the operation. M is mxm if it is left-sided or nxn if right-sided, and X is always mxn. The syntax for
single precision is:

upc blas strsm(UPCBLAS DIMMDIST dimmDist, int block size,

int sec block size, UPCBLAS SIDE side,

UPCBLAS UPLO uplo, UPCBLAS TRANSPOSE transpose,

UPCBLAS DIAG diag, int m, int n, float alpha,

shared void *M, int ldm, shared void *X, int ldx);

As in the matrix-matrix product, the distribution specified by dimmDist and block size is always related
to the result matrix. In this case the choice between row or column distribution leads to apply a different
algorithm. If the result matrix X is distributed by rows, the routine performs this solver with an algorithm
similar to the one shown at the right of Figure 7, only replacing the sequential BLAS2 routines Tgemv and
Ttrsv by their equivalent BLAS3 Tgemm and Ttrsm, respectively. Thus, the triangular matrix is forced to
have the same distribution than the result one:

− M: shared[block size*ldm] float[m*ldm]

− X: shared[block size*ldx] float[m*ldx]

However, if the result matrix X is distributed by columns, a similar approach to the column distribution
of the matrix-matrix product, with independent sequential computations, is applied. This approach treats
pointers as follows:

− M: shared[sec block size] float[m*ldm]

− X: shared[block size] float[m*ldx]

Figure 10 shows an example of this column distribution. As the source matrix B is overwritten by
the result matrix X, they are represented by the same pointer and thus they have the same block factor.
Therefore, each thread has access to all the elements of the triangular matrix and applies a sequential Ttrsm
routine to the columns of B and X with affinity to it. This approach improves performance by avoiding the
dependencies present in the row distribution.

Figure 10: BLAS3 triangular solver (Ttrsm) using a column distribution

5 UPCBLAS Implementation

In order to increase the efficiency of UPCBLAS, a set of optimization techniques have been applied in the
implementation of the routines to achieve the best possible performance.
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5.1 UPC Optimization Techniques

There is a number of known optimization techniques that improve the efficiency and performance of the
UPC codes [4, 7]. The following optimizations have been applied to the implementation of the UPCBLAS
routines whenever possible:

• Space privatization: As explained in Section 3, working with shared pointers is slower than with private
ones. Experimental measurements in [4] and [37] have shown that the use of shared pointers increases
execution times by up to several orders of magnitude. Thus, in our routines, when dealing with shared
data with affinity to the local thread, the access is performed through standard C pointers instead of
using UPC pointers to shared memory.

• Aggregation of remote shared memory accesses: Instead of the costly one-by-one accesses to re-
mote elements, our routines perform remote shared memory accesses through bulk copies, using the
upc memget() and upc memput() functions on remote bulks of data required by a thread. For instance,
the vector x in Figure 5 is replicated in all threads using bulk copies of sec block size elements.

• Use of phaseless pointers: Many UPC compilers (including Berkeley UPC [38]) implement an opti-
mization for the common case of cyclic and indefinite pointers to shared memory. Cyclic pointers are
the ones with a block factor of one, and indefinite pointers with a block factor of zero. Therefore,
their phases are always zero. These shared pointers are thus phaseless, and the compiler exploits this
knowledge to schedule more efficient operations for them. All internal shared arrays of the UPCBLAS
routines are declared with block factor of zero in order to take advantage of this optimization.

5.2 Efficient Array-Based Reduction in UPC

As explained in Section 4.2, the column distribution for Tgemv needs a reduction operation for each element
in the result vector (see Figure 6). The UPC standard collectives library [3] does not include a collective
function to perform reduction operations on arrays as, for instance, MPI does. A solution could be the
use of the upc all reduce function once per element of the destination array, however this method is quite
inefficient. The approach followed in UPCBLAS to perform these array-based reductions consists of copying
all the elements to a thread, using this thread to perform the operation and distributing the results again
among the threads. We have proved experimentally that this approach is faster.

5.3 Efficient Broadcast Communication Model

As in the PGAS programming model any thread may directly read or write data located on a remote
processor, two possible communications models can be applied to the broadcast operations:

• Pull Model: The thread that obtains the data to be broadcast writes them in its shared memory. The
other threads are expected to read them from this position. This approach leads to remote accesses
from different threads but, depending on the network, they can be performed in a parallel way.

• Push Model: The thread that obtains the data to be broadcast writes them directly in the shared spaces
of the other threads. In this case the network contention decreases but the writes are sequentially
performed.

The pull communication model has experimentally proved to be more efficient than the push one, par-
ticularly when the number of threads increases. This is therefore the communication model used by all the
broadcast operations in our parallel routines (see, for instance, the BLAS2 triangular solver in Figure 7).
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5.4 On-Demand Copies in BLAS3 Routines

In many of the UPCBLAS routines all threads have to access all the elements of a distributed matrix or
vector (see, for instance, vector x in Figure 5 or matrix B in Figure 8). Thus, all threads must copy remote
data to local memory before performing their sequential part of the computations. Auxiliary buffers in local
memory are required to store the vector or the matrix.

In the UPC BLAS2 routines the vector is stored completely in private memory and then all the sequential
computations related to a thread are performed in one go. However, copying the whole matrices in the BLAS3
routines could involve important memory overheads because the buffer could need to allocate a huge amount
of private memory. Moreover, performance would be affected because all threads should wait to copy all
these data before starting the sequential computations. Besides, they would access a large amount of remote
data at the same time, which could lead to network contention in many systems.

In order to overcome these drawbacks the UPC BLAS3 routines are implemented using what we have
called an on-demand copies technique. The matrix is copied by blocks into the auxiliary buffer, decreasing
the memory requirements. Once one block is copied, the sequential computation that uses that part of the
matrix starts. Besides, computations and communications are overlapped by using split-phase barriers to
increase the scalability of the routine.

The size of the internal blocks is very important in this approach. On the one hand, if the blocks are
too large, the memory and performance problems explained before would not be solved. On the other
hand, if they are too small the performance of the communications would decrease because more calls to
upc memget() would be needed, each of them with less aggregation of remote accesses; moreover, the partial
sequential computations would be almost negligible to be overlapped with communications.

The best size can be different depending on the characteristics of the system where the library is executed,
specially on the communication network. UPCBLAS uses Servet [39, 40], a portable benchmark suite that
allows to obtain the most relevant hardware parameters of clusters of multicores, to automatically select the
best size for the auxiliary buffer. Among other characteristics, Servet obtains, for each communication layer
in the system, the bandwidth as a function of the message size. This information is used to determine the
message size for which the bandwidth stops increasing. This message size is considered as the ideal block size
to use in the on-demand copies technique. For instance, Figure 11 shows the bandwidths of the intra-node
and inter-node communications in the supercomputer that will be used for the experimental evaluation in
Section 6. The size selected for the auxiliary buffer in this system is 4MB because it is the point where both
bandwidths no longer show an increase.
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Figure 11: Example of the information provided by Servet about the communication bandwidth as a function
of the message size

In order to make the system parameters available to UPCBLAS, Servet must have been installed and
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executed before the installation of the numerical library. Servet saves the relevant hardware parameters into
a text file and provides an API to obtain the information from this file. Then, when a routine requires
information about the hardware characteristics it resorts to calling the API of Servet instead of running any
benchmark. Thus, the performance overhead caused by Servet is almost negligible in UPCBLAS.

5.5 Efficient Mapping of UPC Threads

Nowadays, most of parallel numerical codes run on clusters of multicores. Depending on the number of UPC
threads required by the user and the total number of nodes and cores available in the system, there are usually
many different ways to assign the threads to cores. The information about the hardware characteristics of
the underlying system provided by Servet is used by the UPCBLAS library to automatically map the threads
to certain cores in order to avoid communication and memory access bottlenecks. The applied mapping is
based on the following information provided by Servet:

• Communication performance characterization: Servet is able to obtain the communication overhead
among cores, as well as the communication hierarchy of the system based on these data.

• Effective shared memory access performance: The concurrent access by multiple threads to main
memory can represent an important bottleneck (for instance if they share the bus to memory). Servet
is able to characterize the shared memory access performance taking into account the placement of the
threads in particular cores.

The mapping policy maps one UPC thread per core following the algorithm described in [41]. In order
to apply this algorithm the routines must be characterized as memory bound or communication intensive.
As all the threads involved in the UPCBLAS routines are continuously accessing memory (with much more
local than remote accesses), the library is characterized as memory bound. This characterization leads to
use a mapping policy where shared memory access overheads have a higher impact on performance than
communication costs. Thus, the assignment of threads to cores always tries to maximize memory access
throughput and, only when possible, minimize communication times.

An example of parallel system is shown in Figure 12. This system consists of two nodes, each with two
dual-core processors. If cores in the same node access memory at the same time, their memory bandwidth
would be probably penalized because they share the same memory module. Besides, threads in the same
dual-core processor share the same memory bus, which could lead to even more conflicts when accessing
memory concurrently. Using Servet, if a UPCBLAS routine were run using two threads in the multicore
cluster depicted in the figure, they would be placed in cores in different nodes to avoid memory access
overhead. In an execution with four threads it would not be possible to avoid all memory overheads, but
UPCBLAS would minimize them by placing each thread in one core of different processors (for instance,
cores 0, 2, 4 and 6). Experimental results in [41] show the efficiency of this approach.

Figure 12: Example of a multicore cluster (two nodes, each with two dual-core processors)
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5.6 Underlying Efficient Sequential Numerical Libraries

Besides applying the optimizations described in the previous subsections to improve the parallel behavior of
the code it is necessary to rely on efficient sequential numerical libraries to obtain good performance. The
UPCBLAS parallel functions call internally BLAS routines to perform the sequential computations in each
thread. These calls can be linked to very optimized libraries such as Intel MKL. Just in case a numerical
library is not available in the system, UPCBLAS provides an own sequential implementation using ANSI
C. Thus, the UPC routines act as an interface to distribute data and synchronize the calls to the sequential
ones in an efficient and transparent way.

6 Experimental Evaluation

In order to evaluate the performance of UPCBLAS runtime tests were performed on the Finis Terrae su-
percomputer [42] at the Galicia Supercomputing Center (CESGA). This system consists of 142 HP RX7640
nodes, each of them with 16 IA64 Itanium2 Montvale cores at 1.6 Ghz, 128 GB of memory and a dual 4X
InfiniBand port (16 Gbps of theoretical effective bandwidth). The cores of each node are distributed in two
cells, each of them with 4 dual-core processors, grouped in pairs that share the memory bus (8 cores and 64
GB of shared memory per cell). As for software, UPCBLAS was compiled using Berkeley UPC 2.12.1 [9] and
linked to the Intel Math Kernel Library (MKL) version 10.1 [21], a highly tuned BLAS library for Itanium
cores. The intra-node and inter-node communications are performed through shared memory and GASNet
over InfiniBand, respectively.

In this supercomputer a memory overhead is caused when several cores that share the bus access memory
at the same time. Thus, the automatic mapping policy available in the UPCBLAS routines (see Section 5.5)
assigns two threads per cell in order to minimize the conflicts in the access to memory. Specifically, UPCBLAS
maps threads to cores that do not share the bus to memory. Although the experiments do not use all
cores/nodes available in the system, the performance evaluation was carried out in a real environment with
almost 100% of the remaining cores running jobs of other users.

In this section different performance measures of representative UPCBLAS routines are shown, specifi-
cally: the dot (Tdot), matrix-vector (Tgemv) and matrix-matrix (Tgemm) products, as well as the BLAS3
triangular solver (Ttrsm). The performance of the four routines was measured for single precision using
different distributions. Some of these routines were also used to evaluate the performance improvement
obtained by some of the optimization techniques explained in the previous section (e.g. mapping policy and
on-demand copies).

A comparison with the message-passing based implementation of the PBLAS routines [15,16] included in
MKL 10.1 (using Intel MPI v3.2.1) is also provided for the BLAS2 and BLAS3 levels. The PBLAS routines
were tested using different data distributions (by rows, by columns and two-dimensional distributions, using
different block sizes), but the results presented in this section are those of the distribution that achieves
the best execution time for each PBLAS routine and number of threads. Besides, in order to provide a fair
comparison, the same mapping policy obtained by Servet within UPCBLAS has been manually applied to
the PBLAS processes in order to avoid the overheads caused by the concurrent memory accesses.

The sizes of the vectors and matrices used in the experiments are the largest ones that can be allocated in
the memory available for one core (in order to calculate speedups). All the speedups (both for the UPCBLAS
and PBLAS routines) were obtained using as reference the execution time of the sequential MKL library
(the fastest one). Although the variability of the performance obtained in different executions was almost
negligible (always few milliseconds), the experiments with BLAS1 and BLAS2 routines were repeated 20
times both for UPCBLAS and PBLAS. The results shown in the following graphs are always the best ones
for each library and scenario, thus discarding any source of variability. As the execution times for the BLAS3
routines are much longer, the influence of the variability (also some milliseconds) on the calculation of the
speedups is even less significant. Thus, in these cases the experiments were performed only 3 times.

Figure 13 and Table 2 show the speedups and execution times for the BLAS1 dot product. Experimental
results have been obtained using block, cyclic (i.e. block size = 1) and block-cyclic distributions (with
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different block size values) in order to analyze the behavior of the routine in several scenarios. The block
distribution cannot be used with large vectors because the shared array would need a block size higher
than the largest allowed in Berkeley UPC (1024×103 elements). For illustrative purposes only the “extreme”
distributions are presented throughout this section (i.e. cyclic and block-cyclic with the largest block size

allowed by the compiler). As we can see in Figure 13, the scalability is reasonable for both distributions
taking into account that the execution times are very short (in the order of milliseconds). An analysis of the
results obtained with more different values for block size has demonstrated that it has no influence on the
performance of this routine. Therefore, UPCBLAS users can achieve the best performance independently of
the distribution (i.e. block size) to be used in the application. In general this also applies to BLAS2 and
BLAS3 routines as will be shown later.
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Figure 13: Speedups of the single precision dot product (sdot)

Table 2: Execution times (in milliseconds) of the single precision dot product (sdot)
sdot with size 4×108 (ms)

MKL Seq 582.91
# THREADS ↓ Cyclic Block-Cyclic

1 670.56
2 369.31 373.02
4 249.32 249.77
8 128.49 126.65
16 69.42 70.97
32 37.10 36.21
64 21.63 22.60
128 11.48 12.09

Figure 14(a) shows, for illustrative purposes, the speedups for the single precision UPCBLAS matrix-
vector product with the cyclic distribution of the matrix by rows using two different mapping policies of
threads to cores: the one selected by Servet (as explained in Section 5.5) and the one provided by default by
the OS. The Servet mapping significantly outperforms the OS one.e Although only one example is shown,
we have checked that the improvement is similar in all routines for all distributions. Therefore, the Servet
mapping policy was used in all experiments, either automatically in the UPCBLAS library or manually in
PBLAS.

Figure 14(b) and Table 3 show the speedups and execution times for the matrix-vector product, using in
UPCBLAS the cyclic and the block-cyclic distributions (with the largest possible block size) by rows and
columns. As expected, the reduction operation at the end of the routine when using the column distribution
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(see Section 4.2 and Figure 6) decreases performance and even leads the function to stop scaling for 128
threads. Moreover, these tests demonstrate that, as in the BLAS1 case, the efficiency of this UPCBLAS
routine does not depend on the value of block size. The speedups of sgemv for non-square matrices were
also measured, but they are not shown as they are similar to those of Figure 14(b) using the same matrix
size (the same occurs for UPC BLAS3 routines).
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Figure 14: Speedups of the single precision matrix-vector product (sgemv)

Table 3: Execution times (in milliseconds) of the single precision matrix-vector product (sgemv)
sgemv with matrix size 32000x32000 (ms)

MKL Seq 1051.45
# THREADS
↓

UPC Row UPC Column
PBLAS

Cyclic Block-Cyclic Cyclic Block-Cyclic
1 1217.66 1059.87
2 697.04 665.59 609.44 615.11 574.56
4 440.04 441.94 408.26 408.42 285,72
8 244.95 223.74 196.12 197.10 132.75
16 130.35 121.58 119.42 116.98 97.36
32 78.12 70.68 75.38 77.52 47.84
64 44.41 41.97 62.55 61.59 25.75
128 34.07 31.11 79.51 79.81 15.64

The best speedups for the PBLAS function were obtained with a two-dimensional distribution, being
significantly higher than the UPCBLAS ones. However, looking only at the execution times, the UPC
version with the row distribution is not much slower than the PBLAS routine.

To assess the impact of the on-demand copies technique explained in Section 5.4, Figure 15(a) shows the
speedups of the matrix-matrix product with the block-cyclic distribution by rows using the technique with
a 4MB buffer and without it (i.e. replicating the whole matrix B at the beginning of the function). This
experiment proves that the on-demand copies technique significantly improves performance as the number
of threads increases when using an appropriate buffer size. This size is automatically set by Servet at
installation time.

Figure 15(b) and Table 4 show the performance evaluation of the sgemm routine applying the on-demand
copies in all the UPCBLAS experiments. As in the BLAS2 routine, the value of block size hardly affects
performance. Due to distributing always the result matrix and thus avoiding collective reductions (see
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Section 4.3), the row and column distributions of the BLAS3 product do not show significant performance
differences. Moreover, thanks to the on-demand copies technique, the scalability is high in all cases. As for
the PBLAS matrix-matrix product the best results are obtained with a two-dimensional distribution that
achieves a near linear speedup.
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Figure 15: Speedups of the single precision matrix-matrix product (sgemm)

Table 4: Execution times (in seconds) of the single precision matrix-matrix product (sgemm)
sgemm with matrix size 16000x16000 (s)

MKL Seq 1304.44
# THREADS
↓

UPC Row UPC Column
PBLAS

Cyclic Block-Cyclic Cyclic Block-Cyclic
1 1347.25 1305.33
2 689.22 687.65 742.51 740.98 652.01
4 348.09 349.65 368.78 370.07 324.35
8 172.41 177.18 189.50 192.48 162.29
16 87.72 92.35 100.12 99.85 81.61
32 46.73 50.60 50.49 50.69 41.07
64 25.93 29.71 28.60 28.52 20.98
128 16.46 16.86 15.63 15.75 10.48

The experimental results for the BLAS3 triangular solver are shown in Figure 16 and Table 5. The
behavior of the column distribution is quite similar to the matrix-matrix product, where the block size

has not a significant influence on performance. However, in the row distribution the block size has a
great impact on the speedups of the parallel solver. The more blocks the matrix is divided in, the more
computations can be simultaneously performed, but the more synchronizations are needed too, so the cyclic
distribution obviously becomes a wrong option. Anyway, the routine with the row distribution scales only
up to 32 threads, even using the maximum possible size for the blocks and the pull model in the broadcast
operations (see Section 5.3). After an analysis of the results, the overhead of the broadcasts in the internal
algorithm were determined as the reason of the performance decrease, as explained in Section 4.3.

Regarding the performance of the PBLAS version, the lowest executions times (those shown in Table 5)
are obtained using a block-cyclic distribution by rows, with different optimal sizes for the blocks depending on
the number of processes. As can be seen, PBLAS only outperforms the row version of UPCBLAS. However,
the algorithm used by the PBLAS routine does not avoid the data dependencies as in the UPCBLAS column
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Figure 16: Speedups of the single precision BLAS3 triangular solver (strsm)

Table 5: Execution times (in seconds) of the single precision BLAS3 triangular solver (strsm)
strsm with matrix size 16000x16000 (s)

MKL Seq 790.84
# THREADS
↓

UPC Row UPC Column
PBLAS

Cyclic Block-Cyclic Cyclic Block-Cyclic
1 845.40 795.35
2 5216.61 443.35 364.63 372.92 372.61
4 4778.02 228.05 184.58 185.29 188.64
8 4517.64 117.29 95.58 96.46 100.82
16 2332.84 63.81 46.20 46.37 54.39
32 1152.01 41.40 27.30 27.43 34.55
64 437.71 55.83 18.41 16.21 27.81
128 199.88 107.09 11.76 14.05 18.70

distribution, where the sequential computations are independent and the only overhead is due to gathering
the triangular matrix in all threads through on-demand copies (see Figure 10).

In all the previous experiments the efficiency of the UPCBLAS routines decreases when increasing the
number of threads because the execution times are significantly lower and the overhead of the communications
becomes more important. However, UPCBLAS would obtain better performance when working with larger
problems. Figure 17 shows weak scaling results (weak speedups and efficiencies) for the four representative
UPCBLAS routines. In order to simplify the graphs, only the results for the best data distribution for each
routine are shown. These results prove that the scalability of the routines is much better when increasing the
size of the matrix with the number of threads (maintaining the number of elements per thread), especially
for the BLAS3 routines, where weak efficiencies are always over 90%.

Finally, Table 6 provides another point of view of the results presented in this section by showing the
percentage of the theoretical peak flops of the Finis Terrae supercomputer (6.4 GFlops per processor core)
obtained by the UPCBLAS and PBLAS versions of each routine. This percentage is only shown for the best
distribution in each case and the problem size is the same as in the previous experiments (see Figures 13-16).
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Figure 17: Weak speedups and efficiencies of the UPCBLAS routines using the best distribution

Table 6: Percentage of the theoretical peak flops of the machine obtained by each routine
# THREADS
↓

sdot sgemv sgemm strsm
UPC UPC PBLAS UPC PBLAS UPC PBLAS

1 18.64% 26.28% 30.19% 95.01% 98.06% 75.70% 80.47%
2 16.92% 24.04% 27.85% 92.83% 98.16% 87.76% 85.88%
4 12.53% 18.18% 28.00% 92.46% 98.66% 86.68% 84.82%
8 12.16% 17.88% 30.13% 92.80% 98.59% 83.70% 79.35%
16 11.25% 16.45% 20.54% 91.20% 98.03% 86.58% 73.54%
32 10.53% 14.15% 20.90% 85.60% 97.39% 72.91% 57.89%
64 9.02% 11.91% 19.42% 77.13% 95.33% 54.31% 35.96%
128 8.50% 8.03% 15.98% 60.75% 95.42% 42.52% 26.74%

7 Discussion: UPC as a Supporting Language for Numerical Li-
braries

This work has presented a parallel numerical library built on top of standard UPC. As this is the first
numerical library developed for this language several issues (e.g. name and syntax of the functions, the way
to represent the distributed vectors and matrices, available distributions...) have arisen during its design
and implementation. The solution to all these issues has led to a good trade-off between programmability
and performance.

In general, programs that use parallel numerical libraries must carry out the following steps: 1) create
the structures to represent the distributed vectors and matrices; 2) distribute the data of the vectors and
matrices into these structures; 3) call the numerical functions using the structures as parameters; 4) perform
other operations with the distributed data (e.g. gathering or reducing some elements so that they are in
the local memory of one process, write some elements of all or some processes in a file...); 5) release the
structures.

With regard to the design of a parallel numerical library, the main difference between UPC and a message-
passing paradigm (such as MPI) is that the latter does not provide any structure in the language to deal with
vectors and matrices distributed among the processes. Therefore, developers of message-passing numerical
libraries have to create additional structures to represent distributed vectors and matrices. Both the new
structures and the 2D distribution of the matrices are concepts that pose an important challenge for most
of the users of parallel numerical libraries (researchers and engineers from different areas), as can be seen in
the results of the survey [24]. In contrast, UPC libraries can make use of shared arrays, making steps 1, 2, 4
and 5 almost trivial. Therefore UPC can significantly improve the ease of use of parallel numerical libraries
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and thus the productivity of numerical applications developers. Furthermore, UPCBLAS also facilitates the
third step by simplifying the interface of the routines. As shown in Section 4, the syntax of the UPCBLAS
functions is quite similar to the syntax of the corresponding sequential BLAS routines, only changing the
type of the pointers (so they can point to shared memory) and including additional parameters to indicate
the type of distribution.

However, the use of UPC shared arrays to distribute vectors and matrices imposes some limitations on
the types of distributions that can be performed. On the one hand, the block factor must be constant for all
the blocks. On the other hand, multidimensional distributions are not allowed. Thus, for some UPCBLAS
routines, the distribution that theoretically obtains the best performance (e.g. 2D distributions for the
matrix-matrix product) is not available. Nevertheless, UPCBLAS routines include optimization techniques
in order to improve their performance. Some of these techniques are architectural-aware and they take
advantage of the knowledge of some characteristics of the system in order to adapt the behavior of the
routines to the machine on which the library is installed. The results shown in the previous section have
proved that, with all these techniques, the performance of the library is more than acceptable.

8 Conclusions

PGAS languages provide programmability and good data locality exploitation on shared, distributed and
hybrid shared/distributed memory architectures. In fact, PGAS languages such as UPC represent an inter-
esting alternative for programming multicore clusters, where threads running on the same node can access
their data efficiently through shared memory, whereas the use of distributed memory improves the scalability
of the applications.

However, the lack of available libraries is preventing the acceptance of these languages. In order to solve
this issue we have developed UPCBLAS, the first parallel numerical library to our knowledge developed for
UPC. Up to now, in order to use BLAS routines, parallel programmers needed to resort to message-passing
based libraries. With the library presented in this paper, UPC programmers can benefit as well from a
portable and efficient BLAS-based library that can also be used as building block for higher level numerical
computations (e.g. factorizations, iterative methods...).

The implemented library provides functions for dense computations where the ease of use has been an
important factor in all the design decisions in order to preserve the programmability property of the PGAS
languages and reduce the library learning curve. The library works with the data distributions provided by
the user through the block factor specified in shared arrays. Thus, UPCBLAS is easier and more intuitive
to use than message-passing based numerical libraries (e.g. PBLAS) thanks to using directly the vectors
and matrices as source and result parameters of the routines as in sequential BLAS, instead of using the
complex data structures that PBLAS routines need to handle distributed vectors and matrices. Besides, the
ease of programming is twofold: on the one hand, the BLAS-like interface facilitates the use of the library
to programmers used to sequential BLAS and, on the other hand, the syntax of UPCBLAS is very familiar
to UPC programmers as it is similar to that of the UPC collectives library.

Several optimization techniques have been applied to improve performance. Some examples are privati-
zation of shared pointers, bulk data movements, redesign of some collective operations or implementation
of on-demand copies. Furthermore, sequential BLAS routines are embedded in the body of the correspond-
ing UPC routines. Using sequential libraries not only improves efficiency, but it also allows to incorporate
automatically new versions as soon as available without any change in the UPC code.

The proposed library has been experimentally tested on a multicore cluster to show the suitability and
efficiency of the library for hybrid architectures. We can assert that the ease of use of the UPCBLAS library
does not lead to a much worse performance than the well-established and mature message-passing based
numerical libraries.

As ongoing work the UPCBLAS routines are being used to implement, in an efficient way, more complex
numerical routines, such as LU or Cholesky factorizations.
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