
Performance Analysis of Message-Passing Libraries

on High-Speed Clusters

Guillermo L. Taboada, Juan Touriño and Ramón Doallo

Department of Electronics and Systems

University of A Coruña, Spain

{taboada,juan,doallo}@udc.es

Abstract

This paper presents a performance analysis of message-passing overhead on high-

speed clusters. Communication performance is critical for the overall high-speed cluster

performance. In order to analyze the communication overhead, a new linear model pro-

posed in this work is used for its characterization. Performance models have been derived

using our own micro-benchmark suite on MPI C and emerging Java message-passing li-

braries. These models predict communication overhead quite accurately. Representative

performance metrics have also been obtained in order to evaluate message-passing perfor-

mance and establish comparisons among different message-passing libraries and clusters.

Besides the evaluation process, communication models are useful to optimize parallel

applications. Several model-based performance optimizations have been reported. Thus,

inefficient primitives have been replaced by more efficient equivalent combinations of

primitives. Through an application-level kernel benchmarking it has been analyzed the

influence of multiple processor nodes and the message-passing overhead on the overall

application performance. From this analysis, it has been concluded that current message-

passing implementations do not fully benefit from multiple processor nodes.

Keywords: Cluster, Myrinet, SCI, Message-passing, MPI, Java, Performance Analysis

1 Introduction

There is a growing interest of both scientific and enterprise environments in high-speed

clusters as they deliver outstanding parallel performance at a competitive cost. A high-

speed cluster consists of computing nodes connected together by a specific purpose high-

speed network for achieving higher communication performance on clusters. SCI (Scalable

Coherent Interface), Myrinet, Quadrics, Infiniband and 10 Gigabit Ethernet are examples

of high-speed interconnects. Scalability is a key factor to confront new challenges in cluster

computing, and it depends heavily on the use of high-speed interconnects. But this scalability

must reach the parallel application level, and here is where the message-passing paradigm

plays an important role, providing programming flexibility and good performance on these

architectures.

In this work, C and Java message-passing libraries are analyzed on high-speed clusters

in order to estimate overheads. The inclusion of Java message-passing libraries is motivated

1

2

by the emergence of Java as an option for high performance computing [1]. The goal of this

paper is to identify inefficient primitive implementations, as well as to report performance

results for these specific environments, particularly for Myrinet and SCI clusters, which can

guide developers to improve their parallel applications. A proposal of a more accurate an-

alytical model for high-speed cluster communications, as well as a micro-benchmark suite

(http://www.des.udc.es/~gltaboada/micro-bench/), are made available to parallel pro-

grammers. These tools provide a useful way to quantify the influence of the message-passing

libraries and system configuration on the overall application performance. This influence has

been corroborated through an application-level kernel benchmarking. The obtained analyt-

ical performance models are also useful in optimizing message-passing performance. Thus,

communication overhead can be reduced through replacing inefficient communication primi-

tives by more efficient equivalent combinations of primitives.

The paper is organized as follows: the next section introduces existing message-passing

performance models and analyzes their suitability for evaluation purposes. As the accuracy

and simplicity of these models have not been as expected, a new linear model is proposed, fo-

cused on obtaining higher accuracy on high-speed clusters. Section 3 presents the formulation

of this model, some performance metrics derived from it, the micro-benchmarking process

and a preliminary accuracy analysis. Section 4 presents experimental results: the commu-

nication performance of two clusters, with two representative high-speed interconnects, SCI

and Myrinet, has been modeled and analyzed. A further discussion on the experimental

results and performance estimation is the focus of Section 5, together with a proposal of a

model-based performance optimization. Section 6 presents an analysis of the influence of

message-passing overhead on applications through an application-level kernel benchmarking.

Section 7 analyzes the influence of the use of multiple processor nodes on the overall cluster

performance. This evaluation has been done with the aid of the previous application-level

kernel benchmarking. Finally, Section 8 concludes the paper with a summary of contributions

and future research directions.

2 Message-Passing Performance Models

The appropriateness of existing communication models has been evaluated in terms of their

simplicity and accuracy for high-speed clusters. Models discussed in this paper can be clas-

sified into LogP- and linear-based models.

The LogP model [2] characterizes communications by four parameters: network communi-

cation time L, overhead o, gap g and number of processors P . Some LogP variants have been

proposed to support additional characteristics by adding parameters to the model. Thus,

LogGP [3] introduces G, gap per byte, to support long messages, LoPC [4] and LoGPC [5] add

C to model resource contention, LogGPS [6] incorporates synchronization costs by adding

S, and LogPQ [7] introduces Q, referring to communication queues. Additional models are

memory logP [8] which applies and augments the original LogP model to estimate overheads

in a hierarchical memory subsystem, parametrized LogP (P-LogP) [9], which presents a gap

g(m) that depends on the message size m, lognP [10], that addresses the communication cost

3

as a sum of middleware, memory and interconnection network overheads, and HLogP [11],

which is targeted to model Grid systems.

Regarding the appropriateness of these models, LogP is too basic to perform a thorough

analysis. This model assumes single processor nodes and small messages, determining that

it is only effective when L dominates overall cost. In this case, the influence of message size

and data distribution on memory communication overhead is negligible. The need to include

these parameters has led models to include G, gap per byte, or the data size. However, this

is effective only in tightly synchronized communication patterns. In fact, the contention C

for message-processing resources is a significant factor in the total application runtime for

many fine-grain message-passing algorithms, particularly on clusters. Nevertheless, LogP

with additional G and/or C parameters usually omits significant costs, such as the influence

of the memory gap on performance. memory logP models this influence, although only for

shared memory architectures. The model lognP extends memory logP (in fact, memory

logP is log1P) taking into account the number of communication steps. Thus, log3P would

describe communications on high-speed clusters: (1) communication memory / Network

Interface Card (NIC), (2) communication NIC / NIC, and (3) communication NIC / memory.

Experimental results from characterizing communication overhead using these models on

high-speed clusters report average absolute relative errors of 28% for LogGP predictions,

and of 5% for log3P [10]. Nevertheless, these accurate results are limited to regular access

patterns.

Linear models are also a popular method to characterize message-passing overhead. These

models are usually based on Hockney’s model for point-to-point communications and on Xu

and Wang’s model for collective primitives [12]. Thus, message latency (T) of point-to-point

communications is modeled as an affine function of the message length n: T (n) = t0 + tbn,

where t0 is the startup time, the time taken for a zero length message, and tb is the trans-

fer time per byte. Communication bandwidth is easily derived as Bw(n) = n/T (n). A

generalization of the point-to-point model is used to characterize collective communications:

T (n, p) = t0(p) + tb(p)n, where p is the number of processors involved in the communica-

tion. This characterization of message-passing overhead is relatively easy to develop and

usually provides good predictions, but its simplicity is thought to be a restricting factor to

its accuracy.

The lack of accuracy of linear models on high-speed clusters affects both to t0 and tb

parameters. The combination into a unique parameter t0 of the overhead (o) and network

communication time (L) differentiated in the LogP model is considered to be only appropriate

for long messages, not giving enough detail for short messages [3]. Moreover, as linear models

usually assume constant tb, the accuracy of the models turned out to be much better on

Ethernet-based than on high-speed clusters, where different high performance communication

protocols, with different tb, are used depending on the message size. A previous work [13]

on modeling communication performance on high-speed clusters has shown the limitations

of the Hockney’s model to predict performance accurately. In fact, Hockney’s model on Fast

Ethernet predicts performance with average absolute relative errors of 13% for Send and 21%

for collective communications. Hockney’s model on SCI presented average absolute relative

4

errors of 18% and 28%, respectively.

Once turned out to be unsuitable the linear model due to the dearth of accuracy, the lognP

model was selected as the most suitable choice among LogP-based models. Nevertheless,

apart from its lack of direct collective primitive support, it exhibits a certain complexity

in its formulation. Although the possibility of simplification by ignoring some parameters

exists, sometimes this is not an advantageous choice. In fact, while too many parameters

keep non-experts from drawing conclusions about performance, too few parameters do not

provide enough information.

3 Modeling Process and Performance Metrics

This paper aims at using a model realistic enough to characterize more accurately commu-

nication overhead despite the complexity of current communication middleware, but simple

enough for programmers to design and analyze parallel algorithms overhead. As existing

models do not fit completely this purpose, a new linear model is proposed to address the

main drawbacks of high-speed cluster communications modeling. This model takes into ac-

count the influence of different protocols involved in the communication process. This is

done by augmenting the linear model described in [12] with a new parameter, ti, which is

the intercept from the linear regression of T (n) − t0 versus n. In high-speed clusters, t0

is quite small and ti is usually higher. According to the previous considerations, message

latency (T) of point-to-point communications on high-speed clusters should be modeled as

T (n) = t0 + ti + tbn. Nevertheless, this tentative model predicts inaccurately T for short

messages (e.g. T (0) = t0 and the model predicts T (0) = t0 + ti). In order to solve this issue,

ti must be weighted by the ratio of transfer time (tbn) to the latency predicted by Hockney’s

model (t0 + tbn). Thus, point-to-point communications are modeled as:

T (n) = t0 + ti(
tbn

t0 + tbn
) + tbn

and collective communications are modeled generalizing the point-to-point model:

T (n, p) = t0(p) + ti(p)(
tb(p)n

t0(p) + tb(p)n
) + tb(p)n

Regarding point-to-point communications, this new model predicts accurately T (0) = t0,

and shows higher accuracy than Hockney’s model, especially for medium messages. In fact,

the higher relative difference between this model and Hockney’s model occurs at a t0/tb-byte

message. This maximum relative difference has been obtained by setting the derivative of

(Tproposed(n) − THockney(n))/THockney(n) equals to zero and solving for n. This value, t0/tb,

varies on high-speed clusters from 1KB to tens of KB, in the range of medium messages.

In fact, Hockney’s model usually underestimates latency of medium messages on high-speed

clusters. The reason for this is that message-passing libraries use different communication

protocols for short and long messages. Long message protocols usually show lower tb than

short message protocols, focused on lower t0. As tb is obtained from a linear regression of T

vs. n in which the long message performance dominates, its value is quite similar to the tb of

long message protocols. Thus, using the obtained tb, short message latency is underestimated.

5

In order to illustrate this scenario, an example is provided: an MPI C primitive on an SCI

cluster presents t0 = 4µs, ti = 13µs and tb = 3.89ns/byte (see ScaMPI Send in Table 2).

The estimates of the models are THockney(4KB) = 20µs and Tproposed(4KB) = 30µs. As

Tmeasured(4KB) = 33µs the proposed model estimates performance more accurately.

The addition to Hockney’s model of a new explanatory variable (ti) has shown that

increasing slightly the complexity of the model, higher accuracy can be obtained, specially

for medium messages. A different alternative would be defining a function in pieces for each

communication protocol. Nevertheless, this approach requires knowledge about protocol

boundaries.

A benchmark suite for both C and Java message-passing libraries appropriate for the

modeling process has not been found. Thus, a micro-benchmark suite has been developed

(http://www.des.udc.es/~gltaboada/micro-bench/). It consists of a set of tests for both

C and Java codes adapted to the modeling needs. Regarding point-to-point primitives, a

ping-pong test takes 150 measurements of the runtime varying the message size in powers of

four from 0 bytes. It has been chosen as test time the minimum value to avoid distortions

due to timing outliers. The parameter t0 is the startup time. The parameters ti (intercept)

and tb (slope) were derived from a linear regression of T (n) − t0 vs n. Similar tests were

applied to collective primitives, but also varying the number of processors (from 2 up to

the number of available processors in the testbed). The parameter t0(p) was derived from

a linear regression of startup times vs p. The parameters ti(p) and tb(p) were derived from

a regression of T (n, p) − t0(p) vs n and p. A Barrier was included to avoid a pipelined

effect and to prevent the network contention that might appear by the overlap of collective

communications executed on different iterations of the test. Double precision addition was the

operation used in computational primitives (Reduce, Allreduce, Reduce-scatter and Scan).

In order to test the accuracy of the proposed model the average absolute relative error

of 20 random messages for each primitive has been calculated. The results, a 7% error for

Send and below 7% error for collective primitives, are much better than the 18% and 28%

error for Hockney’s model for Send and collective primitives, respectively. Moreover, the

predictions obtained from this model (Section 4) are consistent with the application-level

kernel benchmarking (Section 6).

Figure 1 illustrates, through bandwidth graphs, the better fitting of experimentally mea-

sured bandwidth (empty symbols) by the proposed model compared to Hockney’s model.

Graph (a) shows Send bandwidth on Myrinet, and Graph (b) Broadcast bandwidth on SCI.

The complete details of the experimental results and models are presented in Section 4. It

can be seen that the estimates improve especially on the native message-passing library (MPI

C), as there are more major differences among native communication protocols than among

Java communication protocols for Java message-passing (MPJ) [14]. It can also be observed

that the higher relative difference between the proposed model and Hockney’s model occurs

at a t0/tb-byte message. t0/tb is 1KB for MPI C and 11KB for MPJ. In fact, at this point,

the proposed model estimates the bandwidth much better than Hockney’s model.

Two metrics are derived from the model: the asymptotic bandwidth Bwas(p) = 1/tb(p),

the maximum throughput achievable when n → ∞, and the specific performance π0(p) =

6

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

20

40

60

80

100

120

140

160

180

200
B

an
dw

id
th

 B
w

(n
)

(M
B

/s
)

MPI C measured Bw
Hockney’s model
Proposed model
MPJ measured Bw
Hockney’s model
Proposed model

(a) Send (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

80

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

MPI C measured Bw
Hockney’s model
Proposed model
MPJ measured Bw
Hockney’s model
Proposed model

(b) Broadcast (SCI)

Figure 1: Hockney’s model vs. proposed model comparison

1/t0(p). Bwas shows long message performance, whereas π0 characterizes short message

bandwidth. Another metric is the aggregated asymptotic bandwidth Bwag
as(p) = f(p)Bwas(p),

defined as the ratio of the total number of bytes transferred in the collective operation to

the time required to perform the operation, as n → ∞. The function f(p) is the relationship

between the total number of bytes transferred in the collective primitive and the message

length. f(p) depends on the communication pattern of each primitive: e.g. a Broadcast of n

bytes to p processors implemented with a binomial tree sends p − 1 messages of n bytes. In

our case f(p) = p− 1 for Broadcast, Alltoall, Reduce and Scan; f(p) = (p− 1)/p for Scatter

and Gather; f(p) = 2(p − 1) for Allreduce, and f(p) = (p2 − 1)/p for Allgather and Reduce-

scatter. Similarly, the aggregated specific performance is defined as πag
0 (p) = f(p)π0(p) to

show the performance of a collective operation for short messages. All these metrics for

collective primitives are functions depending on p. In order to have numbers rather than

functions to straightforwardly compare the performance of the different message-passing li-

braries, peak metrics have also been used in our experimental results (see Tables 1–4): the

peak aggregated bandwidth Bwpag
as = max2≤p≤pmax Bwag

as(p), and the peak aggregated spe-

cific performance πpag
0 = max2≤p≤pmax πag

0 (p), being pmax the maximum p available. For

point-to-point communications Bwpag
as = 1/tb and πpag

0 = 1/t0.

4 Experimental Results

4.1 Cluster Hardware/Software Configuration

Performance analytical models have been obtained from two high-speed clusters. The first

cluster consists of 16 single-processor nodes (PIII at 1 GHz and 512 MB of memory) inter-

connected via Myrinet 2000 cards plugged into 64bit/33MHz PCI slots. The OS is Linux

Red Hat 7.1, kernel 2.4, C compiler gcc 2.96, and Java Virtual Machine (JVM) Sun 1.5.0.

The second cluster consists of 8 dual-processor nodes (PIV Xeon with hyperthreading at 1.8

GHz and 1GB of memory) interconnected via D334 SCI cards plugged into 64bit/66MHz

PCI slots in a 2-D torus topology. The OS is Red Hat 7.3, kernel 2.4, C compiler gcc 3.2.2,

and JVM Sun 1.5.0. Three different hardware configurations have been used for the SCI

7

cluster: SCI-single, running one message-passing process on each node; SCI-dual, running

two message-passing processes on each node; and SCI-dual w/HT (with hyperthreading en-

abled), running four message-passing processes on each node. The hyperthreading allows one

processor to operate as two processors internally, with a potential increase in performance

claimed to be of about 30%, according to the manufacturer, Intel. Thus, a dual node with

hyperthreading enabled has 4 “virtual” processors. The other two configurations, SCI-single

and SCI-dual, have hyperthreading disabled.

Two MPI C libraries have been analyzed on the SCI cluster: ScaMPI (version 1.13.8), and

SCI-MPICH (version 1.2.1), an MPICH implementation for SCI. As ScaMPI has shown better

performance than SCI-MPICH, especially on SCI-dual and SCI-dual w/HT, only some SCI-

MPICH models are shown for comparative purposes (Tables 2 and 3). MPICH-GM (version

1.2.4..8), a port of MPICH on top of GM (a low-level message-passing system for Myrinet)

was selected for Myrinet.

Three representative Java message-passing libraries have been selected: mpiJava [15]

(version 1.2.5), MPJ/Ibis [16] (version 1.4) and MPJ Express [17] (version 0.26). The mpi-

Java library consists of a collection of wrapper classes that call a native MPI implementation

through Java Native Interface (JNI). On Myrinet, mpiJava calls MPICH-GM, whereas on

SCI, it calls ScaMPI. This wrapper-based approach provides efficient communication relying

on native libraries, adding just a small JNI overhead. Nevertheless, its major drawback is

the lack of portability, caused by the need of a native MPI implementation. This problem

is overcome with the use of “pure” Java message-passing libraries that implement the whole

messaging system in Java. Nevertheless, these implementations are less efficient than native

implementations. MPJ/Ibis is an MPI-like “pure” Java message-passing implementation in-

tegrated in the Ibis framework [18]. It is implemented on top of TCPIbis Sockets (similar

to Java I/O Sockets). MPJ Express is another MPI-like “pure” Java message-passing im-

plementation based on Java NIO Sockets. It implements more high-level MPI features than

MPJ/Ibis, like derived datatypes, virtual topologies and inter-communicators. It also in-

cludes a runtime execution environment. Despite these differences, in terms of performance

both “pure” Java libraries behave similarly. In fact, the differences between these libraries are

mainly explained by the underlying communication layer. TCPIbis Sockets obtain lower t0

and higher tb than Java NIO Sockets. Thus, MPJ/Ibis shows slightly better performance for

short messages, whereas MPJ Express achieves higher bandwidths. For conciseness, only one

“pure” Java message-passing library has been modeled. MPJ/Ibis has been selected as the

representative library for showing slightly better short message performance, an extremely

important characteristic on high-speed clusters.

4.2 Analytical Models and Metrics

Table 1 presents the parameters of the latency models (t0(p), ti(p) and tb(p)) for the standard

Send and for collective communications on the Myrinet cluster. Two peak metrics derived

from the models (πpag
0 and Bwpag

as , see Section 3) are also provided in order to show short

and long message performance, respectively, as well as to compare among libraries for each

primitive. Regarding these two metrics, the higher, the better. Tables 2, 3 and 4 present the

8

same results for the different SCI configurations: SCI-single, SCI-dual and SCI-dual w/HT,

respectively. These models are valid for communications from 2 nodes up to the total num-

ber of processors of the cluster. Thus, the models are valid for 2 ≤ p ≤ 16 on Myrinet, for

2 ≤ p ≤ 8 on SCI-single, for 4 ≤ p ≤ 16 on SCI-dual, and for 8 ≤ p ≤ 32 on SCI-dual w/HT.

Transfer times, tb(p), show O(log2 p) complexity in almost all collective communications,

which reveals a binomial tree-structured implementation of the primitives. Nevertheless, in-

efficient communication patterns have been detected on ScaMPI and MPJ/Ibis Scan (they

are O(p)). Other implementations, e.g. MPJ/Ibis Allreduce, performs badly. In this partic-

ular case a Reduce followed by a Broadcast performs better than the equivalent Allreduce.

This statement can be obtained from the values of t0(p) and tb(p) from the tables (e.g.

tb Allreduce(p) > tb Reduce(p) + tb Broadcast(p)). Both t0(p) and ti(p) usually present O(p)

complexities.

4.2.1 Native Communications Libraries

As can be observed from Tables 1–4, native primitives on the SCI cluster show, in general,

lower startups and transfer times per byte than on the Myrinet cluster. These differences

can be attributed to: (1) the lower theoretical startup of the interconnect: 1.46µs for SCI

and 7µs for Myrinet, (2) the higher theoretical bandwidth of the PCI bus, 528MB/s on the

SCI cluster and 264MB/s on the Myrinet cluster, and (3) the higher computational power of

the nodes, dual PIV Xeon at 1.8GHz on the SCI cluster and PIII at 1GHz on the Myrinet

cluster.

Regarding performance metrics Bwpag
as and πpag

0 from the tables, it can be seen that

ScaMPI outperforms SCI-MPICH, except for Reduce-scatter and Scan. Generally, these

metrics present the highest values (best performance) on SCI-dual, although communication

primitives with more complex communication patterns, such as Alltoall, present the highest

values on SCI-single.

4.2.2 Java Communication Libraries

From the models it can be observed that mpiJava adds little overhead to the underlying

message-passing library. Regarding MPJ/Ibis, both the transfer time and, mainly, the startup

time, increase significantly with respect to the native libraries. This overhead corresponds

to: (1) the additional communication layers involved in the communication, TCPIbis Sockets

and Ibis Portability Layer (IPL), and (2) the interpreted nature of the JVM, basic for the

portability of the library. The most immediate way of running this library on high-speed

interconnects is on top of IP emulation libraries: IP over GM on Myrinet and ScaIP on SCI.

Nevertheless, MPJ/Ibis was slightly adapted to run on top of Sockets-GM on Myrinet, and

on top of SCI Sockets.

Regarding peak performance metrics, it can be observed that MPJ/Ibis collective prim-

itives generally present the highest values (best performance) on SCI-single configuration,

except for computational primitives (Reduce, Allreduce, Reduce-scatter and Scan).

9

Table 1: Myrinet: analytical models and peak aggregated metrics (lp = log2 p)

Primitive Library t0(p) ti(p) tb(p) πpag
0 Bwpag

as

{µs} {µs} {ns/byte} {KB/s} {MB/s}

Se
nd

MPICH-GM 9 20 5.330 111.1 187.6
mpiJava 15 20 5.360 66.67 186.6
MPJ/Ibis 65 69 5.951 15.38 168.0

Barr
ier

MPICH-GM −3 + 16⌈lp⌉ N/A N/A 245.9 N/A
mpiJava 5 + 15⌈lp⌉ N/A N/A 230.8 N/A
MPJ/Ibis 194 + 73p N/A N/A 11.01 N/A

Broa
dc

ast
MPICH-GM 3 + 8⌈lp⌉ 17 + 23⌈lp⌉ 0.017 + 5.649⌈lp⌉ 428.6 663.3

mpiJava 20 + 17⌈lp⌉ 33 + 31⌈lp⌉ 0.136 + 5.741⌈lp⌉ 170.5 649.4
MPJ/Ibis 22 + 21p 3 + 24p 3.006 + 6.670⌈lp⌉ 41.90 505.3

Sc
att

er
MPICH-GM −7 + 9p 1 + 11p 4.271 + 0.412⌈lp⌉ 45.45 158.9

mpiJava 42 + 10p 39 + 13p 4.336 + 0.421⌈lp⌉ 9.146 156.3
MPJ/Ibis 37 + 19p 8 + 23p 4.421 + 0.673⌈lp⌉ 6.667 135.9

Gath
er

MPICH-GM 7 + 5p 13 + 7p 3.782 + 0.503⌈lp⌉ 29.41 165.4
mpiJava 47 + 5p 44 + 7p 4.981 + 0.174⌈lp⌉ 11.19 140.4
MPJ/Ibis 78 + 8p 83 + 16⌈lp⌉ 6.216 + 0.487⌈lp⌉ 6.818 114.8

Allg
ath

er
MPICH-GM −10 + 15p 3 + 19p 5.272 + 1.093⌈lp⌉ 75.00 1653

mpiJava 30 + 17p 41 + 23p 8.489 + 0.479⌈lp⌉ 52.77 1532
MPJ/Ibis 17 + 61p 4 + 72p 4.096 + 2.970⌈lp⌉ 16.05 997.6

Allto
all

MPICH-GM −10 + 13p −6 + 16p 4.182 + 2.690⌈lp⌉ 75.76 1004
mpiJava 37 + 15p 28 + 19p 7.371 + 1.83⌈lp⌉ 54.15 1014
MPJ/Ibis 296 + 523p 213 + 465p 5.810 + 3.857⌈lp⌉ 1.731 706.3

Red
uc

e
MPICH-GM 12 + 3p 9 + 5p 2.698 + 10.83⌈lp⌉ 250.0 326.0

mpiJava 45 + 4p 29 + 6p 5.161 + 11.16⌈lp⌉ 137.6 301.2
MPJ/Ibis 107 + 98⌈lp⌉ 63 + 100⌈lp⌉ 7.618 + 15.38⌈lp⌉ 30.06 217.0

Allre
du

ce
MPICH-GM 18 + 4p 21 + 6p 3.219 + 16.35⌈lp⌉ 365.9 437.2

mpiJava 44 + 6p 58 + 8p 4.319 + 15.39⌈lp⌉ 214.3 455.4
MPJ/Ibis 223 + 290⌈lp⌉ 381 + 256⌈lp⌉ 5.536 + 22.03⌈lp⌉ 21.69 320.3

Red
uc

esc
tr MPICH-GM −3 + 13p 2 + 16p 9.326 + 10.81⌈lp⌉ 77.97 303.2

mpiJava 24 + 15p 18 + 19p 11.37 + 11.51⌈lp⌉ 60.37 277.6
MPJ/Ibis 13 + 76p 7 + 89p 13.91 + 17.83⌈lp⌉ 12.97 187.0

Sc
an

MPICH-GM 13 + 4p 31 + 6p −4.487 + 9.284⌊2lp⌋ 194.8 357.7
mpiJava 50 + 6p 67 + 8p −0.234 + 10.15⌊2lp⌋ 102.7 296.9
MPJ/Ibis −1 + 97p 9 + 112p 3.380 + 21.62p 9.671 42.94

10

Table 2: SCI-single: analytical models and peak aggregated metrics (lp = log2 p)

Primitive Library t0(p) ti(p) tb(p) πpag
0 Bwpag

as
{µs} {µs} {ns/byte} {KB/s} {MB/s}

Se
nd

ScaMPI 4 13 3.890 250.0 257.1
SCI-MPICH 6 5 4.560 166.7 219.3

mpiJava 10 11 3.924 100.0 254.8
MPJ/Ibis 49 43 4.272 20.41 234.1

Barr
ier

ScaMPI 7 + 0.4p N/A N/A 686.2 N/A
SCI-MPICH −2 + 9⌈lp⌉ N/A N/A 280.0 N/A

mpiJava 8 + 1.2p N/A N/A 397.7 N/A
MPJ/Ibis 133 + 48p N/A N/A 13.54 N/A

Broa
dc

ast
ScaMPI 6⌈lp⌉ 12 + 8⌈lp⌉ −0.093 + 4.099⌈lp⌉ 388.9 573.6

SCI-MPICH 6⌈lp⌉ 17 + 7⌈lp⌉ 3.403 + 2.987⌈lp⌉ 388.9 566.1
mpiJava 33 + 7⌈lp⌉ 59 + 9⌈lp⌉ 0.391 + 4.451⌈lp⌉ 129.6 509.3
MPJ/Ibis −7 + 15p −9 + 16p 0.720 + 4.870⌈lp⌉ 61.95 456.6

Sc
att

er
ScaMPI −5 + 6p 2 + 8p 2.714 + 0.251⌈lp⌉ 71.43 252.4

SCI-MPICH 5 + 2p 19 + 5p 2.011 + 0.718⌈lp⌉ 57.69 217.6
mpiJava 27 + 6p 58 + 11p 2.443 + 0.394⌈lp⌉ 14.71 241.4
MPJ/Ibis 11p −16 + 16p 2.412 + 0.511⌈lp⌉ 19.23 221.8

Gath
er

ScaMPI 4 + p 18 + 2p 0.612 + 1.222⌈lp⌉ 93.75 272.6
SCI-MPICH 2 + 2p 22 + 3p 2.139 + 0.719⌈lp⌉ 83.33 209.7

mpiJava 36 + p 53 + 4p 1.411 + 0.989⌈lp⌉ 19.89 221.3
MPJ/Ibis 54 + p 6 + 2⌈lp⌉ 1.333 + 0.970⌈lp⌉ 14.11 229.1

Allg
ath

er
ScaMPI −6 + 14⌈lp⌉ 12 + 18⌈lp⌉ 3.510 + 1.327⌈lp⌉ 218.8 1051

SCI-MPICH −1 + 5p 13 + 9p 1.936 + 2.571⌈lp⌉ 201.9 816.1
mpiJava 23 + 16⌈lp⌉ 49 + 22⌈lp⌉ 2.963 + 1.603⌈lp⌉ 110.9 1013
MPJ/Ibis 32p −15 + 37p 1.101 + 2.679⌈lp⌉ 30.76 861.8

Allto
all

ScaMPI −10 + 8p 3 + 11p 1.693 + 2.310⌈lp⌉ 166.7 811.8
SCI-MPICH −6 + 9p 12 + 12p 2.412 + 2.230⌈lp⌉ 106.1 769.1

mpiJava 22 + 9p 39 + 14p 2.347 + 2.120⌈lp⌉ 74.47 804.0
MPJ/Ibis 92 + 307p 73 + 271p 1.408 + 2.658⌈lp⌉ 2.747 746.1

Red
uc

e ScaMPI 1 + 6⌈lp⌉ 7 + 9⌈lp⌉ 9.834 + 1.761⌈lp⌉ 368.4 463.1
SCI-MPICH 7 + 2p 18 + 4p −3.718 + 6.381⌈lp⌉ 304.3 453.8

mpiJava 13 + 8⌈lp⌉ 24 + 11⌈lp⌉ 9.681 + 1.911⌈lp⌉ 189.2 454.1
MPJ/Ibis 26 + 42⌈lp⌉ 6 + 42⌈lp⌉ 1.507 + 9.299⌈lp⌉ 46.05 238.1

Allre
du

ce ScaMPI −1 + 12⌈lp⌉ 11 + 15⌈lp⌉ 9.281 + 2.536⌈lp⌉ 400.0 828.9
SCI-MPICH 11 + 5p 14 + 6p 5.591 + 3.859⌈lp⌉ 274.5 815.5

mpiJava 7 + 15⌈lp⌉ 26 + 18⌈lp⌉ 8.819 + 3.048⌈lp⌉ 269.2 779.4
MPJ/Ibis −60 + 258⌈lp⌉ 39 + 165⌈lp⌉ 0.666 + 15.49⌈lp⌉ 19.61 297.0

Red
uc

esc
tr ScaMPI −1 + 8p 17 + 10p 12.51 + 2.068⌈lp⌉ 125.0 420.8
SCI-MPICH −6 + 9p 5 + 12p 9.138 + 2.345⌈lp⌉ 125.0 486.9

mpiJava 23 + 9p 39 + 12p 13.04 + 2.149⌈lp⌉ 82.89 404.1
MPJ/Ibis 42 + 25p 31 + 29p 4.267 + 10.05⌈lp⌉ 32.54 228.8

Sc
an

ScaMPI −9 + 6p 13 + 9p −3.361 + 5.183p 333.3 183.7
SCI-MPICH −1 + 4p 10 + 10p 3.799 + 1.544⌊2lp⌋ 225.8 701.8

mpiJava 19 + 7p 42 + 12p −5.423 + 8.299p 93.33 114.8
MPJ/Ibis −62 + 39p −77 + 43p −5.650 + 8.989p 62.50 105.6

11

Table 3: SCI-dual: analytical models and peak aggregated metrics (lp = log2 p)

Primitive Library t0(p) ti(p) tb(p) πpag
0 Bwpag

as

{µs} {µs} {ns/byte} {KB/s} {MB/s}

Barr
ier

ScaMPI 5 + 2⌈lp⌉ N/A N/A 1154 N/A
SCI-MPICH−169 + 140⌈lp⌉ N/A N/A 38.36 N/A

mpiJava 11 + ⌈lp⌉ N/A N/A 1000 N/A
MPJ/Ibis 204 + 42p N/A N/A 17.12 N/A

Broa
dc

ast
ScaMPI −3 + 6⌈lp⌉ 7 + 9⌈lp⌉ −0.605 + 4.297⌈lp⌉ 714.2 904.6

SCI-MPICH−11 + 11⌈lp⌉ 3 + 18⌈lp⌉ −0.531 + 4.919⌈lp⌉ 454.5 783.5
mpiJava 21 + 7⌈lp⌉ 39 + 12⌈lp⌉ −0.629 + 4.371⌈lp⌉ 306.1 889.9
MPJ/Ibis 6 + 15p 2 + 15p −2.096 + 4.887⌈lp⌉ 60.97 859.5

Sc
att

er
ScaMPI −12 + 6p 3 + 9p 2.199 + 0.339⌈lp⌉ 62.50 272.1

SCI-MPICH 6 + 2p 21 + 7p 2.158 + 1.702⌈lp⌉ 53.57 134.8
mpiJava 17 + 6p 38 + 13p 2.833 + 0.212⌈lp⌉ 18.29 254.7
MPJ/Ibis −1 + 12p −21 + 17p 2.417 + 0.408⌈lp⌉ 15.96 240.3

Gath
er

ScaMPI 7 + 2p 34 + 4p 0.921 + 0.949⌈lp⌉ 50.00 266.1
SCI-MPICH −41 + 35p −3 + 53p 0.941 + 1.778⌈lp⌉ 7.575 166.8

mpiJava 41 + p 51 + 6p 1.037 + 0.944⌈lp⌉ 17.85 256.4
MPJ/Ibis 83 + 3p 70 + 4⌈lp⌉ 0.968 + 0.995⌈lp⌉ 8.177 253.5

Allg
ath

er
ScaMPI 4 + 2p 24 + 4p 4.515 + 1.863⌈lp⌉ 442.7 1332

SCI-MPICH 55 + 28p 63 + 33p 11.42 + 3.688⌈lp⌉ 31.68 608.9
mpiJava 41 + 2p 49 + 4p 5.831 + 1.592⌈lp⌉ 218.3 1306
MPJ/Ibis −51 + 50p −105 + 55p 2.713 + 2.374⌈lp⌉ 20.13 1305

Allto
all

ScaMPI −24 + 14p 4 + 18p 0.369 + 4.499⌈lp⌉ 93.75 816.7
SCI-MPICH −221 + 103p −193 + 121p −2.97 + 8.391⌈lp⌉ 15.71 490.3

mpiJava 8 + 14p 35 + 21p 1.190 + 4.331⌈lp⌉ 64.66 810.2
MPJ/Ibis −57 + 377p −84 + 315p −3.012 + 5.481⌈lp⌉ 2.510 793.1

Red
uc

e ScaMPI 9 + p 8 + 2p 6.519 + 3.352⌈lp⌉ 600.0 752.7
SCI-MPICH 38 + 23p 51 + 38p 8.017 + 3.695⌈lp⌉ 36.94 657.9

mpiJava 24 + p 38 + 3p 7.598 + 3.616⌈lp⌉ 375.0 679.9
MPJ/Ibis 74 + 38⌈lp⌉ 1 + 48⌈lp⌉ 1.748 + 8.176⌈lp⌉ 66.37 435.4

Allre
du

ce ScaMPI 7 + 2p 9 + 4p 11.41 + 3.693⌈lp⌉ 769.2 1145
SCI-MPICH 198 + 71p 228 + 83p −15.03 + 20.94⌈lp⌉ 22.48 436.4

mpiJava 29 + 2p 41 + 5p 11.04 + 4.177⌈lp⌉ 491.8 1081
MPJ/Ibis −61 + 288⌈lp⌉ −3 + 192⌈lp⌉ −9.143 + 22.39⌈lp⌉ 27.50 373.1

Red
uc

esc
tr ScaMPI −10 + 9p 3 + 11p 10.48 + 3.248⌈lp⌉ 144.2 679.0
SCI-MPICH −673 + 216p −540 + 239p 7.711 + 3.62⌈lp⌉ 19.63 718.2

mpiJava 22 + 8p 41 + 14p 11.31 + 3.761⌈lp⌉ 106.2 604.7
MPJ/Ibis 62 + 24p 46 + 28p 3.563 + 9.245⌈lp⌉ 35.73 393.1

Sc
an ScaMPI −5 + 4p 1 + 6p −2.939 + 5.050p 272.7 192.7

SCI-MPICH −24 + 82p 17 + 87p −0.726 + 2.015⌊2lp⌋ 11.64 1604
mpiJava 16 + 5p 32 + 8p −4.596 + 7.903p 156.2 123.1
MPJ/Ibis −85 + 49p −33 + 48p −11.68 + 8.462p 27.03 135.3

12

Table 4: SCI-dual w/HT: analytical models and peak aggregated metrics (lp = log2 p)

Primitive Library t0(p) ti(p) tb(p) πpag
0 Bwpag

as

{µs} {µs} {ns/byte} {KB/s} {MB/s}

Barr
ier

ScaMPI 3 + 2⌈lp⌉ N/A N/A 2067 N/A

mpiJava 8 + 4⌈lp⌉ N/A N/A 1937 N/A

MPJ/Ibis 331 + 32p N/A N/A 22.88 N/A

Broa
dc

ast
ScaMPI −7 + 7⌈lp⌉ −3 + 11⌈lp⌉ 3.210 + 4.480⌈lp⌉ 1107 1210

mpiJava 45 + 9⌈lp⌉ 57 + 14⌈lp⌉ −1.097 + 5.719⌈lp⌉ 344.4 1127

MPJ/Ibis 11 + 15p 37 + 13p −0.997 + 5.397⌈lp⌉ 63.14 1191

Sc
att

er

ScaMPI −17 + 6p 3 + 8p 0.519 + 1.150⌈lp⌉ 28.22 220.4

mpiJava 18 + 8p 41 + 11p 1.63 + 0.937⌈lp⌉ 10.67 197.0

MPJ/Ibis 9 + 13p −3 + 16p 0.553 + 1.295⌈lp⌉ 7.743 197.2

Gath
er

ScaMPI 15 + 2p 83 + 5p −1.403 + 2.017⌈lp⌉ 28.23 188.3

mpiJava 55 + 2p 131 + 9p −1.031 + 2.053⌈lp⌉ 12.32 170.6

MPJ/Ibis 71 + 3p −39 + 44⌈lp⌉ 0.344 + 1.835⌈lp⌉ 9.211 149.6

Allg
ath

er
ScaMPI −1 + 3p 45 + 5p 10.23 + 1.987⌈lp⌉ 342.4 1585

mpiJava 74 + 2p 128 + 7p 9.648 + 2.238⌈lp⌉ 231.7 1534

MPJ/Ibis −68 + 67p −162 + 79p 5.645 + 3.320⌈lp⌉ 16.83 1437

Allto
all

ScaMPI −123 + 36p −83 + 43p −7.585 + 12.41⌈lp⌉ 42.42 569.2

mpiJava −114 + 44p −45 + 60p −5.969 + 12.10⌈lp⌉ 29.41 568.5

MPJ/Ibis −575 + 547p −773 + 465p −1.950 + 11.92⌈lp⌉ 1.842 537.7

Red
uc

e
ScaMPI 14 + p 31 + 2p 13.31 + 4.690⌈lp⌉ 673.9 843.3

mpiJava 47 + p 77 + 3p 12.91 + 5.796⌈lp⌉ 392.4 740.0

MPJ/Ibis 56 + 51⌈lp⌉ −11 + 49⌈lp⌉ 1.486 + 10.93⌈lp⌉ 99.68 552.2

Allre
du

ce
ScaMPI 15 + p 33 + 2p 22.31 + 5.513⌈lp⌉ 1319 1243

mpiJava 51 + 2p 83 + 4p 20.70 + 7.131⌈lp⌉ 539.1 1100

MPJ/Ibis −135 + 358⌈lp⌉ 82 + 219⌈lp⌉ −133.3 + 62.74⌈lp⌉ 37.46 306.3

Red
uc

esc
tr ScaMPI 7 + 8p 30 + 11p 18.72 + 4.798⌈lp⌉ 121.6 748.5

mpiJava 44 + 8p 79 + 15p 15.92 + 6.586⌈lp⌉ 106.6 654.4

MPJ/Ibis 81 + 27p 75 + 28p 6.588 + 11.09⌈lp⌉ 33.83 515.3

Sc
an

ScaMPI −3 + 5p 6 + 9p −7.813 + 5.407p 197.4 197.5

mpiJava 29 + 6p 41 + 11p −7.864 + 9.645p 140.3 103.1

MPJ/Ibis −120 + 58p −325 + 78p −5.730 + 8.071p 20.35 122.8

13

5 Analysis and Discussion of Performance Results

5.1 Point-to-Point Communication

Figure 2 shows experimentally measured (empty symbols) and estimated (filled symbols)

latencies and bandwidths of the Send primitive as a function of the message length for the

different networks. Bandwidth graphs are useful to compare long message performance,

whereas latency graphs serve to compare short message performance (note that their scale

is logarithmic).

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

10

100

1 k

10 k

La
te

nc
y

T
(n

)
(µ

s)

MPICH-GM
mpiJava
MPJ/Ibis

(a) Send (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

50

100

150

200

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

MPICH-GM
mpiJava
MPJ/Ibis

(b) Send (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

10

100

1 k

10 k

La
te

nc
y

T
(n

)
(µ

s)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(c) Send (SCI-single)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

50

100

150

200

250

300

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(d) Send (SCI-single)

Figure 2: Measured and estimated latencies and bandwidths of Send

Regarding MPI C point-to-point primitives (see Tables 1-2), asymptotic bandwidths are

188 MB/s for MPICH-GM Send, and 257 MB/s for ScaMPI Send. In this case, the PCI bus

is the main performance bottleneck as it limits the bandwidth to 264MB/s on the Myrinet

cluster and to 528MB/s on the SCI cluster. Experimentally measured MPI C point-to-point

startups, 9µs on Myrinet and 4µs on SCI, are very close to their theoretical values, 7µs and

1.46µs, respectively. The different computational power of the nodes has a minor influence

on these values.

Regarding the message-passing libraries, on the one hand, mpiJava obtains results quite

similar to the underlying native message-passing library. On the other hand, MPJ/Ibis

shows startups of 65µs on Myrinet and of 49µs on SCI, and values of tb slightly higher

(around 10%) than the native library values. This overhead, quite far from the theoretical

14

values of the high-speed interconnects, especially for t0, must be attributed to the messaging-

protocol (around 40µs overhead for t0). The underlying communication library, TCPIbis

Sockets, shows t0 = 22µs on Myrinet, and t0 = 11µs on SCI, thanks to the use of high

performance sockets libraries (Sockets-GM and SCI Sockets). Using IP emulation libraries

TCPIbis obtains t0 = 196µs on Myrinet and t0 = 131µs on SCI. The benefits of using the

emerging high performance Sockets libraries instead of IP emulations are clear on MPJ/Ibis.

Using message-passing libraries based on RMI, such as CCJ [19] and JMPI [20], these benefits

are relatively much less important as the procotocol overheads are much higher (from 0.5ms

to 4ms) [13].

5.2 Collective Communications

Measured and estimated bandwidths for some collective primitives are depicted in the graphs

of Figures 3 and 4. The results were obtained using the maximum number of available

processors for each cluster configuration (16 for Myrinet and SCI-dual, 8 for SCI-single and

32 for SCI-dual w/HT). Note that bandwidths are not aggregated, as they are computed

simply by dividing n by T (n, p). In many cases, the estimated values (filled symbols) are

hidden by the measured values (empty symbols), which means a good modeling. As expected,

the bandwidth of the mpiJava routines and the underlying MPI C implementations are very

similar (mpiJava calls to native MPI have low overhead), and pure Java primitives show

lower performance. In fact, MPJ/Ibis tb is slightly higher than the native library value, and

therefore, the derived performance metric, Bwpag
as , presents slightly lower value.

A gap between short message performance between Myrinet and SCI can be observed.

For instance, the 4KB MPI C Broadcast bandwidth is 3.3 times higher on SCI-single than

on Myrinet (see Figures 3(a) and 3(c)). Similarly, the 4KB MPI C Reduce bandwidth is

2.8 times higher on SCI-single (see Figures 3(b) and 3(d)). A higher t0 on Myrinet is the

main cause of this lower performance. Regarding the different system configurations, it can

be observed that the highest bandwidths are obtained by SCI-single (see Figures 3(c), 3(d),

4(c) and 4(d)), followed by SCI-dual, and finally, by Myrinet and SCI-dual w/HT, which

obtain similar results. MPJ/Ibis shows lower performance for Alltoall, especially for short

and medium messages (see Figures 4(b), 4(d), 4(f) and 4(h), and the metric πpag
0 in Tables

1–4).

5.3 Model-based Performance Optimization

Message-passing performance models have been used to identify inefficient communication

primitives. From this process, it has been detected that ScaMPI and MPJ/Ibis Scan show

non-optimal O(p) complexities. Other implementations, e.g. MPJ/Ibis Allreduce, just show

bad performance. To reduce the inefficiency, a primitive can be replaced by a more effi-

cient equivalent combination of primitives. Examples of equivalences existing in message-

passing libraries are: Broadcast=Scatter+Allgather (Van der Geijn algorithm [21]), All-

gather=Gather+Broadcast, Reduce-scatter=Reduce+Scatterv and Allreduce=Reduce+Bro-

adcast. The conditions for carrying out the replacement are actually obtained from the

models: Tbasic primitive(n, p) > Tprimitive#1(n, p) + Tprimitive#2(n, p), where basic primitive is

15

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)
MPICH-GM
mpiJava
MPJ/Ibis

(a) Broadcast (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

5

10

15

20

25

30

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

MPICH-GM
mpiJava
MPJ/Ibis

(b) Reduce (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

80

90

100

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(c) Broadcast (SCI-single)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

80

90

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(d) Reduce (SCI-single)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

80

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(e) Broadcast (SCI-dual)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(f) Reduce (SCI-dual)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
mpiJava
MPJ/Ibis

(g) Broadcast (SCI-dual w/HT)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

5

10

15

20

25

30

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
mpiJava
MPJ/Ibis

(h) Reduce (SCI-dual w/HT)

Figure 3: Measured and estimated bandwidths for Broadcast and Reduce

16

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

20

40

60

80

100

120

140

160

180
B

an
dw

id
th

 B
w

(n
)

(M
B

/s
)

MPICH-GM
mpiJava
MPJ/Ibis

(a) Scatter (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

80

90

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

MPICH-GM
mpiJava
MPJ/Ibis

(b) Alltoall (Myrinet)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

50

100

150

200

250

300

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(c) Scatter (SCI-single)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

20

40

60

80

100

120

140

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(d) Alltoall (SCI-single)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

50

100

150

200

250

300

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(e) Scatter (SCI-dual)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

10

20

30

40

50

60

70

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
SCI-MPICH
mpiJava
MPJ/Ibis

(f) Alltoall (SCI-dual)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

20

40

60

80

100

120

140

160

180

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
mpiJava
MPJ/Ibis

(g) Scatter (SCI-dual w/HT)

256B 1KB 4KB 16KB 64KB 256KB 1MB
Message length n

0

5

10

15

20

B
an

dw
id

th
 B

w
(n

)
(M

B
/s

)

ScaMPI
mpiJava
MPJ/Ibis

(h) Alltoall (SCI-dual w/HT)

Figure 4: Measured and estimated bandwidths for Scatter and Alltoall

17

equivalent to primitive#1+primitive#2. These conditions are the parameter values of n and

p for which this inequality is satisfied.

For illustrative purposes, some examples of latency reduction using this technique are

presented in Table 5. Several conditions to replace communication primitives are shown,

together with some examples that meet these conditions. The obtained latency reductions

for these examples are shown in the last column. mpiJava examples have been omitted as this

library performs similarly to the underlying native library. The Reduce-scatter primitive has

also been omitted as it is implemented in MPICH, ScaMPI and MPJ/Ibis using a Reduce

followed by a Scatterv. The equivalent combination of primitives: (1) can present lower

startups than the original primitive (e.g. Allgather in Table 5), or (2) can show lower

transfer times than the original primitive (e.g. Broadcast in Table 5), or (3) can present

both situations (e.g. Allreduce in Table 5); in this case the substitution conditions are

always met.

This model-based performance optimization can be easily automatized. By determining

cross-over points between communication primitives and its equivalent combinations, the

message-passing library can replace at runtime inefficient primitives by their equivalents.

Related projects on automatic collective communication optimization [22, 23] use the P-LogP

model, that operates in a lower level. Nevertheless, these papers present only Broadcast and

Scatter optimizations, due to the complexity of their approximations. In fact, in order to

determine the best communication pattern, the optimization procedure consists of finding out

the best algorithm for each message size, and the best segment size to fragment the message.

This procedure must be repeated for each number of processors taken into account, although

it can be speeded up with the aid of the P-LogP model. The originality of our higher-level

approach relies on its generality, as it works straightforwardly for every collective primitive,

and on its simplicity, as the optimization procedure requires less phases than the related

approaches.

6 Application-level Kernel Benchmarking

An application-level kernel benchmarking has been carried out in order to analyze the impact

of message-passing overhead on the overall application performance. This benchmarking has

also served to analyze the influence of message-passing overhead on multiple processor nodes

(see Section 7). Both analyses are consistent with the predictions obtained from the models.

This process has been carried out on the SCI cluster, and the selected benchmarks have

been the MPJ application-level kernels from the Java Grande Forum (JGF) Benchmark

Suite [24] and their corresponding MPI C versions. The kernels are, from higher to lower

computation/communication ratio: Series, Crypt, SOR, Sparse and LUFact. For each of

them there are three predetermined problem sizes: small (A), medium (B) and large (C).

This benchmark suite is the only one that includes MPJ kernels, although there have been

some attempts to develop MPJ NAS Parallel Benchmarks [25].

Figure 5 shows the speedups obtained from running LUFact and Series kernels using

ScaMPI, mpiJava, MPJ/Ibis and MPJ Express on the SCI cluster. These kernels have been

18

Table 5: Parameter values for latency (T) reduction through primitive substitution

Library Testbed Parameter values {(n, p)} Example (n,p) T

B
ro

a
d
c
a
st

MPICH-GM Myrinet {(n>64KB,p=8),(n>78KB,p=16)} n=256KB, p=16 ↓ 20%

Sc
aM

PI SCI-single {(n>103KB,p=8)} n=256KB, p=8 ↓ 18%

SCI-dual {(n>128KB,p=16)} n=256KB, p=16 ↓ 13%

MPJ/
Ibi

s Myrinet {(n>273KB,p=8),(n>994KB,p=16)} n=512KB, p=8 ↓ 43%

SCI-single {(n>462KB,p=4),(n>202KB,p=8)} n=1MB, p=8 ↓ 53%

SCI-dual {(n>1173KB,p=16)} n=2MB, p=16 ↓ 9%

A
ll
g
a
th

e
r

MPICH-GM Myrinet {(n<256B,p=8),(n<2KB,p=16)} n=256B, p=16 ↓ 20%

ScaMPI SCI-single {(n<128B,p=4),(n<256B,p=8)} n=128B, p=8 ↓ 43%

MPJ/
Ibi

s
Myrinet {(n<25KB,p=8),(n<40KB,p=16)} n=1KB, p=8 ↓ 42%

SCI-single {(n<2KB,p=4),(n<7KB,p=8)} n=1KB, p=8 ↓ 35%

SCI-dual {(n>17KB,p=8),(n>45KB,p=16)} n=1KB, p=16 ↓ 50%

SCI-w/HT {(n>66KB,p=8),(n>109KB,p=16)} n=1KB, p=16 ↓ 61%

A
ll
re

d
u
c
e

MPJ/
Ibi

s

Myrinet Replace always
n=1KB, p=8 ↓ 39%

n=256KB, p=8 ↓ 18%

SCI-single Replace always
n=1KB, p=8 ↓ 50%

n=256KB, p=8 ↓ 24%

SCI-dual Replace always
n=1KB, p=16 ↓ 44%

n=256KB, p=16 ↓ 41%

SCI-w/HT Replace always
n=1KB, p=16 ↓ 52%

n=256KB, p=16 ↓ 65%

selected as representatives of communication intensive applications (LUFact) and computa-

tion intensive applications (Series). Labels in the x-axis represent the kernel problem size

(A,B,C) and the number of processes per node (1, 2 and 4; using SCI-single, SCI-dual and

SCI-dual w/HT configurations, respectively). Regarding the speedup results, ScaMPI shows

generally the best scalability; mpiJava presents slightly lower performance than ScaMPI; and

MPJ/Ibis and MPJ Express results are slightly lower than mpiJava results. LUFact shows

modest parallel efficiencies, and even slowdowns for size A, especially for A4, and also for

size B with MPJ Express. Series as a whole presents higher parallel efficiencies (between

48% and 99%). Nevertheless, these efficiencies fall in two groups, modest parallel efficiencies

for size C or using SCI-dual w/HT (labels C1, C2, A4, B4 and C4), and higher values for

the remaining cases. Regarding the “pure” Java libraries, MPJ Express Series shows better

performance than MPJ/Ibis Series, whereas MPJ/Ibis performs better for LUFact. These

differences can be explained by the fact that MPJ/Ibis uses TCPIbis Sockets as communi-

cation technology, which has lower t0 but higher tb than Java NIO Sockets, base of MPJ

Express. Thus, MPJ/Ibis performs better for applications with short message communica-

tion patterns, whereas MPJ Express shows better performance for medium and long message

communication patterns.

19

A1 B1 C1 A2 B2 C2 A4 B4 C4
Size and Configuration

1

2

4

1/2

S
pe

ed
up

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(a) ScaMPI LUFact

A1 B1 C1 A2 B2 C2 A4 B4 C4
Size and Configuration

1

2

4

8

16

32

S
pe

ed
up

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(b) ScaMPI Series

A1 B1 C1 A2 B2 C2 A4 B4 C4
Size and Configuration

1

2

4

1/2

S
pe

ed
up

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(c) mpiJava LUFact

A1 B1 C1 A2 B2 C2 A4 B4 C4
Size and Configuration

1

2

4

8

16

32

S
pe

ed
up

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(d) mpiJava Series

A1 B1 C1 A2 B2 C2 A4 B4 C4
Size and Configuration

1

2

4

1/2

1/4

1/8

S
pe

ed
up

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(e) MPJ/Ibis LUFact

A1 B1 C1 A2 B2 C2 A4 B4 C4
Size and Configuration

1

2

4

8

16

32

S
pe

ed
up

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(f) MPJ/Ibis Series

A1 B1 C1 A2 B2 C2 A4 B4 C4
Size and Configuration

1

2

4

1/2

1/4

1/8

1/16

1/32

S
pe

ed
up

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(g) MPJ Express LUFact

A1 B1 C1 A2 B2 C2 A4 B4 C4
Size and Configuration

1

2

4

8

16

32

S
pe

ed
up

 2 PROCS.
 4 PROCS.
 8 PROCS.
16 PROCS.
32 PROCS.

(h) MPJ Express Series

Figure 5: Speedups of selected Java Grande application-level kernels

20

Although Sparse, Crypt and SOR experimental results have also been analyzed, they

have been omitted for conciseness and only the main conclusions are presented. Thus, on

the one hand, Sparse results are slightly lower than LUFact speedups. On the other hand,

Crypt and SOR results are similar to Series results, but showing lower speedups, especially

for SOR.

From this benchmarking process, it has been observed that MPJ/Ibis and MPJ Express

show parallel efficiencies comparable with native libraries performance. Only small, commu-

nication intensive applications show clearly poorer scalability.

7 Performance Analysis on Multiple Processor Nodes

The kernel benchmarking has also served to analyze the influence of message-passing overhead

on multiple processor nodes, more specifically on dual nodes with and without hyperthread-

ing. This analysis has been carried out on the SCI cluster using single, dual and dual w/HT

configurations. ScaMPI and MPJ/Ibis have been selected as representative libraries of native

and Java message-passing libraries, respectively.

7.1 Performance Analysis on Dual Processor Nodes

According to the graphs of Figure 5, LUFact speedups are higher using 1 process per node

than using 2 processes (A1 speedups > A2 speedups, B1 > B2 , C1 > C2), whereas Series

speedups remain similar. In order to quantify the influence of using 2 processes per node

instead of 1 process per node a metric has been derived. This metric consists of the ratio

TSCI−single(p)/TSCI−dual(p) for p processes, where p nodes are used on SCI-single and p/2

nodes on SCI-dual. A ratio higher than 1 means that the kernel benefits from running p

processes on SCI-dual, instead of running on SCI-single. From Table 6 it can be observed

that LUFact, Sparse and SOR, communication intensive kernels, do not benefit from using

2 processes per node, whereas Series and Crypt, computation intensive kernels, can slightly

benefit from this. The reason is that with 2 processes per node each process has available

approximately half of the resources of the node, instead of the resources of the whole node (as

it happens with 1 process per node). As communication intensive kernels need more resources

for communications than computation intensive kernels (the message-passing libraries use

additional buffers and threads when communicating), the performance benefits of intra-

node communication do not make up for the reduction of available resources for inter-node

communication.

Once running p processes on p/2 nodes instead of on p nodes seems to be little beneficial,

another interesting comparison is running the kernel on nd nodes assigning 1 process per node

against running the kernel on nd nodes with 2 processes per node. The associated metric is

the ratio TSCI−single(nd)/TSCI−dual(2 × nd). A ratio higher than 1 means that the kernel

benefits from running 2 processes per node instead of running only 1 for a fixed number of

nodes nd. From the discussion in Subsection 4.2, both t0 and tb are higher on SCI-dual than

on SCI-single. Moreover, the communication overhead is higher for 2× nd processes instead

of for nd processes. Thus, clearly the communication cost is higher for TSCI−dual(2 × nd)

21

Table 6: Ratio TSCI−single(p)/TSCI−dual(p)

Small Size (A) Medium Size (B) Large Size (C)

p = 4 p = 8 p = 4 p = 8 p = 4 p = 8
S
c
a
M

P
I LUFact 0.93 1.01 0.69 0.82 0.56 0.64

Series 0.95 0.88 0.99 1.01 1.00 0.99

SOR 0.70 0.77 0.63 0.70 0.59 0.68

Sparse 0.56 0.51 0.47 0.53 0.46 0.50

Crypt 1.02 1.01 1.01 1.00 1.00 0.98

M
P

J
/
Ib

is LUFact 0.86 0.91 0.88 0.92 0.68 0.79

Series 1.22 1.27 1.00 0.99 1.00 1.00

SOR 0.90 1.03 0.85 1.04 0.76 0.91

Sparse 0.89 0.81 0.94 0.83 0.86 0.79

Crypt 0.98 1.00 1.02 1.02 1.00 1.04

Table 7: Ratio TSCI−single(nd)/TSCI−dual(2 × nd)

Small Size (A) Medium Size (B) Large Size (C)

4Nodes 8Nodes 4Nodes 8Nodes 4Nodes 8Nodes

S
c
a
M

P
I LUFact 0.92 0.88 1.03 0.99 0.97 0.97

Series 1.67 0.95 1.99 1.96 1.95 1.92

SOR 1.02 1.02 0.99 0.99 0.98 0.98

Sparse 0.62 0.65 0.71 0.68 0.72 0.69

Crypt 1.66 1.34 1.78 1.62 1.78 1.72

M
P

J
/
Ib

is LUFact 0.70 0.75 0.93 0.74 1.08 0.95

Series 1.58 1.25 1.95 1.82 1.97 1.96

SOR 1.01 0.82 1.10 0.94 1.08 0.96

Sparse 0.58 0.61 0.63 0.64 0.67 0.64

Crypt 1.65 1.44 1.87 1.76 1.89 1.84

Table 8: Ratio TSCI−dual(2 × nd)/TSCI−dual w/HT (4 × nd)

Small Size (A) Medium Size (B) Large Size (C)

2Nodes 8Nodes 2Nodes 8Nodes 2Nodes 8Nodes

S
c
a
M

P
I LUFact 0.61 0.39 0.78 0.55 0.88 0.72

Series 1.30 1.23 1.24 1.24 1.36 1.24

SOR 0.80 0.46 0.87 0.64 0.89 0.52

Sparse 0.54 0.53 0.74 0.63 0.88 0.65

Crypt 0.94 0.72 1.22 0.90 1.24 0.95

M
P

J
/
Ib

is LUFact 0.46 0.49 0.60 0.48 0.70 0.69

Series 1.27 1.18 1.30 1.29 1.29 1.30

SOR 0.70 0.49 0.70 0.61 0.75 0.62

Sparse 0.44 0.39 0.44 0.39 0.49 0.43

Crypt 1.14 1.07 1.22 1.18 1.27 1.22

22

than for TSCI−single(nd). Nevertheless, the workload for each of the 2 × nd processes on

SCI-dual is approximately half of the workload for each of the nd processes on SCI-single.

Therefore, ratios slightly below 2 can be predicted for computation intensive kernels (Series

and Crypt), whereas more modest ratios, even significant slowdowns, can be predicted for

communication intensive kernels (LUFact, Sparse and SOR). Table 7 presents the obtained

ratios, that are in tune with these predictions.

7.2 Performance Analysis on Hyperthreaded Dual Processor Nodes

The influence of enabling the hyperthreading has not been taken into account in the previous

analyses. This influence can be characterized by the ratio of latency from running the kernels

on nd SCI-dual nodes against the runtime on nd SCI-dual w/HT nodes. Thus, the metric

is TSCI−dual(2 × nd)/TSCI−dual w/HT (4 × nd), where the number of processes is 2 × nd on

SCI-dual and 4×nd on SCI-dual w/HT. A ratio higher than 1 means that the kernel benefits

from enabling hyperthreading, for a fixed number of nodes nd. From Subsection 4.2, it can

be predicted that both t0 and tb are higher on SCI-dual w/HT than on SCI-dual. From

Subsection 4.1 it can be obtained that the computational performance should be slightly

higher. Table 8 shows the obtained ratios, that are in tune with these predictions. Thus,

computation intensive kernels (Series and Crypt) benefit from enabling hyperthreading (up

to a 36% performance increase), whereas communication intensive kernels (LUFact, Sparse

and SOR) reduce their performance, especially on 8 nodes.

It has been observed that representative message-passing implementations do not benefit

from systems with multiple processor nodes. A solution could be the use of multithreading

instead of interprocess communication for handling intra-node communications. The de-

velopment of shared memory communication protocols for intra-node communications and

its combination with current inter-node protocols would achieve higher performance. Nev-

ertheless, the message-passing library must implement thread-safe communication mecha-

nisms. This issue is of special importance with the advent of multicore systems. Several

related projects, e.g. USFMPI [26] and pCoR [27], propose to integrate multithreading and

message-passing communications.

8 Conclusions

The characterization of the message-passing communication overhead on high-speed clus-

ters is extremely important. Message-passing performance is critical for the overall system

scalability and performance. Representative native MPI (MPICH-GM, ScaMPI and SCI-

MPICH) and Java message-passing libraries (mpiJava, MPJ/Ibis and MPJ Express) have

been selected for performance modeling and evaluation. For this purpose, a more accurate

message-passing communication model, together with a message-passing micro-benchmark

suite to derive these models, have been proposed. The predictions obtained by this model

have been validated against experimental results obtaining better estimates than preceding

models. The estimates have shown only a 7% average absolute relative error. Moreover,

performance metrics derived from the models have been used to evaluate message-passing

23

primitives implementations and their performance on high-speed clusters. These models

have also served to identify inefficient communication primitives. To solve these inefficien-

cies, some primitives can be replaced by a more efficient equivalent combination of primitives.

This process has obtained important latency reductions and can be easily automatized.

From the analysis of message-passing performance, it can be concluded that native li-

braries and mpiJava benefit from the low startup and high bandwidth of the high-speed

interconnects. Nevertheless, these libraries are not portable. MPJ/Ibis and MPJ Express

overcome this issue, but this involves an important added overhead.

Besides the message-passing performance analysis on high-speed interconnects, it has been

carried out a kernel benchmarking. This process has been performed in order to analyze the

influence of message-passing overhead and the use of multiple processor nodes on the overall

application performance. The main conclusion is that message-passing implementations,

especially “pure” Java libraries, do not take much advantage of these systems.

Finally, this work intends to provide parallel programmers and library developers with

guidelines for efficiently exploiting high-speed cluster interconnects and multiple processor

nodes. The design of low-level communication middleware that increases Java performance

on high-speed clusters, where far less research has been done, is the goal of our current work.

Acknowledgments

This work was funded by the Ministry of Education and Science of Spain under Project

TIN2004-07797-C02 and by the Galician Government (Xunta de Galicia) under Project

PGIDIT06PXIB105228PR. We gratefully thank CESGA (Galician Supercomputing Center,

Santiago de Compostela, Spain) for providing access to the Myrinet cluster.

References

[1] M. Lobosco, C. L. de Amorim, and O. Loques. Java for High-Performance Network-

Based Computing: a Survey. Concurrency and Computation: Practice and Experience,

14(1):1–31, 2002.

[2] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian

and T. von Eicken. LogP: Towards a Realistic Model of Parallel Computation. In

Proc. 4th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming

(PPoPP’93), pages 1 – 12, San Diego, CA, 1993.

[3] A. Alexandrov, M. F. Ionescu, K. E. Schuser and C. Scheiman. LogGP: Incorporating

Long Messages into the LogP Model – one Step Closer Towards a Realistic Model for

Parallel Computation. Journal of Parallel and Distributed Computing, 44(1):71–79,

1997.

[4] M. I. Frank, A. Agarwal and M. K. Vernon. LoPC: Modeling Contention in Parallel

Algorithms. In Proc. 6th ACM SIGPLAN Symp. on Principles and Practice of Parallel

Programming (PPoPP’97), pages 276 – 287, Las Vegas, NV, 1997.

[5] C. A. Moritz and M. Frank. LoGPC: Modeling Network Contention in Message-Passing

Programs. IEEE Transactions on Parallel and Distributed Systems, 12(4):404–415, 2001.

24

[6] F. Ino, N. Fujimoto and K. Hagihara. LogGPS: A Parallel Computational Model for

Synchronization Analysis. In Proc. 8th ACM SIGPLAN Symp. on Principles and Prac-

tice of Parallel Programming (PPoPP’01), pages 133 – 142, Snowbird, UT, 2001.

[7] Y. Touyama and S. Horiguchi. Performance Evaluation of Practical Parallel Computa-

tion Model LogPQ. In Proc. 1999 IEEE Int. Symp. on Parallel Architectures, Algorithms

and Networks (ISPAN’99), pages 215 – 221, Fremantle, Australia, 1999.

[8] K. W. Cameron and X.-H. Sun. Quantifying Locality Effect in Data Access Delay:

Memory logP. In Proc. 17th Int. Parallel & Distributed Processing Symp. (IPDPS’03),

page 48 (8 pages), Nice, France, 2003.

[9] T. Kielmann, H. Bal, S. Gorlatch, K. Verstoep, and R. Hofman. Network Performance-

aware Collective Communication for Clustered Wide Area Systems. Parallel Computing,

27(11):1431–1456, 2001.

[10] K. W. Cameron and R. Ge. Predicting and Evaluating Distributed Communication

Performance. In Proc. 16th Int. Conf. on High Performance Computing and Communi-

cations (SC’04), page 43 (15 pages), Pittsburgh, PA, 2004.

[11] B. A. Vianna, A. A. Fonseca, N. T. Moura, L. T. Mendes, J. A. Silva, C. Boeres and V.

E. F. Rebello. A Tool for the Design and Evaluation of Hybrid Scheduling Algorithms for

Computational Grids. In Proc. 2nd ACM Workshop on Middleware for Grid Computing

(MGC’04), pages 41 – 46, Toronto, Canada, 2004.

[12] J. Touriño and R. Doallo. Characterization of Message-Passing Overhead on the AP3000

Multicomputer. In 30th Int. Conference on Parallel Processing (ICPP’01), pages 321–

328, Valencia, Spain, 2001.

[13] G. L. Taboada, J. Touriño, and R. Doallo. Performance Analysis of Java Message-

Passing Libraries on Fast Ethernet, Myrinet and SCI Clusters. In Proc. 5th IEEE Int.

Conf. on Cluster Computing (CLUSTER’03), pages 118–126, Hong Kong, China, 2003.

[14] M. Baker and B. Carpenter. MPJ: a Proposed Java Message Passing API and Environ-

ment for High Performance Computing. In Proc. 2nd Int. Workshop on Java for Parallel

and Distributed Computing (JAVAPDC’00), LNCS 1800, Springer-Verlag, pages 552–

559, Cancun, Mexico, 2000.

[15] M. Baker, B. Carpenter, G. Fox, S. Ko, and S. Lim. mpiJava: an Object-Oriented

Java Interface to MPI. In Proc. 1st Int. Workshop on Java for Parallel and Distributed

Computing (JAVAPDC’99), LNCS 1586, Springer-Verlag, pages 748–762, San Juan,

Puerto Rico, 1999.

[16] M. Bornemann, R. V. van Nieuwpoort, and T. Kielmann. MPJ/Ibis: A Flexible and

Efficient Message Passing Platform for Java. In Proc. 12th European PVM/MPI Users’

Group Meeting, (PVM/MPI’05), LNCS 3666, Springer-Verlag, pages 217–224, Sorrento,

Italy, 2005.

25

[17] M. Baker, B. Carpenter, and A. Shafi. MPJ Express: Towards Thread Safe Java HPC.

In Proc. 8th IEEE Int. Conference on Cluster Computing (CLUSTER’06), Barcelona,

Spain, 2006.

[18] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs, T. Kielmann,

and H. E. Bal. Ibis: a Flexible and Efficient Java-based Grid Programming Environment.

Concurrency and Computation: Practice & Experience, 17(7-8):1079–1107, 2005.

[19] A. Nelisse, J. Maassen, T. Kielmann, and H.E. Bal. CCJ: Object-Based Message Passing

and Collective Communication in Java. Concurrency and Computation: Practice &

Experience, 15(3-5):341–369, 2003.

[20] S. Morin, I. Koren, and C. M. Krishna. JMPI: Implementing the Message Passing

Standard in Java. In Proc. 4th Int. Workshop on Java for Parallel and Distributed

Computing (JAVAPDC’02), pages 118–123, Fort Lauderdale, FL, 2002.

[21] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of Collective Communica-

tion Operations in MPICH. Int. Journal of High Performance Computing Applications,

19(1):49–66, 2005.

[22] S. S. Vadhiyar, G. E. Fagg, and J. J. Dongarra. Towards an Accurate Model for Collective

Communications. Int. Journal of High Performance Computing Applications, 18(1):159–

167, 2004.

[23] L. A. Barchet-Estefanel and G. Mounie. Fast Tuning of Intra-cluster Collective

Communications. In Proc. 11th European PVM/MPI Users’ Group Meeting (Eu-

roPVM/MPI’04), LNCS 3241, Springer-Verlag, pages 28 – 35, Budapest, Hungary,

2004.

[24] L. A. Smith, J. M. Bull, and J. Obdržálek. A Parallel Java Grande Benchmark Suite.

In Proc. of the 2001 ACM/IEEE Conf. on Supercomputing (SC’01), page 8 (10 pages),

Denver, CO, 2001.

[25] J. A. Mathew, Paul D. Coddington, and Kenneth A. Hawick. Analysis and Development

of Java Grande Benchmarks. In Proc. of the ACM 1999 Conference on Java Grande

(JAVA’99), pages 72–80, San Francisco, CA, 1999.

[26] S. G. Caglar, G. D. Benson, Q. Huang, and C.-W. Chu. USFMPI: A Multi-threaded

Implementation of MPI for Linux Clusters. In Proc. 15th Int. Conf. on Parallel and

Distributed Computing and Systems (PDCS’03), pages 674 – 680, Marina del Rey, CA,

2003.

[27] A. A. G. Alves, A. Pina, J. L. P. Exposto, and J. Rufino. Scalable Multithreading in a

Low Latency Myrinet Cluster. In Proc. 5th Int. Conf. on High Performance Computing

in Computational Sciences (VECPAR’02), LNCS 2565, Springer-Verlag, pages 579–592,

Porto, Portugal, 2002.

