Java for High Performance Computing: Assessment of Current Research and Practice

Guillermo L. Taboada*, Juan Touriño, Ramón Doallo

Computer Architecture Group University of A Coruña (Spain) {taboada,juan,doallo}@udc.es

7th Intl. Conf. Principles and Practice of Programming in Java (PPPJ'09), University of Calgary, Alberta, Canada

- 2 Java for High Performance Computing
- 3 Java for HPC: Current Research
- 4 Performance Evaluation

5 Conclusions

★ E ► ★ E ► E E < 2000</p>

< 🗇 🕨

Java for High Performance Computing Java for HPC: Current Research Performance Evaluation Conclusions

Java for HPC

Java is an Alternative for HPC in the Multi-core Era

Interesting features:

- Built-in networking
- Built-in multi-threading
- Portable, platform independent
- Object Oriented
- Main training language

Many productive parallel/distributed programming libs:

- Java shared memory programming (high level facilities: Concurrency framework)
- Java Sockets
- Java RMI
- Message-Passing in Java (MPJ) libraries

Java for High Performance Computing Java for HPC: Current Research Performance Evaluation Conclusions

Java for HPC

Java Adoption in HPC

- HPC developers and users usually want to use Java in their projects.
- Java code is no longer slow (Just-In-Time compilation)!
- But still performance penalties in Java communications:

Pros and Cons:

- high programming productivity.
- but they are highly concerned about performance.

Java for High Performance Computing Java for HPC: Current Research Performance Evaluation Conclusions

Java for HPC

Java Adoption in HPC

- HPC developers and users usually want to use Java in their projects.
- Java code is no longer slow (Just-In-Time compilation)!
- But still performance penalties in Java communications:

JIT Performance:

- Like native performance.
- Java can even outperform native languages thanks to the dynamic compilation.

Java for High Performance Computing Java for HPC: Current Research Performance Evaluation Conclusions

Java for HPC

Java Adoption in HPC

- HPC developers and users usually want to use Java in their projects.
- Java code is no longer slow (Just-In-Time compilation)!
- But still performance penalties in Java communications:

High Java Communications Overhead:

- Poor high-speed networks support.
- The data copies between the Java heap and native code through JNI.
- Costly data serialization.
- The use of communication protocols unsuitable for HPC.

Java for High Performance Computing Java for HPC: Current Research Performance Evaluation Conclusions

Java for HPC

Emerging Interest in Java for HPC

3 James Gosling: on the Java Road - Mozilla Firefox	_ n ×
<u>Elle Edit View Higtory Bookmarks Tools Help</u>	0
< - 🔄 · 🕲 🕜 🚡 http://blogs.sun.com/jag/entry/current_state_of_java_for	Google
🌩 Getting Started 🔂 Latest BBC Headlines 🔂 Grupo de Arquitectu 🔂 Actualidade UDC 🔂 La Voz de Galicia 🔂 PANTHER - News	
James Gosling: on the Java Road	
« Fun at SIGGRAPH Main In Germany this week »	
TUESDAY SEPTEMBER 02, 2008 Current State of Java for HPC At the last jon One I do a wilk on tak doing the AND haynote when I talked about how incredible tetiopers tractile for fortune Attenues of the AND haynote when I talked about how incredible tetiopers tractile for fortune Attenues (Det Mark Complexity in the AND haynote when I talked about how incredible tetiopers tractile for fortune Attenues (Det Mark Complexity in the AND haynote when I talked about how incredible tetiopers tractile for fortune Attenues (Det Mark Complexity interesting reading). There are a lot of HPC micro benchmarks in it which look great. Thankst Permatric Comments [3]	E Fallacies bio Standards BOOKS WORTH READING
Done	

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

Java for High Performance Computing Java for HPC: Current Research Performance Evaluation Conclusions

Java for HPC

Current State of Java for HPC

	HAL - INRIA II [im	ia-00312039, version 1] Current State	of Java for HPC - Me	zilla Firefox	_ — ×
ile <u>E</u> dit ⊻iew Hi <u>s</u> tory <u>B</u> ookmarks	<u>T</u> ools <u>H</u> elp				े
놓 • 🗼 - 🎯 💿 🏠 👿 http:/	📮 - 🧼 - 🎯 🐼 🕼 🕅 http://hal.inria.fr/inria-00312039/en 🚳 💎 🕨 🔀				Q
🗭 Getting Started 🛛 🔯 Latest BBC Head	lines 🔝 Grupo de Arq	uitectu 🔝 Actualidade UDC La Voz d	de Galicia 🚳 PANT	HER - News	
	ITUT NATIONAL DE RECHERCHE INFORMATIQUE I AUTOMATIQUE	RINRIA			
Home Submit	Browse	Search Help	Services		^
				anglish version	
inria-00312039, version	1				
Abstract: About ten year Computing. Multi-core chi tasks such as Just-In-Tim performance for basic arit distribution. Comparing th but still have scalability is	aartchouk (⊠,) ² , s after the Java Gra s are becoming main e compilation or Gar hmetic operations. T is implementation wis sues when performi	nstream, offering many ways for a Java bage Collection. We first perform son 'hen we study a Java implementation of th a Fortran/MPI one, we show that th	ig a snapshot of the Virtual Machine (JVM ne micro benchmark the Nas Parallel Ber ey have similar perfor periments on cluster	current status of Java for High Performant to take advantage of such systems for critic s for various JVMs, showing the overall goo chmarks, using the ProActive middleware fe mance on computation intensive benchmark s and mult-ore machines, we show that th	ce al cd cr s,
a - Faculty of Informatics, University 1: OASIS (INRIA Sophia Antipolis / I	of A Coruna, Spain			· · -	

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

Current options in Java for HPC:

- Java Shared Memory Programming
- Java Sockets
- Java RMI
- Message-Passing in Java (MPJ)

Java Shared Memory Programming:

- Java Threads
- Concurrency Framework (ThreadPools, Tasks ...)
- Parallel Java (PJ)
- Java OpenMP (JOMP and JaMP)

Listing 1: JOMP example

```
public static void main (String argv[]) {
    int myid;
    //omp parallel private(myid)
    {
        myid = OMP.getThreadNum();
        System.out.println(''Hello from'' + myid);
    }
    //omp parallel for
    for (i=1;i<n;i++) {
        b[i] = (a[i] + a[i-1]) * 0.5;
    }
}</pre>
```

<ロ> <四> < 回> < 回> < 回> < 回> < 回> < 回</p>

Java Communication Libraries Overview

Java HPC Applications

Java Message-passing libraries

Java RMI / Low-level messaging libraries

Java Sockets libraries

HPC Communications Hardware

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

HPC Communications Hardware

Performance of current HPC networks (Theoretical/C/Java):

	Startup latency	Bandwidth
	(microseconds)	(Mbps)
Gig. Ethernet	50/55/60	1000/920/900
10G Ethernet	5/10/50	10000/9000/5000
10G Myrinet	1/2/30	10000/9300/4000
InfiniBand	1/2/20	16000/12000/6000
SCI	1.4/3/50	5333/2400/800

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Standard and widely extended low-level programming interface for networked communications.

Current implementations:

- IO sockets
- NIO sockets
- Ibis sockets
- Java Fast Sockets

Pros and Cons:

- easy to use.
- but only TCP/IP support.
- lack non-blocking communication.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Iack HPC tailoring.

Standard and widely extended low-level programming interface for networked communications.

Current implementations:

- IO sockets
- NIO sockets
- Ibis sockets
- Java Fast Sockets

Pros and Cons:

- provides non-blocking communication.
- but only TCP/IP support.
- Iack HPC tailoring.
- o difficult use.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Standard and widely extended low-level programming interface for networked communications.

Current implementations:

- IO sockets
- NIO sockets
- Ibis sockets
- Java Fast Sockets

Pros and Cons:

- easy to use.
- with Myrinet support.
- but lack non-blocking communication.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Iack HPC tailoring.

Java Sockets

Standard and widely extended low-level programming interface for networked communications.

Current implementations:

- IO sockets
- NIO sockets
- Ibis sockets
- Java Fast Sockets

Pros and Cons:

- easy to use.
- efficient high-speed networks support.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- efficient shared memory protocol.
- with HPC tailoring.
- but lack non-blocking support.

Remote Method Invocation

RMI (Remote Method Invocation)

- Widely extended
- RMI-based middleware (e.g., ProActive)
- RMI Optimizations:
 - KaRMI
 - Manta
 - Ibis RMI
 - Opt RMI

Java Message-Passing Libraries

Message-passing is the main HPC programming model.

 Implementation approaches in Java message-passing libraries.

Implementation approaches

- RMI-based.
- Wrapping a native library (e.g., MPI libraries: OpenMPI, MPICH).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Sockets-based.

Listing 2: MPJ example

```
import mpi.* ;
public class Hello {
  public static void main (String argv[]) {
    MPI. Init(args);
    int rank = MPI.COMM WORLD.Rank();
    if (rank == 0)
      String[] msg = new String[1];
      msa[0] = new String("Hello"):
      MPLCOMM WORLD, Send (msg. 0, 1, MPLOBJECT, 1, 13);
    } else if (rank == 1) {
      String[] message = new String[1];
      MPI.COMM WORLD. Recv (message, 0, 1, MPI.OBJECT, 0, 13);
      System.out.println(message[0]);
    MPL. Finalize() :
```

<ロ> <同> <同> < 三> < 三> < 三> 三日 のQ()

	a Impl.	Socket High-speed impl. network support			API						
	Pure Java Impl.	Java IO	Java NIO	Myrinet	InfiniBand	sci	mpiJava 1.2	JGF MPJ	Other APIs		
MPJava	\checkmark		\checkmark						\checkmark		
Jcluster	\checkmark	\checkmark							\checkmark		
Parallel Java	\checkmark	\checkmark							\checkmark		
mpiJava				\checkmark	\checkmark	\checkmark	\checkmark				
P2P-MPI	\checkmark	\checkmark	\checkmark				\checkmark				
MPJ Express	\checkmark		\checkmark	\checkmark			\checkmark				
MPJ/Ibis	\checkmark	\checkmark		\checkmark				\checkmark			
JMPI	\checkmark	\checkmark							\checkmark		
F-MPJ	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	1			토▶ 토∣티 �	Q (?*

G. L. Taboada*, J. Touriño, R. Doallo

Java for HPC: Assessment of Current Research and Practice

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Java Communication Libraries Overview

Java HPC Applications (Develop Efficient Codes)

Java Message-passing libraries (Scalable Algorithms)

Low-level messaging libraries (MPJ Devices)

Java Sockets libraries (Java Fast Sockets)

HPC Hardware

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Java Fast Sockets (JFS)

High Performance Java Fast Sockets (JFS):

- Provides efficient high-speed cluster interconnects support (SCI, Myrinet and InfiniBand).
- Optimizes Java IO sockets, more popular and extended than NIO sockets.
- Avoids the need for primitive data type array serialization.
- Significantly reduces buffering and unnecessary copies.
- Implements an optimized shared memory protocol.
- It is user and application transparent, no source code modification is necessary to use JFS.

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Java Fast Sockets (JFS)

High Performance Java Fast Sockets (JFS):

- Provides efficient high-speed cluster interconnects support (SCI, Myrinet and InfiniBand).
- Optimizes Java IO sockets, more popular and extended than NIO sockets.
- Avoids the need for primitive data type array serialization.
- Significantly reduces buffering and unnecessary copies.
- Implements an optimized shared memory protocol.
- It is user and application transparent, no source code modification is necessary to use JFS.

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Java Fast Sockets (JFS)

High Performance Java Fast Sockets (JFS):

- Provides efficient high-speed cluster interconnects support (SCI, Myrinet and InfiniBand).
- Optimizes Java IO sockets, more popular and extended than NIO sockets.
- Avoids the need for primitive data type array serialization.
- Significantly reduces buffering and unnecessary copies.
- Implements an optimized shared memory protocol.
- It is user and application transparent, no source code modification is necessary to use JFS.

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Java Fast Sockets (JFS)

High Performance Java Fast Sockets (JFS):

- Provides efficient high-speed cluster interconnects support (SCI, Myrinet and InfiniBand).
- Optimizes Java IO sockets, more popular and extended than NIO sockets.
- Avoids the need for primitive data type array serialization.
- Significantly reduces buffering and unnecessary copies.
- Implements an optimized shared memory protocol.
- It is user and application transparent, no source code modification is necessary to use JFS.

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Java Fast Sockets (JFS)

High Performance Java Fast Sockets (JFS):

- Provides efficient high-speed cluster interconnects support (SCI, Myrinet and InfiniBand).
- Optimizes Java IO sockets, more popular and extended than NIO sockets.
- Avoids the need for primitive data type array serialization.
- Significantly reduces buffering and unnecessary copies.
- Implements an optimized shared memory protocol.
- It is user and application transparent, no source code modification is necessary to use JFS.

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Java Fast Sockets (JFS)

High Performance Java Fast Sockets (JFS):

- Provides efficient high-speed cluster interconnects support (SCI, Myrinet and InfiniBand).
- Optimizes Java IO sockets, more popular and extended than NIO sockets.
- Avoids the need for primitive data type array serialization.
- Significantly reduces buffering and unnecessary copies.
- Implements an optimized shared memory protocol.
- It is user and application transparent, no source code modification is necessary to use JFS.

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

JFS Transparency

SocketImplFactory factory = **new** jfs.net.JFSImplFactory(); Socket.setSocketImplFactory(factory); ServerSocket.setSocketFactory(factory);

```
Class cl = Class.forName(className);
Method method = cl.getMethod("main",parameterTypes);
method.invoke(null, parameters);
```

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

JFS optimized protocol

G. L. Taboada*, J. Touriño, R. Doallo

Java for HPC: Assessment of Current Research and Practice

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

JFS Serialization Avoidance Feature

JFS extended API for communicating primitive data type arrays directly.

```
jfs.net.SocketOutputStream.write(byte buf[], int offset, int length);
jfs.net.SocketOutputStream.write(int buf[], int offset, int length);
jfs.net.SocketOutputStream.write(double buf[], int offset, int length);
...
jfs.net.SocketInputStream.read(byte buf[], int offset, int length);
jfs.net.SocketInputStream.read(int buf[], int offset, int length);
jfs.net.SocketInputStream.read(double buf[], int offset, int length);
jfs.net.SocketInputStream.read(double buf[], int offset, int length);
jfs.net.SocketInputStream.read(double buf[], int offset, int length);
```

< □ > < 同 > < 回 > < 回 > 三目 の Q ()

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

JFS Portability and Performance (direct send of part of an integer array)

```
int int_array[] = new int[20];
// Writing the first ten elements of int_array
if (os instanceof jfs.net.SocketOutputStream) {
    ((jfs.net.SocketOutputStream) os).write(int_array,0,10);
else {
    int[] ints = (int[]) Array.newInstance(int.class, 10);
    System.arraycopy(int_array, 0, ints, 0, 10);
    oos = new ObjectOutputStream(os);
    oos.writeUnshared(ints);
}
```

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

JFS High-speed Networks Support

Figure: Java communication middleware on high-speed multi-core clusters

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

JFS Micro-Benchmarking

JFS performance improvement compared to Sun JVM sockets

	JFS start-up	JFS bandwidth		
	reduction	increase		
SCI	up to 88%	up to 1305%		
Myrinet	up to 78%	up to 412%		
InfiniBand	up to 65%	up to 860%		
Gigabit Ethernet	up to 10%	up to 119%		
Shared memory	up to 50%	up to 4411%		

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

iodev: Low-level Message-Passing Library

The use of pluggable low-level communication devices is widely extended in message-passing libraries.

Message-passing Low-level Devices:

- MPICH/MPICH2 ADI/ADI3 (GM/MX for Myrinet, IBV/VAPI for InfiniBand, and shared memory).
- OpenMPI BTL (GM/MX for Myrinet, IBV/VAPI for InfiniBand, and shared memory).
- MPJ Express xdev (NIO sockets, MX for Myrinet, and shared memory).

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

iodev: Low-level Message-Passing Library

The use of pluggable low-level communication devices is widely extended in message-passing libraries.

Message-passing Low-level Devices:

- MPICH/MPICH2 ADI/ADI3 (GM/MX for Myrinet, IBV/VAPI for InfiniBand, and shared memory).
- OpenMPI BTL (GM/MX for Myrinet, IBV/VAPI for InfiniBand, and shared memory).
- MPJ Express xdev (NIO sockets, MX for Myrinet, and shared memory).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

iodev: Low-level Message-Passing Library

The use of pluggable low-level communication devices is widely extended in message-passing libraries.

Message-passing Low-level Devices:

- MPICH/MPICH2 ADI/ADI3 (GM/MX for Myrinet, IBV/VAPI for InfiniBand, and shared memory).
- OpenMPI BTL (GM/MX for Myrinet, IBV/VAPI for InfiniBand, and shared memory).
- MPJ Express xdev (NIO sockets, MX for Myrinet, and shared memory).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

xxdev API. Public interface of the xxdev. Device class

```
public abstract class Device {
 static public Device newInstance(String deviceImpl);
public int[] init(String[] args);
public int id();
public void finish();
public Request isend(Object buf, int dst, int tag);
public Request irecv(Object buf, int src, int tag, Status stts);
public void send(Object buf, int dst, int tag);
public Status recv(Object buf, int src, int tag);
public Request issend(Object buf, int dst, int tag);
public void ssend(Object buf, int dst, int tag);
public Status iprobe(int src, int tag, int context);
public Status probe(int src, int tag, int context);
public Request peek();
```

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Low-Level Java Communication Devices

xdev implementations

- Current: niodev (Java NIO sockets), iodev (Java IO sockets, and hence JFS) and mxdev (Myrinet)
- Ongoing: smpdev (Shared memory) and ibdev (InfiniBand)

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

<ロ> <四> <四> < 回> < 回> < 回> < 回> < 回</p>

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Low-Level Java Communication Devices

xdev implementations

- Current: niodev (Java NIO sockets), iodev (Java IO sockets, and hence JFS) and mxdev (Myrinet)
- Ongoing: smpdev (Shared memory) and ibdev (InfiniBand)

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Fast MPJ (F-MPJ)

Fast MPJ (F-MPJ) is the scalable and efficient Java message-passing library implemented on top of the low-level message-passing middleware iodev.

F-MPJ:

- shows efficient non-blocking communication (iodev) and high-speed multi-core clusters support (JFS).
- presents lower communication overhead through an extensive use of communications overlapping.
- achieves high scalability as it implements several algorithms per collective primitive, allowing their selection at runtime.

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Fast MPJ (F-MPJ)

Fast MPJ (F-MPJ) is the scalable and efficient Java message-passing library implemented on top of the low-level message-passing middleware iodev.

F-MPJ:

- shows efficient non-blocking communication (iodev) and high-speed multi-core clusters support (JFS).
- presents lower communication overhead through an extensive use of communications overlapping.
- achieves high scalability as it implements several algorithms per collective primitive, allowing their selection at runtime.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Fast MPJ (F-MPJ)

Fast MPJ (F-MPJ) is the scalable and efficient Java message-passing library implemented on top of the low-level message-passing middleware iodev.

F-MPJ:

- shows efficient non-blocking communication (iodev) and high-speed multi-core clusters support (JFS).
- presents lower communication overhead through an extensive use of communications overlapping.
- achieves high scalability as it implements several algorithms per collective primitive, allowing their selection at runtime.

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

MPJ Collective Algorithms

The design, implementation and runtime selection of efficient collective communication operations have been extensively discussed in the context of native message-passing libraries, but not in MPJ.

F-MPJ focuses on developing scalable MPJ collective primitives.

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

MPJ Collective Algorithms

The design, implementation and runtime selection of efficient collective communication operations have been extensively discussed in the context of native message-passing libraries, but not in MPJ.

F-MPJ focuses on developing scalable MPJ collective primitives.

Collective Algorithms:

- Flat Tree (FT)
- Minimum-Spanning Tree (MST)
- Binomial Tree (BT)

- Four-ary Tree (Four-aryT)
- Bucket (BKT) or cyclic
- BiDirectional Exchange (BDE) or recursive doubling

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

MPJ Collective Algorithms. MST

Figure: Minimum-spanning tree algorithm for Broadcast

★ E ► ★ E ► E E < 2000</p>

< 17 ▶

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

MPJ Collective Algorithms. BKT

Figure: Bucket algorithm for Allgather (BKTAllgather)

ELE DQC

★ E ► < E ►</p>

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

MPJ Collective Algorithms. BDE

Figure: Bidirectional exchange algorithm for Allgather (BDEAllgather). In the 2^{nd} step, bidirectional exchanges occur between the two pairs of processes p_0 and p_2 , and p_1 and p_3

3

1= nac

★ E ► < E ►</p>

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

Collective	F-MPJ	MPJ Express	
Barrier	MST	nbFTGather+ bFour-aryTBcast	
Bcast	MST ¹	bFour-aryT	
	MSTScatter+BKTAllgather ²		
Scatter	MST	nbFT	
	nbFT ²		
Scatterv	MST	nbFT	
	nbFT ²		
Gather	MST	nbFT	
	nbFT ²		
Gatherv	MST	nbFT	
	nbFT ²		
Allgather	MSTGather+MSTBcast ¹	nbFT	
	BKT ² / BDE ³		
Allgatherv	MSTGatherv+MSTBcast	nbFT	
Alltoall Alltoallv	nbFT nbFT	nbFT nbFT	
Reduce	MST ¹	bFT	
neuuce	BKTReduce scatter+	011	
	MSTGather ²		
Allreduce	MSTReduce+MSTBcast ¹	BT	
	BKTReduce_scatter+		
	BKTAllgather ² / BDE ³		
Reduce	MSTReduce+MSTScatterv ¹	bFTReduce+	
scatter	BKT ² / BDE ³	nbFTScatterv	
Scan	nbFT	nbFT	

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

NPB-MPJ Characteristics (10,000 SLOC (Source LOC))

Name	Operation	SLOC	Communicat. intensiveness	Kernel	Applic.
CG EP	Conjugate Gradient	1000	Medium	\checkmark	
EP	Embarrassingly Parallel	350	Low	\checkmark	
FT	Fourier Transformation	1700	High	\checkmark	
IS	Integer Sort	700	High	\checkmark	
MG	Multi-Grid	2000	High	\checkmark	
SP	Scalar Pentadiagonal	4300	Medium		\checkmark

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

JFS Java Communication Devices MPJ Collectives Scalability HPC Benchmarking

NPB-MPJ

NPB-MPJ Optimization:

- JVM JIT compilation of heavy and frequent methods with runtime information
- Structured programming is the best option
 - Small frequent methods are better.
 - mapping elements from multidimensional to one-dimensional arrays (array flattening technique: arr3D[x][y][z]→arr3D[pos3D(lenghtx,lengthy,x,y,z)])
 - NPB-MPJ code refactored, obtaining significant improvements (up to 2800% performance increase)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Experimental Configuration Java Performance for HPC

Experimental Configuration:

Departmental cluster (8 nodes)

- Intel Xeon 5060 dual dual-core CPU (4 cores with hyper-threading per node)
- 4 GB RAM
- InfiniBand network (16 Gbps)
- Linux, OFED-1.4, Intel MPI/C Compiler
- Sun JDK 1.6, ProActive, F-MPJ, MPJ Express, mpiJava

24-core machine

- Quad Intel Xeon 7450 hexa-core CPU (24 cores)
- 32 GB RAM
- Linux, Sun JDK 1.6, Intel Open Compiler

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Conclusions

Experimental Configuration Java Performance for HPC

Experimental Results on One Core (relative perf.)

Experimental Configuration Java Performance for HPC

NPB-MPJ Performance

G. L. Taboada*, J. Touriño, R. Doallo

Conclusions

Experimental Configuration Java Performance for HPC

NPB-MPJ Performance

G. L. Taboada*, J. Touriño, R. Doallo

Experimental Configuration Java Performance for HPC

NPB-MPJ Performance

FT (Class B)

G. L. Taboada^{*}, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

Experimental Configuration Java Performance for HPC

NPB-MPJ Performance

G. L. Taboada*, J. Touriño, R. Doallo

Java Performance for HPC

NPB-MPJ Performance

MG (Class B)

G. L. Taboada*, J. Touriño, R. Doallo

Experimental Configuration Java Performance for HPC

NPB-MPJ Performance

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: As

Experimental Configuration Java Performance for HPC

Finis Terrae Supercomputer Configuration

Finis Terrae (142 HP Integrity rx7640 nodes).

Hybrid shared/distributed memory (up to 8 cores per node and up to 32 nodes).

- 16 Montvale Itanium2 (IA64) cores at 1.6 GHz (used 8 cores per node).
- 128 GB RAM
- Interconnected via InfiniBand (16 Gbps)

Finis Terrae Integrity Superdome

Shared memory performance evaluation of up to 64 cores:

- 128 Montvale Itanium2 (IA64) cores at 1.6 GHz
- 1 TB RAM

<ロ> <四> <四> < 回> < 回> < 回> < 回> < 回</p>

Conclusions

Experimental Configuration Java Performance for HPC

NPB-MPJ Performance Evaluation (Finis Terrae)

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

Conclusions

Experimental Configuration Java Performance for HPC

NPB-MPJ Performance Evaluation (Finis Terrae)

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

< < >> < </>

▲ Ξ ▶ ▲ Ξ ▶ Ξ ΙΞ · · · · Q @

Conclusions

Experimental Configuration Java Performance for HPC

NPB-MPJ Performance Evaluation (Finis Terrae)

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝒫 𝔅 𝔅

Conclusions

Experimental Configuration Java Performance for HPC

NPB-MPJ Performance Evaluation (Finis Terrae)

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

< < >> < </>

▲ Ξ ▶ ▲ Ξ ▶ Ξ ΙΞ · · · · Q @

Conclusions

Experimental Configuration Java Performance for HPC

NPB-MPJ Performance Evaluation (Finis Terrae)

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

Conclusions

Experimental Configuration Java Performance for HPC

NPB-MPJ Performance Evaluation (Finis Terrae)

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

11 9 9 9 C

★ 문 ► < 문 ►</p>

Conclusions

Experimental Configuration Java Performance for HPC

Gadget Cosmological Simulation Project Webpage

G. L. Taboada*, J. Touriño, R. Doallo

Conclusions

Experimental Configuration Java Performance for HPC

Gadget Cosmological Simulation Speedup

G. L. Taboada*, J. Touriño, R. Doallo

Summary Questions

Summary

- Current state of Java for HPC (interesting/feasible alternative)
- Available programming models in Java for HPC:
 - Shared memory programming
 - Distributed memory programming
 - Distributed shared memory programming
- Active research on Java for HPC (>30 projects)
- ...but still not a mainstream language for HPC
- Adoption of Java for HPC:
 - It is an alternative for programming multi-core clusters (tradeoff some performance for appealing features)
 - Performance evaluations are highly important
 - Analysis of current projects (promotion of joint efforts)

Summary Questions

Questions?

JAVA FOR HIGH PERFORMANCE COMPUTING:

ASSESSMENT OF CURRENT RESEARCH AND PRACTICE

PPPJ'09

Guillermo López Taboada Computer Architecture Group, University of A Coruña

G. L. Taboada*, J. Touriño, R. Doallo Java for HPC: Assessment of Current Research and Practice

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

For Further Reading I

- G. L. Taboada, and J. Touriño, and R. Doallo, "Java Fast Sockets: Enabling High-speed Java Communications on High Performance Clusters," *Computer Communications*, vol. 31, no. 17, pp. 4049–4059, 2008.
- G. L. Taboada, J. Touriño, and R. Doallo, "F-MPJ: Scalable Java Message-passing Communications on Parallel Systems," *Journal of Supercomputing*, vol. In press, 2009.
- G. L. Taboada, J. Touriño, and R. Doallo, "Performance Analysis of Message-Passing Libraries on High-Speed Clusters," *Intl. Journal of Computer Systems Science & Engineering*, 2009 (In press).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

For Further Reading II

- B. Amedro, V. Bodnartchouk, D. Caromel, C. Delbé, F. Huet, and G. L. Taboada. "Current State of Java for HPC", *INRIA Technical Report RT-0353*, pages 1–24, INRIA Sophia Antipolis, Nice, France, 2008, http://hal.inria.fr/inria-00312039/en/
- A. Shafi, B. Carpenter, and M. Baker. "Nested Parallelism for Multi-core HPC Systems using Java", *Journal of Parallel and Distributed Computing*, 2009 (In press).
- A. Shafi, B. Carpenter, M. Baker, and A. Hussain. "A Comparative Study of Java and C Performance in two Large-scale Parallel Applications", .*Concurrency and Computation: Practice and Experience*, In press, 2009.

◆母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三日 ● ○○○

RMI Layers:

• Transport Protocol Optimization.

- Serialization
 Overhead Reduction.
- Object Manipulation Improvements.

Optimization:

- High Performance Sockets Support (JFS).
- Reduction of Data Block Information.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

RMI Layers:

- Transport Protocol Optimization.
- Serialization Overhead Reduction.
- Object Manipulation Improvements.

Optimization:

• Native Array Serialization.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

RMI Layers:

- Transport Protocol Optimization.
- Serialization Overhead Reduction.
- Object Manipulation Improvements.

Optimization:

- Versioning Information Reduction.
- Class Annotation Reduction.
- Array Processing Improvements.

・ロト (周) (E) (E) (E) (E)

Gadget Cosmological Simulation Runtime

Gadget (Total Runtime)

G. L. Taboada*, J. Touriño, R. Doallo

Java for HPC: Assessment of Current Research and Practice

∃▶ ∃|= ∽�?