
Towards Low-Latency Model-Oriented
Distributed Systems Management�

Iván Dı́az, Juan Touriño, and Ramón Doallo

Computer Architecture Group
Department of Electronics and Systems,

University of A Coruña, Spain
{idiaz,juan,doallo}@udc.es

Abstract. Windows and Unix systems have been traditionally very dif-
ferent with regard to configuration storage and management. In this
paper we have adapted our CIM-based model-driven management frame-
work, AdCIM, to extract, integrate and modify management and con-
figuration information from both types of OS in a multiplatform and
seamless way. We have achieved very low latencies and client footprints
without sacrificing the model-driven approach. To enable this function-
ality for a wide range of system administration applications, we have im-
plemented both an efficient CIM XML dialect and a distributed object
infrastructure, and we have assessed its performance using two different
approaches: CORBA and Web Services.

Keywords: Management, Distributed Systems, WMI, CORBA, Web
Services, CIM.

1 Introduction

System administrators have to take into account the great diversity of hardware
and software existing nowadays in organizations. Homogeneity can be achiev-
able in some instances, but also has risks; i.e., a monoculture is more vulner-
able against viruses and trojans. The combination of Windows and Unix-like
machines is usual, whether mixed or in either side of the client/server divide.
System administration tasks in both systems are different due to a great variety
of interfaces, configuration storage, commands and abstractions.

To close this gap, there have been many attempts to emulate or port the time-
proven Unix toolset. Windows Services for Unix [1] are Microsoft’s solution,
enabling the use of NIS and NFS, Perl, and the Korn shell in Windows, but
it is not really integrated with Windows as it is a migration-oriented toolset.
Cygwin [2] supports more tools, such as Bash and the GNU Autotools, but it is
designed to port POSIX compliant code to Windows. Outwit [3] is a very clever

� This work was funded by the Ministry of Education and Science of Spain under
Project TIN2004-07797-C02 and by the Galician Government (Xunta de Galicia)
under Project PGIDIT06PXIB105228PR.

S. Ata and C.S. Hong (Eds.): APNOMS 2007, LNCS 4773, pp. 41–50, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

42 I. Dı́az, J. Touriño, and R. Doallo

port of the Unix tools that integrates Unix pipelines in Windows and allows
accessing the registry, ODBC drivers, and the clipboard from a Unix shell, but
its scripts are not directly usable in Unix.

The subject of performance and low-latency issues in system administration
is discussed in several works. Pras et al [4] find Web Services more efficient
than SNMP for bulk administration data retrieval, but not for single object
retrieval (i.e. monitoring), and conclude that data interfaces are more important
for performance than encoding (BER vs XML). Nikolaidis et al [5] show great
benefits by compressing messages in a Web Service-based protocol for residential
equipment management, but only use Lempel-Ziv compression. Yoo et al [6]
also implement compression and other mechanisms to optimize the NETCONF
configuration protocol which uses SOAP (Web Services) messaging.

Also, there are several works that use XML to represent machine configura-
tions, like the ones by Strauss and Klie [7], and Yoon et al. [8], both mapping
SNMP to XML. The drawback is that SNMP has a very flat structure that does
not represent aspects like associations as flexibly as CIM [9].

The framework used in this paper, AdCIM [10] (http://adcim.des.udc.es),
can extract configuration and management data from both Windows or Unix ma-
chines, represent and integrate these data in a custom space-efficient CIM XML
dialect, and manipulate them using standard XML tools such as XSLT. One ob-
jective of this framework is to support monitoring applications with low-latency
gathering of structured data and small footprint. To achieve multiplatform inter-
operability and low-latency network messaging, two different distributed object
technologies will be used: CORBA [11] and Web Services [12].

The paper is organized following the structure depicted in Fig. 1. Thus, Sec-
tion 2 presents the XML Schema transformation and the advantages of the mini-
CIM XML format. Section 3 details the different processes used in Windows and
Unix to extract miniCIM configuration data. Section 4 discusses the use and im-
plementation details of both CORBA and Web Services middleware. Section 5
presents experimental results to compare the performance of both approaches.
Finally, conclusions and future work are discussed in Section 6.

Fig. 1. Overview of the integrated management framework

Towards Low-Latency Model-Oriented Distributed Systems Management 43

2 Schema Transformation

This section details how the CIM schema is translated into an XML Schema,
and then derived into an abbreviated XML syntax of CIM (which we denoted as
miniCIM) that keeps all semantic constraints and helps to reduce latency and
transfer times in our framework.

<CIM InetdService namespace=”dc=udc”>
<SystemCreationClassName>CIM ComputerSystem</SystemCreationClassName>
<SystemName>shalmaneser</SystemName>
<CreationClassName>CIM InetdService</CreationClassName>
<Name>ftp</Name>
<SocketType>stream</SocketType>
<Protocol>tcp</Protocol>
<Wait>nowait</Wait>
<User>root</User>
<Command>root/usr/sbin/tcpd</Command>

</CIM InetdService>

Fig. 2. Example of miniCIM inetd service instance

cimXML [13] is the official DMTF representation of CIM in XML, which
represents both the CIM schema and CIM instances. Since these two aspects are
not separated it is very cumbersome to represent instances. Schema information
can be merged from an external file, but there is still overhead; e.g, key properties
must be present both in the name of the instance and as properties. Thus, a
declaration of services of a machine in cimXML is 305Kb long, which is reduced
to 3Kb in our approach by removing schema information from instances. This
greatly reduces message size, which will be shown later as a main factor in the
speed of the framework.

In order to simplify matters, we decided to translate the schema information
to XML Schema [14], which supports type inheritance, abstract classes and keys,
with XSLT. The resulting XML Schema defines a much terser instance syntax,
miniCIM. Such an instance for inetd services can be seen in Fig. 2. Its format is
property-value pair based, but semantic information is not lost, only moved to
the XML Schema. Invalid instances, or dangling references, are reported by the
XML validator.

An XSLT stylesheet processes the cimXML schema and its CIM classes de-
pending on their abstractness status, superclass, and association type if appli-
cable. These will be mapped to attributes of a new type in the final schema. For
example, association-related properties are represented as application-defined
attributes, and others like abstractness and superclass, supported using XML
Schema inheritance constructs.

Association references are also mapped as properties. Constraints are mapped
to XML Schema constructs, such as cardinality, addressed with minOccurs and
maxOccurs. The reference properties Antecedent and Dependent in each asso-
ciation can have their names changed by child classes. To account for that, the
Override qualifier is also supported.

44 I. Dı́az, J. Touriño, and R. Doallo

3 Configuration Data Extraction

This section describes the methods used both in Unix and Windows systems
to extract configuration data from system files. Configuration information is
collected from two sources: flat text sources, such as files and internal commands,
and the WMI (Windows Management Instrumentation) subsystem present in all
post-2000 Windows systems.

Usually, Unix-based OS codify almost all configuration data in text files and
directory structures that are seldom available in XML format, so our framework
parses and transforms them to XML to facilitate further processing. To do so,
data are serialized to plain text and processed with grammar rules.

import Martel; from xml.sax import saxutils
def Item(name): return Martel.Group(name,Martel.Re(”\S+\s+”))
fields =Item(”name”)+Item(”socktype”)+Item(”proto”)+Item(”flags”)+Item(”user”)+Martel.ToEol(”args”)

4 offline =Martel.Re(”#<off>#\s∗”)+Martel.Group(”off”,fields)
commentary=Martel.Re(”#”)+Martel.Group(”com”,Martel.ToEol())
serviceline =Martel.Group(”service”,fields)
blank=Martel.Str(”\n”)
format=Martel.Group(”inetd”,Martel.Rep(Martel.Alt(offline, blank, commentary, serviceline)))

9 parser = format.make parser()
parser.setContentHandler(saxutils.XMLGenerator())
parser.parseFile(open(”inetd.conf”))

Fig. 3. Martel program used for parsing inetd.conf to XML

#echo stream tcp nowait root internal
ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/proftpd
#<off>sgi fam/1−2 stream rpc/tcp wait root /usr/sbin/famd fam

(a) Sample lines with original inetd.conf format
<doc>

<commentary> <com>#</com>echo stream tcp nowait root internal </commentary>
<line> <id>ftp</id> <ws> </ws> <id>stream</id> <ws> </ws> <id>tcp</id> <ws> </ws>

<id>nowait</id> <ws> </ws> <id>root</id> <ws> </ws> <id>/usr/sbin/tcpd</id>
<ws> </ws> <id>/usr/sbin/proftpd</id> </line>.........
<off> <com>#</com><off>#<ws> </ws>

<line> <id>sgi fam/1−2</id> <ws> </ws> <id>stream</id> <ws> </ws> <id>rpc/tcp</id>
<ws> </ws> <id>wait</id> <ws> </ws> <id>root</id> <ws> </ws>
<id>/usr/sbin/famd</id> <ws> </ws> <id>fam</id> </line>

</off>
</doc>

(b) Result of parsing inetd.conf to XML

Fig. 4. Input and output of parsing inetd.conf to XML

Grammar rules are described using Martel [15], a Python module to parse text
files into SAX events, then directly transcribable as XML data. Fig. 3 shows an
example of a Martel program that produces a structured XML file from the inetd
services configuration file /etc/inetd.conf (shown in Fig. 4(a)). In this code,
Martel operators Re and Alt represent the “*” and “|” regular expression opera-
tors, respectively, and operator Group aggregates its second argument into a single
XML element. Finally, ToEol matches any text before the next end of line.

This Martel code defines the inetd.conf file as composed of three types of
lines: off lines (line 4), commentaries (line 5), and normal lines (line 6). Every
normal line maps to an enabled service, and off lines to temporarily disabled
services. The program also has to discriminate between commentaries and the
#<off># sequence that begins an off line. Each line is partitioned as a list of items

Towards Low-Latency Model-Oriented Distributed Systems Management 45

import Martel; from xml.sax import saxutils
def Group(x,y): return Martel.Group(x,y)
def Re(x): return Martel.Re(x)
def Item(name): return Martel.Group(name,Martel.Re(”\S+”))
def Date(name): return Martel.Group(name,Martel.Re(”\S+\s+\d+\s+[0−9:]∗”))
def Space(): return Martel.Re(”\s∗”)
def Colon(): return Martel.Re(”:\s∗”)
def Origin(): return G(”origin”,Re(”\w+”))+Col()
def OriginPid(): return (Group(”origin”, Group(”name”, Re(”[\w() −]+”)) +Re(”\[”)+

Group(”pid”, Re(”[0−9]+”)) +Re(”\]”)+ Colon()))
fields =(Date(”date”) +Space()+ Item(”host”) +Space()+ Martel.Alt(OriginPid(),Origin(),Space()) +

Martel.UntilEol(”message”) + Martel.ToEol())
format=Group(”file”,Martel.Rep(fields))
parser = format.make parser()
parser.setContentHandler(saxutils.XMLGenerator())
parser.parseFile(open(”m”))

Fig. 5. Martel program used for parsing /var/log/messages to XML

import sys, win32com.client, pythoncom, time; from cStringIO import StringIO
locator = win32com.client.Dispatch(”WbemScripting.SWbemLocator”)
wmiService = locator.ConnectServer(”.”,”root\cimv2”)

4 refresher = win32com.client.Dispatch(”WbemScripting.SWbemRefresher”)
services = refresher .AddEnum(wmiService, ”Win32 Service”).objectSet
refresher . refresh ()
pythoncom.CoInitialize()
string = StringIO()

9 for i in services :
(string .write((
”<SystemCreationClassName>”+unicode(i.SystemCreationClassName)+”</SystemCreationClassName>”+
”<CreationClassName>”+unicode(i.CreationClassName)+”</CreationClassName>”+
”<Name>”+unicode(i.Name)+”</Name>”+”<State>”+unicode(i.State)+”</State>”+

14 ”<StartMode>”+unicode(i.StartMode)+”</StartMode>”+”</CIM Service>”).encode(”utf8”)))
print string .getvalue()

Fig. 6. Python script to extract service information from WMI

that are mapped to fixed properties in the resulting instances. The abridged
output in Fig. 4(b) is still a direct representation of the original data in Fig. 4(a),
now structured.

Grammar rules can document the configuration format formally, following
the original file format very closely, or simply describe the high-level format
of the document (e.g. line-oriented with space separators). The latter approach
makes it easier to process many formats without doing much work specifying
rules, but the former has the benefit of early-on error checking and validation of
configuration formats. Since Martel supports backtracking, multiple versions of
the same file can be identified using different trees aggregated by an alternation
(or) operator at their top.

The output of Fig. 4(b) is processed by an XSLT stylesheet, which can be
executed server-side or in the client, but the former is preferred because servers
usually have more processing power, and also to reduce footprint and latency in
the client. Nevertheless, there are very efficient C XSLT processors [16] that can
be used in some client nodes to reduce load on the server.

Figure 5 shows a more complex example of grammar rules that parses the
/var/log/messages log file, composed of messages, warnings and errors from
various system processes and the kernel. The format is line based, each line
consisting of date, host name, optional originator and pid (process id), and a
free-form message.

Windows discarded files in favor of the registry as system configuration repos-
itory as of the Windows 95 release. Thus, to extract configuration data it would
seem necessary to manipulate registry data. Instead, we have used the Windows

46 I. Dı́az, J. Touriño, and R. Doallo

WMI subsystem, which provides comprehensive data of hardware devices and
software abstractions in CIM format, exposed using COM (Component Object
Model), the native Windows component framework. WMI is built-in since Win-
dows 2000, but it is also available for previous versions. Queries can also be
remote using DCOM (Distributed COM). Its coverage varies with Windows ver-
sion, but it can be extended by users.

WMI data can be uniformly retrieved using simple code, such as the one
shown in Fig. 6, which uses the COM API and directly writes XML data of mini-
CIM instances. The code uses a locator to create a WMI COM interface named
SWbemRefresher (see line 4) which makes possible to update WMI instance data
without creating additional objects. In the next lines, instances contained in the
refresher interface are queried and their data written as miniCIM instances. A
StringIOPython object (line 8) is used to avoid string object creation overheads.

4 Distributed Object Technologies

This section describes the use of both CORBA and Web Services distributed
object middleware in our framework. As can be seen in Fig. 1 the purpose of
this middleware is to transfer efficiently miniCIM instances or raw XML data
between clients and servers.

CORBA achieves interoperability between different platforms and languages
by using abstract interface definitions written in IDL, from which glue code for
both clients and servers is generated. This interface is a “contract” to be strictly
honored. This enforces strict type checking, but clients become “brittle”: any
change or addition in the interface breaks them and needs their recompilation
and/or readaptation.

Using an XML Schema validated dialect has two benefits: first, it promotes
flexibility, since changes in format can be safely ignored by older clients and,
second, preserves strict validation. Both aspects are important due to the exten-
sibility of the CIM model, but in very time-critical instances a direct mapping
of a CIM class to IDL is still possible.

To pass XML data via CORBA they are flattened to a string. This solution
is not optimal, since time is lost in serialization and de-serialization. A more
efficient solution would be to pass the data as a CORBA DOM Valuetype [17],
which is passed by value with local methods. Then, the parsed XML structure
would not be flattened, so clients would manipulate the XML data without
remote invocations. Unfortunately, this is a feature not yet well supported in
most production-grade ORBs. Our implementation of choice is omniORB [18],
a high-speed CORBA 2.1 compliant ORB with bindings for both C++ and
Python.

In contrast with CORBA, Web Services (WS) solutions provide an interop-
eration layer than can be both tightly coupled (using XML-RPC messaging) or
loosely coupled (XML document-centric). Gradually, WS are being more oriented
to support web-based service queries than to offer distributed object middleware,
but there is a significant overlapping between the two approaches.

Towards Low-Latency Model-Oriented Distributed Systems Management 47

WS use XML dialects for both interface definition (WSDL) and transport
(SOAP). It may seem that using XML dialects would promote synergy, but the
use of XML as “envelope” of the message and representation of it is orthogo-
nal at best. It is worse, in practice, since the message must be either sent as
an attachment (which implies Base64 transformation), or with its XML special
characters encoded as character entities to avoid being parsed along with the
XML elements of the envelope. Additionally, two XML parsings (and the corre-
sponding encoding) must be done, being added to message-passing latency. In
the foreseeable future, there is not any support in view for platform independent
parsed XML representation in WS.

As implementation we have chosen the Zolera SOAP Infrastructure [19], the
most active and advanced WS library for Python.

5 Experimental Results

We have proceeded to evaluate the performance of our framework for various
representative tasks and the impact of the integration technology (Web Services
vs CORBA). The tests have been performed using Athlon64 3200+ machines
connected by Gigabit Ethernet cards.

We have tested three different cases of use of our framework, each both in
Windows and Unix (Linux). The parameters measured for these cases have been
total time, latency and message size, with and without compression. Total time is
defined as the round-trip time elapsed between a request is sent and the response
is completely received. Latency is the round-trip time when the response is a 0-
byte message. Two different algorithms have been used for compression: zlib and
bzip2. The three cases tested are:

– CPU load retrieval, shown in Fig. 7. This case is representative of monitor-
ing applications, usually invoked several times per second, which need fast
response times and low load on the client.

– Service information discovery, shown in Fig. 8. This case represents discovery
applications, invoked with a frequency ranging from minutes to hours.

– Log file information retrieval and parsing (data analysis), shown in Fig. 9.
This case represents bulk data requests invoked manually or as part of higher-
level diagnostic processes. These requests have unspecified total time and
data size, so they are invoked ad-hoc, with little or no regularity.

The code examples of Section 3 have been used for the second and third cases.
The code of the first case was omitted for brevity.

The first case in Fig. 7 shows lower latency and total time for CORBA vs
WS in both platforms. Base latency for CORBA is roughly 0.2 ms, whereas it
is 20-30 ms using WS, in great part due to the overhead of parsing the envelope
and codifying the message. Compression benefits WS but slows down CORBA
performance. Figure 7(b) shows the cause: WS messages are large enough to be
slightly benefitted from compression, but CORBA messages (less than 50 bytes
long) are actually doubled in size. In the second case (Fig. 8), web service times

48 I. Dı́az, J. Touriño, and R. Doallo

(a) Total time and latency (b) Message size

Fig. 7. Performance measurements for test one: CPU Load

(a) Total time and latency (b) Message size

Fig. 8. Performance measurements for test two: Service Discovery

(a) Total time and latency (b) Message size

Fig. 9. Performance measurements for test three: Log Parsing

Towards Low-Latency Model-Oriented Distributed Systems Management 49

are very similar to those obtained in the previous case, since parsing overhead
dominates total time. CORBA times are longer than in the first case, but shorter
than those of WS.

In these two test cases, Windows times are higher than those of Unix, because
of the overhead of operating with COM objects. Nevertheless, these overheads
are smoothed over in the third test case. From figures 7 and 8, it is clear that
message size determines total time, affecting WS much more, both due to their
XML envelope and codification. The envelope size (almost fixed) clearly affects
only the first case, but codification introduces a 20% message size overhead on
average.

The third case (Fig. 9) shows a much narrower spread of values due to mes-
sage size (1Mb+); thus, total time is dominated by transfer time, instead of by
protocol overheads. In this test compression in WS achieves times comparable
to those of uncompressed CORBA. This would be more noticeable with less
bandwidth, as WS compression ratios of 40:1 are reported in Fig. 9(b).

In general, all times are very acceptable, although CORBA has a clear advan-
tage. The benefits of compression are dubious, except in the third test for WS.
bzip2 is slower and is oriented to larger data sets than zlib, which is a better
choice for the tested cases. Although both WS and CORBA are acceptable so-
lutions for information exchange in our framework, monitoring and low-latency
applications strongly favor CORBA over WS due to its message compactness
and better processing time.

6 Conclusions

We have explored the adaptation of our AdCIM framework to various system
administration applications, focusing on the following relevant features:

– Definition of an XML Schema and a new XML mapping of CIM, named
miniCIM, that simplifies the representation and validation of CIM data and
allows the use of standard XML Schema tools to manage CIM seamlessly.

– Extraction of monitoring, service and log data from Windows and Unix
into miniCIM instances. This is achieved using different techniques (text-
to-XML parsing grammars, WMI scripts) due to the different management
approaches supported by each OS.

We have also discussed methods and alternatives to implement multiplatform
and low-latency transport methods using two different approaches: CORBA and
Web Services technologies. Lastly, we have validated and tested the implemen-
tations by defining a testing framework for measuring total time, latency and
message size.

The chosen domain of processor statistics, network services and log data anal-
ysis has illustrated the use of these methods for administration domains partic-
ularly dissimilar between operating systems. But the scope of our approach is
not limited to such domains, as the model and implementation technologies are
truly general and extensible.

50 I. Dı́az, J. Touriño, and R. Doallo

As future work, we plan to implement CORBA interfaces based on Valuetypes,
design real-time support agents that diagnose and aggregate global network is-
sues, and extend WMI coverage (i.e. for text-based Windows configurations).

References

1. Microsoft Windows Services for Unix [Visited July 2007], http://www.microsoft.
com/windows/sfu/

2. Noer, G.J.: Cygwin32 - A Free Win32 Porting Layer for UNIX Applications. In:
2nd USENIX Windows NT Symposium, pp. 31–38 (1998)

3. Spinellis, D.: Outwit - Unix Tool-Based Programming Meets the Windows World.
USENIX 2000. In: Technical Conference pp. 149–158 (2000)

4. Pras, A., Drevers, T., van de Meent, R., Quartel, D.: Comparing the Performance
of SNMP and Web Services-Based Management. IEEE Electronic Transactions on
Network and Service Management 1(2), 1–11 (2004)

5. Nikolaidis, A.E., Doumenis, G.A., Stassinopoulos, G.I., Drakos, M., Anastasopou-
los, M.P.: Management Traffic in Emerging Remote Configuration Mechanisms for
Residential Gateways and Home Devices. IEEE Communications Magazine 43(5),
154–162 (2005)

6. Yoo, S.M., Ju, H.T., Hong, J.W.: Performance Improvement Methods for
NETCONF-Based Configuration Management. In: Kim, Y.-T., Takano, M. (eds.)
APNOMS 2006. LNCS, vol. 4238, pp. 242–252. Springer, Heidelberg (2006)

7. Strauss, F., Klie, T.: Towards XML Oriented Internet Management. In: 8th
IFIP/IEEE Int’l Symposium on Integrated Network Management, IM 2003, pp.
505–518 (2003)

8. Yoon, J.H., Ju, H.T., Hong, J.W.: Development of SNMP-XML Translator and
Gateway for XML-based Integrated Network Management. International Journal
of Network Management 13(4), 259–276 (2003)

9. DMTF. Common Information Model (CIM) Standards [Visited July 2007],
http://www.dmtf.org/standards/cim

10. Diaz, I., Touriño, J., Salceda, J., Doallo, R.: A Framework Focus on Configuration
Modeling and Integration with Transparent Persistence. In: 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2005). Workshop
on System Management Tools for Large-Scale Parallel Systems, p. 297a (2005)

11. CORBA/IIOP Specifications [Visited July 2007], http://www.omg.org/
technology/documents/corba spec catalog.htm

12. Web Services Architecture [Visited July 2007], http://www.w3.org/TR/ws-arch/
13. DMTF. Specification for the Representation of CIM in XML [Visited July 2007],

http://www.dmtf.org/standards/documents/WBEM/DSP201.html
14. Lee, D., Chu, W.W.: Comparative Analysis of Six XML Schema Languages. ACM

SIGMOD Record 29(3), 76–87 (2000)
15. Dalke, A.: Martel [Visited July 2007], http://www.dalkescientific.com/Martel/
16. XSLTC [Visited July 2007] http://xml.apache.org/-xalan-j/-xsltc/-index.

html
17. Object Management Group. XMLDOM - DOM/Value Mapping Specification [Vis-

ited July 2007], http://www.omg.org/cgi-bin/doc?ptc/2001-04-04
18. Grisby, D.: omniORB - Free High Performance ORB [Visited July 2007],

http://omniorb.sourceforge.net/
19. Salz, R.: ZSI - The Zolera SOAP Infrastructure Developer’s Guide [Visited July

2007], http://pywebsvcs.sourceforge.net/zsi.html

http://www.microsoft.com/windows/sfu/
http://www.microsoft.com/windows/sfu/
http://www.dmtf.org/standards/cim
http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.omg.org/technology/documents/corba_spec_catalog.htm
http://www.w3.org/TR/ws-arch/
http://www.dmtf.org/standards/documents/WBEM/DSP201.html
http://www.dalkescientific.com/Martel/
http://xml.apache.org/-xalan-j/-xsltc/-index.html
http://xml.apache.org/-xalan-j/-xsltc/-index.html
http://www.omg.org/cgi-bin/doc?ptc/2001-04-04
http://omniorb.sourceforge.net/
http://pywebsvcs.sourceforge.net/zsi.html

	Introduction
	Schema Transformation
	Configuration Data Extraction
	Distributed Object Technologies
	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

