
MASTER IN HIGH PERFORMANCE COMPUTING
Final Year Project

Design and implementation of a HPC
solution for Stereo Matching

Student: Luis Omar Álvarez Mures

Advisors: Emilio J. Padrón González

Juan Ramón Rabuñal Dopico

A Coruña, September 15, 2015.

Información xeral

Tı́tulo do proxecto: “Deseño e implementación dunha solución

HPC para Stereo Matching”

Clase de proxecto: Proxecto de desenvolvemento en investigación

Nome do estudante: Luis Omar Álvarez Mures

Nome dos directores: Emilio José Padrón González

Juan Ramón Rabuñal Dopico

Membros do tribunal:

Data de lectura:

Cualificación:

Dedicated to Rebeca and my parents.

Acknowledgements1

My sincerest thank you for the help provided:

To Mr. Emilio José Padrón González.

To Mr. Juan Ramón Rabuñal Dopico.

1In alphabetical order

Resumo:

O obxectivo deste proxecto é o deseño e implementación dunha ferramenta multiplataforma

para Stereo Matching. Consideramos como visión estereoscópica ou visión tridimensional

(3D) a calquera técnica capaz de recoller información visual tridimensional e crear ilusión

de profundidade nunha imaxe. De maneira natural a nosa visión é estereoscópica, puidendo

percibir sensación de profundidade, afastamento, etc. Isto se consegue grazas á sepa-

ración horizontal dos nosos ollos, procesando o noso cerebro as diferenzas entre as imaxes

percibidas polo noso sistema visual.

Véñense empregando sistemas artificiais de visión estereoscópica para a obtención de in-

formación 3D en diferentes aplicacións dende hai varias décadas. O problema central

que abordan estes sistemas é o da determinación da correspondencia entre os ṕıxels que

proveñen do mesmo punto dos pares de imaxes da escena tridimensional, ou correspon-

dencia estereoscópica.

Tras unha primeira fase de estudo dos distintos algoritmos existentes, levarase a cabo

unha implementación secuencial base empregando a linguaxe de programación C++. Esta

linguaxe multiparadigma estende a ampliamente coñecida liguaxe de programación C con

mecanismos que permiten tanto a manipulación de obxectos como a capacidade para

a programación xenérica. Este compromiso entre eficiencia e versatilidade fai que esta

linguaxe sexa ampliamente utilizada en entornos HPC.

Para as versións paralelas do código en CPU utilizarase OpenMP, unha API de progra-

mación multi-proceso en plataformas de memoria compartida. En canto á implementación

GPU, levarase a cabo cunhas tecnolox́ıas GPGPU, CUDA e OpenCL, unhas APIs que per-

miten crear aplicacións con paralelismo a nivel de datos e tarefas que poden executarse en

procesadores gráficos.

Abstract:

The objective of this project is designing and implementing a multi-platform HPC Stereo

Matching solution. Any technique that is capable of collecting 3D information and creating

the illusion of depth in an image, is considered stereoscopic vision or tridimensional (3D)

vision. Our vision is stereoscopic by nature, being able to perceive the sensation of depth,

distance, etc. This is achieved thanks to the horizontal separation between our eyes,

leading to the processing of the differences between the perceived images of the visual

system by our brain.

Artificial systems for stereoscopic vision for the obtaining of 3D information in multiple

applications, have been employed for several decades. The main problem that these sys-

tems tackle; is the determination of the correspondence between the pixels that come from

the same point in the image pairs of the tridimensional scene, or Stereo Matching.

After a preliminary phase for the study of the current algorithms for Stereo Matching,

a base sequential implementation using C++ will be developed. This multi-paradigm

language extends the amply known programming language C with mechanisms that allow

the manipulation of objects or the ability for using generic programming. This compromise

between efficiency and versatility makes this language vastly used in HPC environments.

For the parallel versions of the code in CPUs we will utilize OpenMP, a multi-process

programming API for shared memory platforms. Moreover, for the GPU implementation,

GPGPU technologies will be used. CUDA and OpenCL are APIs that allow the creation

of applications with data-level and task-level parallelism that can be executed in graphical

processors.

Lista de palabras chave:

Correspondencia estéreo, tiempo real, visión estereoscópica, Visión Artificial, GPGPU,

GCVL, open source, multi-plataforma.

Keywords:

Stereo Matching, real-time, stereoscopic vision, Computer Vision, GPGPU, GCVL, open

source, multi-platform.

Hardware e software empregado:

• Intel Core i7s, NVIDIA GTXs & GTs.

• C++, Visual Studio, Git, OpenCV, OpenMP, OpenCL, CUDA, Boost, GCC.

Contents

1 Introduction 1

1.1 Motivation and context . 2

1.2 Objectives . 3

1.3 Structure . 3

2 Technological Foundations 5

2.1 Computer Vision . 6

2.1.1 Stereo Vision . 8

2.1.2 Stereo Correspondence . 8

2.1.3 Block Matching . 10

2.2 GPGPU . 12

2.2.1 Architecture . 13

2.2.2 OpenCL . 14

2.2.3 CUDA . 15

3 GCVL: GPU Computer Vision Library 17

3.1 Development Methodology . 17

3.1.1 Agile manifesto . 17

3.2 Design . 19

3.2.1 Class diagram . 19

3.2.2 General Tools . 20

xv

xvi CONTENTS

3.2.3 CPU Module . 21

3.2.4 OpenCL Module . 21

3.2.5 CUDA Module . 22

3.3 Technology . 24

3.4 Usage . 25

3.4.1 CPU Module . 25

3.4.2 OpenCL Module . 25

3.4.3 CUDA Module . 26

4 Performance & Experimental Results 29

4.1 Performance Results . 29

4.2 Experimental Results . 34

5 Conclusions and future lines of work 39

5.1 Conclusions . 39

5.2 Future lines of work . 40

List of Figures

1.1 Pose estimation . 1

1.2 Stereoscopic vision . 2

2.1 Background segmentation . 5

2.2 Optical illusion . 6

2.3 Example of stereoscopic images employed in scene reconstruction. 8

2.4 Stereo vision . 9

2.5 Stereo reconstruction . 10

2.6 Stereo vision . 12

2.7 CPU Architecture . 13

2.8 GPU Architecture . 13

2.9 OpenCL Architecture . 14

2.10 CUDA Architecture . 16

3.1 GCVL class diagram. 20

3.2 General Tools module class diagram. 21

3.3 CPU module class diagram. 22

3.4 OpenCL module class diagram. 23

3.5 CUDA module class diagram. 24

4.1 CPU performance results for the Tsukuba dataset. 30

4.2 CPU performance results for the Bowling dataset. 31

xvii

xviii LIST OF FIGURES

4.3 OpenCL performance results for the Tsukuba dataset. 31

4.4 OpenCL performance results for the Bowling dataset. 32

4.5 CUDA performance results for the Tsukuba dataset. 32

4.6 CUDA performance results for the Bowling dataset. 33

4.7 OpenCL vs. CUDA in the Bowling dataset. 33

4.8 Speedup obtained in the Bowling dataset. 34

4.9 Depth map obtained with a maximum disparity of 16 and an aggregation

window of 5 in the Tsukuba dataset. 34

4.10 Depth map obtained with a maximum disparity of 16 and an aggregation

window of 9 in the Tsukuba dataset. 35

4.11 Textureless map of the Bowling dataset, pixels marked as white are low-

texture regions. 35

4.12 Depth map obtained with a maximum disparity of 100 and an aggregation

window of 13 in the Bowling dataset. 36

4.13 Depth map obtained with a maximum disparity of 170 and an aggregation

window of 13 in the Bowling dataset. 37

List of Tables

4.1 Datasets used in our tests. 29

xix

xx LIST OF TABLES

Chapter 1

Introduction

Computer Vision is a field that includes techniques for acquiring, processing, analyzing,

and understanding images. This scientific area is not only limited to images but also to

high-dimensional data from the real world. It aims to produce numerical or symbolic

information in order to perform decisions [SS01]. A common trend in this field, has been

duplicating the abilities of human vision by electronically perceiving and interpreting the

image.

Figure 1.1: The specific task of determining the pose of an object in an image is referred
to as pose estimation.

This image understanding can be seen as the extraction of symbolic information from

image data using models constructed with the aid of geometry, physics, statistics, and

1

2 1.1. Motivation and context

learning theory [FP03]. As a scientific discipline, Computer Vision considers the theory

behind artificial systems that extract information from images. The image data can have

many forms, such as video frames, views from multiple cameras, or multi-dimensional data

from a medical scanner. As a technological discipline, Computer Vision seeks to apply its

theories and models to the construction of artificial vision systems.

Sub-domains of computer vision include scene reconstruction, event detection, video track-

ing, object recognition, object pose estimation, learning, indexing, motion estimation, and

image restoration (see Figure 1.1). Our case study pertains to the field of stereo vision.

In this subject, the main objective is the extraction of 3D information from digital im-

ages, such as obtained by a CCD camera. By comparing information about a scene from

two vantage points, 3D data can be extracted by examination of the relative positions of

objects in the two panels (see Figure 1.2).

Figure 1.2: Basic diagram of a stereo vision setup.

1.1 Project motivation and context

One of the key steps in stereo vision techniques, is obtaining the stereo correspondence

between two images or Stereo Matching. The correspondence problem refers to the process

of ascertaining which parts of one image correspond to which parts of another image. This

is not a trivial affair, since differences appear due to movement of the camera, the elapse

of time, and/or movement of objects in the photos.

Current approaches to obtain this information, involve the usage of a single CPU. Our

aim with this project is taking advantage of modern hardware to its fullest capacities.

This is specially important nowadays, since camera systems keep on improving leading

to images with very high resolutions. This complex task involves exploiting the massive

parallel power of current multi-core CPUs, GPUs, etc. In addition, our desire is not only

1. Introduction 3

the implementation of a Stereo Matching algorithm; but the creation of a C++ framework

that will allow the user to implement parallel Computer Vision algorithms with ease.

The set of software tools developed in this project has been called GCVL (GPU Computer

Vision Library). This library provides several means to implement GPU algorithms in an

simpler manner using OpenCL or CUDA. In addition, a sample implementation of a Stereo

Matching algorithm called Block Matching will also be provided to showcase the features

offered in the framework. This algorithm will have a serial, OpenMP, OpenCL and CUDA

implementation that employs the designed software tools.

1.2 Project objectives

The main objectives in this project are:

• Studying different Stereo Matching techniques.

• Design, implementation and documentation of tools to ease GPGPU programming.

• Design, implementation and documentation of the chosen algorithm.

• CPU parallelization of the implemented algorithm.

• GPU parallelization of the implemented algorithm.

In this project, a fast Stereo Matching algorithm is required. In addition, the algorithm

needs to keep all the precision possible, but be suitable for real-time processing of inter-

active image sequences. Not only this, but also the algorithm needs to be highly parallel

so GPUs can be efficiently used. This algorithm will be implemented with the developed

toolset for GPGPU computing. Moreover, evidence will be collected of the scalability and

performance of the chosen algorithm and its parallel implementations.

1.3 Document structure

The rest of the document is organized following this structure:

Chapter 2. Technological Foundations

This chapter briefs very basic concepts about Computer Vision needed to understand the

rest of the document: How stereo correspondence, stereo matching and our chosen solution

work. This chapter will also introduce the reader to basic GPGPU concepts.

4 1.3. Structure

Chapter 3. GCVL: GPGPU Computer Vision Library

This chapter describes the structure of the library we propose in this work and presents

the class diagram of the software package.

Chapter 4. Performance & Experimental Results

This chapter presents the obtained performance and experimental results, so that the

reader can compare our parallel implementations with the sequential one.

Chapter 5. Conclusions and future lines of work

Finally, this chapter presents the main conclusions obtained with this project and outlines

possible extensions to GCVL.

Chapter 2

Technological Foundations

In this chapter, some Computer Vision concepts are introduced. Paying special attention

to our case study that is stereo correspondence. We first introduce what is computer vision

and delve into our case study, second we explain the chosen Stereo Matching algorithm

and third describe what GPGPU is and its applications in our area of interest. Only a brief

description of these concepts is presented, to get more familiarized with Computer Vision

the books [SS01] and [FP03] are recommended. For stereo correspondence techniques, the

book chapter [Sze11] is an essential source.

Figure 2.1: The human visual system has no issue interpreting the subtle changes in
translucency and shading in this photograph and segmenting the object from its

background.

5

6 2.1. Computer Vision

2.1 Computer Vision

As humans, we perceive the tridimensional structure of the world around us with apparent

ease. Think of how vivid the tridimensional perception is when one looks at a vase of

flowers sitting on the table. You can tell the shape and translucency of each petal through

the subtle patterns of light and shading that play across its surface. One can easily segment

each flower from the background of the scene (see Figure 2.1).

Looking at a framed group portrait, you can effortlessly for example count all of the people

and even guess their emotions from their facial appearance. Perceptual psychologists have

spent decades trying to understand how the visual system works and, even though they

can find optical illusions to tease apart some of its principles (see Figure 2.2), a solution

to the complete puzzle remains elusive.

Figure 2.2: This work by Eric Johansson is composed of optical illusions that use highly
creative pieces that render manipulations of perspective to make the viewer see a

perplexed set of images.

In areas, such as rendering a still scene composed of everyday objects or animating extinct

creatures such as dinosaurs, the illusion of reality is almost perfect. In computer vision,

we are trying to do the opposite, i.e., to describe the world that we see in one or a

sequence of images and to reconstruct its properties, such as shape, illumination, and

color distributions. It is incredible that humans and animals do this so effortlessly, while

2. Technological Foundations 7

computer vision algorithms are so error prone.

Applications range from tasks such as industrial machine vision systems which, say, in-

spect bottles speeding by on a production line, to research into artificial intelligence and

computers or robots that can comprehend the world around them. In many computer vi-

sion applications, the computers are preprogrammed to solve a certain task, but methods

based on learning are now becoming more common. Examples of applications of computer

vision include systems for:

• Process control.

• Navigation.

• Event detection.

• Information organization.

• Object or environment modeling.

• Interaction.

• Automatic inspection.

• Etc.

Each of the application areas described above employ a range of computer vision tasks;

more or less well-defined measurement problems or processing workloads, which can be

solved using a variety of methods. Some examples of typical computer vision tasks are

presented below:

• Recognition: the classical problem in computer vision, image processing, and ma-

chine vision is that of determining whether or not the image data contains some

specific object, feature, or activity.

• Motion analysis: several tasks relate to motion estimation where an image se-

quence is processed to produce an estimate of the velocity either at each points in

the image or in the 3D scene, or even of the camera that produces the images.

• Scene reconstruction: Given one or (typically) more images of a scene, or a video,

scene reconstruction aims at computing a 3D model of the scene.

• Image restoration: The aim of image restoration is the removal of noise (sensor

noise, motion blur, etc.) from images.

8 2.1. Computer Vision

Figure 2.3: Example of stereoscopic images employed in scene reconstruction.

Our main interest in this project is scene reconstruction from one or more pairs of images

(see Figure 2.3), specifically with stills obtained using stereo vision techniques. This images

can be processed to obtain a depth estimation of the scene, once it is known, we have a

3D model of said scene.

2.1.1 Stereo Vision

Any technique that is capable of collecting 3D information and creating the illusion of

depth in an image, is considered stereoscopic vision or tridimensional (3D) vision. Our

vision is stereoscopic by nature, being able to perceive the sensation of depth, distance,

etc. This is achieved thanks to the horizontal separation between our eyes, leading to the

processing of the differences between the perceived images of the visual system by our

brain.

Computer stereo vision is the extraction of 3D information from digital images, such as

obtained by a CCD camera. Artificial systems for stereoscopic vision for the obtaining of

3D information in multiple applications, have been employed for several decades. The main

problem that these systems tackle; is the determination of the correspondence between the

pixels that come from the same point in the image pairs of the tridimensional scene. By

comparing information about a scene from two vantage points, 3D data can be extracted

by examination of the relative positions of objects in the two panels (see Figure 2.4).

2.1.2 Stereo Correspondence

Given two or more images of the same 3D scene, taken from different vantage points, the

correspondence problem refers to the task of finding a set of points in one image which can

2. Technological Foundations 9

Figure 2.4: Diagram describing relationship of image displacement to depth with
stereoscopic images, assuming flat co-planar images.

be identified as the same points in another image. To achieve this, points or features in

one image are matched with the corresponding points or features in another image. The

images can be taken from a different point of view, not at the same time, or with objects

in general motion relative to the cameras.

From the earliest forays into visual perception, it was known that we depth is perceived

based on the differences in appearance between the left and right eye. As a simple test,

hold your finger vertically in front of your eyes and close each eye at a time. You will

notice that the finger jumps left and right, relative to the background of the image. The

same effect is visible in the image pair shown in Figure 2.5, in which the foreground objects

shift left and right with respect to the background.

Stereo Matching is the process of employing two or more images and estimating a 3D

model of the scene by finding matching areas of interest in the images and converting

their 2D positions into 3D depths. This tackles the question of how to build a better 3D

model, e.g., a sparse or dense depth map that assigns relative depths to pixels in the input

images (see Figure 2.5).

There are two main types of techniques for stereo matching:

• Sparse algorithms

• Dense algorithms

10 2.1. Computer Vision

(a) Tsukuba left (b) Tsukuba right (c) Depth map

Figure 2.5: Stereo reconstruction techniques can convert (a-b) a pair of images, into (c)
a depth map.

Early stereo matching techniques were feature-based, i.e., they first extracted a set of

potentially matchable image locations, using either interest operators or edge detectors,

and then searched for matching locations in other images using a patch-based metric

[BBH93, HMP92]. This limitations to sparse correspondences were in part due to compu-

tational resource limitations, but also were driven by a need to limit the answers produced

by algorithms to matches with high confidence.

While sparse matching algorithms are still used on occasion, most stereo matching al-

gorithms today focus on dense correspondence. This came to be since it is required for

applications, such as image-based rendering or modeling. This problem is more difficult

than sparse correspondence, since inferring depth values in regions with similar textures

requires making a certain amount of inferences.

After carefully studying multiple algorithms to achieve our goal, we have chosen Block

Matching. This is not one of the algorithms with the highest precision, but we believe it

can be highly parallel and fits our requirement of real-time processing of video images.

2.1.3 Block Matching

The chosen algorithm follows a similar structure to the following publication [SS02]. With

stereo cameras, objects in the field of view of these will appear at slightly different loca-

tions within the two images due to the cameras varying perspectives of the same scene.

A standard method for calculating the disparity map is to use Block Matching, essen-

tially, we will be taking a small region of pixels in the right image, and searching for the

closest matching region of pixels in the left image. The structure and pseudo code of the

implemented algorithm can be seen in algorithm 1.

Correlation based matching typically produces dense depth maps by calculating the dis-

parity at each pixel within a neighborhood. This is achieved by taking a square window

2. Technological Foundations 11

Algorithm 1: Block Matching algorithm

Input: left, right, aggregationdim, maxdisparity
Output: depthmap

1 radius← aggregationdim/2
2 for x← 0 to width do
3 for y ← 0 to height do
4 offsetx← x− radius
5 offsety ← y − radius
6 sum← 0
7 bestsum← −1
8 for d← 0 to maxdisparity do
9 for i← offsetx to aggregationdim + offsetx do

10 for j ← offsety to aggregationdim + offsety do
11 sum← sum + |left[i ∗ width + j]− left[i ∗ width + j − d]|
12 end

13 end
14 if sum < bestsum then
15 bestsum← sum
16 bestd← d

17 end
18 sum← 0

19 end
20 depthmap[y ∗ width + x]← bestd

21 end

22 end

of certain size around the pixel of interest in the reference image and finding the homolo-

gous pixel within the window in the target image, while moving along the corresponding

scanline. The goal is to find the corresponding (correlated) pixel within a certain disparity

range d that minimizes the associated error and maximizes the similarity (see Figure 2.6).

The most relevant part in this algorithm, is the comparison of the pixel windows between

the left and right images. In our implementation we have implemented two approaches.

The first, uses the following equation to calculate the Sum of Absolute Differences (SAD)

between pixels:

∑
i,j∈W

|Il(i, j)− Ir(i, j)| (2.1)

Being W the aggregation window dimension, Il the left image and Ir the right image. The

second uses a Sum of Squared Differences (SSD) to achieve the same objective as we can

observe in the next equation:

12 2.2. GPGPU

(a) Left image

(b) Right image search

Figure 2.6: Diagram describing relationship of image displacement to depth with
stereoscopic images, assuming flat co-planar images.

∑
i,j∈W

(Il(i, j)− Ir(i, j))
2 (2.2)

Being W the search window dimension, Il the left image and Ir the right image. One

of these calculations is repeated for pixel windows in the right image at a distance d ∈
[0, disparitymax].

In short, the correspondence process involves the computation of the similarity measure for

each disparity value, followed by an aggregation and optimization step. Since these steps

consume a lot of processing power but can be computed in parallel, there are significant

speed-performance advantages to be had in optimizing the matching algorithm.

2.2 GPGPU

General-purpose computing on graphics processing units or GPGPU, is the use of a graph-

ics processing unit (GPU), which typically handles computation only for computer graph-

ics workloads, to perform calculations in applications traditionally handled by the central

processing unit (CPU) [FTM02]. One can parallelize tasks even further using multiple

graphics cards in one computer, or large numbers of graphics chips [FM04].

2. Technological Foundations 13

2.2.1 Architecture

Essentially, a GPGPU pipeline swaps data between one or more GPUs and CPUs and

analyzes it as if it were in image or other graphic form. Because video cards can operate

on 3D geometry and graphical data at speeds way faster than a traditional CPU, migrating

data into graphical form and then using the GPU to process it and analyze it, can result

in profound speed gains.

In a traditional CPU architecture, the CPU is able to access a large, general-purpose

memory bank, called Random Access Memory (RAM) as is visually seen in Figure 2.7.

CPU Memory
Controller Memory

Figure 2.7: Diagram describing a simplified CPU architecture.

Nowadays, the CPU often contains more than one core, making CPUs capable of more

than one task at a time. This makes modern CPUs much faster than their single core,

scalar predecessors.

In contrast, a GPGPU architecture uses Shared-Memory Multiprocessors (SMP), these

are a are a set of processors that all have their own local memory. These memory banks are

shared within a thread group, but not between more than one of these groups. However,

each compute unit also has access to a global memory bank, which is shared between all

processors.

Global Memory

Memory Controller

Local
Memory

Processor Processor

Processor

Local
Memory

Processor Processor

Processor

Figure 2.8: Diagram showing a simplified SMP architecture.

14 2.2. GPGPU

This is the parallel architecture that NVIDIA and AMD both use in their GPUs. Likewise,

it is also the model enforced in the OpenCL and CUDA specification.

2.2.2 OpenCL

Open Computing Language (OpenCL) is a framework for writing programs that make use

of heterogeneous platforms consisting of CPUs, GPUs, digital signal processors (DSPs),

field-programmable gate arrays (FPGAs) and other processors. OpenCL provides parallel

computing using task-based and data-based parallelism. In addition, it is also an open

standard maintained by the non-profit technology consortium Khronos Group 1.

OpenCL interprets a computing system as a number of heterogeneous compute devices,

which might be CPUs or accelerators such as graphics processing units, attached to a host

processor (a CPU). It defines a C-like language for writing programs, called kernels, that

are later executed on the compute devices. A single compute device typically consists of

several compute units, which in turn comprise multiple processing elements (PEs).

A single kernel execution may run on all or many of the PEs in parallel. How a compute

device is subdivided into compute units and PEs depends on vendor criteria; a compute

unit can be thought of as a CPU core, but the notion of core is hard to define across all

the types of devices supported by OpenCL and the number of compute units may not

correspond to the number of cores that the vendor can advertise.

Application
Kernels

OpenCL Framework
API C Lang.

OpenCL Runtime

Driver

GPU Hardware

Figure 2.9: Diagram showing the simplified OpenCL architecture.

In addition to its this kernel programming language, OpenCL defines an application pro-

1https://www.khronos.org/

2. Technological Foundations 15

gramming interface (API) that allows normal programs running on the host to launch

kernels on the compute devices and manage device memory, which is (at least concep-

tually) separate from host memory. Programs in the OpenCL language are intended to

be compiled at run-time, so that applications that use OpenCL are portable between

implementations for various host devices (see Figure 2.9).

OpenCL defines a four-level memory hierarchy for the compute device:

• Global memory: Shared by all processing elements, but has high access latency.

• Read-only memory: Smaller, low latency, writable by the host CPU but not the

compute devices.

• Local memory: Shared by a group of processing elements.

• Private memory: Per-element private memory (registers).

2.2.3 CUDA

Compute Unified Device Architecture (CUDA) is a parallel computing platform and appli-

cation programming interface (API) model created by NVIDIA. It allows software devel-

opers to use CUDA-enabled GPUs for general purpose processing. The CUDA platform

is a software layer that gives direct access to the virtual instruction set and parallel com-

putational elements of GPUs.

In contrast with OpenCL, this is a proprietary framework and is not compatible with

such a varied array of devices, CUDA is only compatible with NVIDIA GPUs. It is

compatible with programming languages such as C, C++ and Fortran. This makes it

easier for specialists in parallel programming to utilize GPU resources, as opposed to

previous API solutions like Direct3D and OpenGL, which required advanced skills in

graphics programming.

Another difference between OpenCL and CUDA is how applications are compiled. In

OpenCL kernels are compiled ad-hoc with the OpenCL framework, while in CUDA we

will use a custom copiler called NVCC to compile the complete application or the parts

that contain CUDA code. The CUDA architecture is built around a scalable array of

multiprocessors, each one of them having several scalar processors, one multi-threading

unit, and a shared memory chip. The multiprocessors are able to create, manage, and

execute parallel threads, with a small overhead. The threads are grouped in blocks, which

are executed in a single multiprocessor, and the blocks are grouped into grids. When a

CUDA program calls a grid to be executed in the GPU, each one of the blocks in the

16 2.2. GPGPU

Application

CUDA
Library

CUDA Runtime

Driver

GPU Hardware

Kernels

Figure 2.10: Diagram showing the simplified CUDA architecture.

grid is numbered and distributed to an available multiprocessor. When a multiprocessor

receives a block to execute, it splits the threads in warps, a set of 32 consecutive threads.

Each warp executes a single instruction at a time, so the best efficiency is achieved when

the 32 threads in the warp executes the same instruction. Each time that a block finishes

its execution, a new block is assigned to the available multiprocessor.

CUDA defines a similar memory hierarchy for compute devices:

• Global memory: Shared by all processing elements, but has high access latency.

• Read-only memory: Smaller, low latency, writable by the host CPU but not the

compute devices.

• Shared memory: Shared by a block of threads.

• Local memory: Per-thread local memory.

• Register memory: Per-thread registers.

Chapter 3

GCVL: GPU Computer Vision

Library

GCVL is a set of software tools and libraries that allow the user to run and implement

common Computer Vision algorithms on modern GPUs. It comprises a set of OpenCL

and CUDA tools, a Block Matching example algorithm implementation and base classes

to implement custom algorithms.

3.1 Development Methodology

Agile software development [Coc01] is a combination of development methods that use

iterative and incremental development, where requirements and solutions mature through

collaboration between self-organizing, cross-functional teams. The motto of this method is

“embrace change”; that is why it encourages adaptive planning, evolutionary development

and delivery, a time-boxed iterative approach, and promotes quick and flexible response

to change.

3.1.1 Agile manifesto

In February of 2001, several developers met at Snowbird, Utah resort, to debate differ-

ent lightweight development methods. They published the Manifesto for Agile Software

Development [Bec01] to define the approach that is now called agile software development.

The conclusions that we can reach from the manifesto’s items are described below:

• Individuals and Interactions: In agile development self-organization and motiva-

17

18 3.1. Development Methodology

tion are really important. Other values promoted by the manifesto are co-location1

and pair programming2.

• Working software: Working software will be utilized for more purposes than pre-

senting documents to the client.

• Customer collaboration: The software requirements cannot be fully realized from

the beginning of the software development cycle, so being in touch with the customer

is really important.

• Responding to change: Agile development is keen on fast responses to change

and continuous development.

More principles are mentioned in the manifesto, some of them are:

• Customer satisfaction by rapid delivery of useful software.

• Welcome changes even late in the development.

• Working software is the principal measure of progress.

• Maintaining a constant pace.

• Cooperation between business people and developers.

• Build projects around motivated individuals.

• Attention to technical excellence.

• Simplicity.

Agile methods break down tasks into small increments with minimal planning and nor-

mally long-term planning is not directly involved. Iterations are short timeframes that

typically last from one to four weeks. A team works in each iteration through a full software

development cycle; including planning, requirements analysis, design, coding, etc. This

minimizes risk and facilitates adaptation to change. An iteration may not add enough

new functionalities to warrant a market release, but the objective is to have an available

release at the end of each iteration.

Team composition does not depend on corporate hierarchies or corporate roles of team

members. They normally have the responsability of completing tasks that deliver the

1The act of placing multiple individuals within a single location.
2Two programmers work together at one workstation.

3. GCVL: GPU Computer Vision Library 19

required functionalities that an iteration requires. How to meet an iteration’s objectives

is decided individually.

The “weight” of the method depends on the type of project, the planning and order of

tasks in a generalist project should not be the same as in a research project.

Agile methods encourage face-to-face communication instead of written documents if pos-

sible. Most teams work in an open office (the bullpen), which makes this type of commu-

nication easier.

Each agile team contains a customer representative, that ensures that customer needs and

company goals are aligned.

Most agile methods encourage a routine that includes daily face-to-face communication

among team members. In a brief session team members tell each other what they achieved

the previous day, what they are going to do today and the problems that have appeared.

As agile development emphasizes on working software as the primary measure of progress

and has a clear preference in face-to-face communication this results in less written doc-

umentation than other methods. This does not mean that documentation should be

disregarded, but that less emphasis is made on documentation because is not needed as

much.

3.2 Design

GCVL is developed following an object oriented approach and using the C++ programming

language. For GPGPU programming we have chosen OpenCL and CUDA, because of their

inter-operation capabilities with OpenGL. This will allow us to process directly data that

already resides in the GPU, without having to do expensive memory transfers. Because

of the open nature of OpenCL, the software will be able to run on any graphics card

vendor (AMD, NVIDIA or Intel) and the SO that the user prefers (Windows, OSX or

Unix). For NVIDIA GPUs we have also developed a CUDA implementation, this way

users will be able to squish the maximum amount of performance out of the green team’s

devices. Design patterns have been used as much as possible. This section briefly depicts

the high-level design of GCVL in the form of class diagrams.

3.2.1 Class diagram

The high-level design of the GCVL library is depicted in the class diagram of Figure 3.1.

In this design, the General Tools module contains utility classes that contain commonly

20 3.2. Design

used functions and configuration parameters. In addition, the CPU module contains tools

to implement multi-core CPU algorithms using GCVL, examples, template classes, etc.

GCVL

CPU Module

Algorithm

BlockMatching

...

General Tools

GCVLConfig

GCVLUtils

OpenCL Module

Algorithm

BlockMatching

...

Core

Utils

CUDA Module

Algorithm

BlockMatching

...

Core

Utils

Figure 3.1: GCVL class diagram.

Furthermore, the OpenCL module contains classes related to the development of OpenCL

algorithms (tools, example algorithms, kernels, etc.).

Finally, the CUDA module resembles the aforementioned module, containing tools, al-

gorithm examples, kernels, etc. It possesses all the classes that are needed to implement

CUDA programs in a simple manner.

All of the GPU modules present in GCVL can be compiled on demand using CMake

options, so if the CUDA framework or the OpenCL libraries are not needed, they can be

deactivated and the rest of the library can be used without any kind of issue.

3.2.2 General Tools

In the diagram of Figure 3.2, the following classes are the most relevant:

3. GCVL: GPU Computer Vision Library 21

General Tools

GCVLConfig

+targetGroupSize
+preferredDevice
+autoSerlectDevice

GCVLUtils

+ roundUpDiv(a:unsigned int, b:unsigned int):unsigned int
+ getMultiple(n:int, base:int):int
+ printNTimes(x:string, N:int, newline:bool)
+ lockFile(path:string):bool
+ unlockFile(path:string):bool

Figure 3.2: General Tools module class diagram.

• GCVLConfig: This class contains the configuration parameters present in GCVL.

For example, the suppression of warnings, constant definitions, etc.

• GCVLTools: Class that contains utility functions used in all the modules present

in GCVL, be it CPU or GPU modules.

3.2.3 CPU Module

This is a GPGPU oriented computation library, but it also provides code for multi-core

CPUs. The relevant classes are shown in the class diagram Figure 3.3:

• Algorithm: This base class contains the template for the implementation of multi-

core CPU algorithms in GCVL.

• BlockMatching: This class serves as an example of the implementation of a multi-

core CPU algorithm in GCVL.

3.2.4 OpenCL Module

Since this is a GPU computing library, the first related module is the OpenCL module.

In it, classes, algorithms, kernels that belong to the OpenCL implementation are packed

together for convenience in the opencl name space. The most significant classes related to

the management of the OpenCL algorithms are shown in the class diagram of Figure 3.4:

• Algorithm: This base class contains the template for the implementation of OpenCL

algorithms in GCVL.

• BlockMatching: This class serves as an example of the implementation of a

OpenCL algorithm in GCVL.

22 3.2. Design

CPU Module

Algorithm

+ compute()
- prepare()
- launch()
- postpare()

BlockMatching

- dim:int
- radius:int
- maxDisp:int
- normalize:bool
- width:int
- height:int
- inputLeft:char*
- inputRight:char*
- output:char

...

Figure 3.3: CPU module class diagram.

• Core: Class in charge of the creation of OpenCL platforms, selection of the best

GPU, creation of queues, etc.

• Platform: Helper class that aids in the creation of a certain computing platform.

AMD, NVIDIA, Intel, etc.

• PlatformsList: Class that holds a list with all the available platforms in the system.

• Device: Utility class that aids in the creation of compute devices.

• DevicesList: Class that holds a list of all the compute devices available in a plat-

form and tries to guess the best one.

• Kernel: Wrapper class for the creation of kernels in OpenCL.

• Array: Helper class for OpenCL device array creation.

• Data: Utility class for the creation of OpenCL device data.

3.2.5 CUDA Module

The second GPU computing module gives the user the choice of using CUDA to implement

GPU related algorithms using the cuda name space. The most relevant classes explained

here are present in the class diagram in Figure 3.5:

• Algorithm: This base class contains the template for the implementation of CUDA

algorithms in GCVL.

3. GCVL: GPU Computer Vision Library 23

OpenCL Module

...

Core

- platform:string
- context
- device
- queue

+ waitForQueue()
+ printInfo()

Algorithm

+ compute()
- prepare()
- launch()
- postpare()

BlockMatching

- dim:int
- radius:int
- maxDisp:int
- normalize:bool
- width:int
- height:int
- inputLeft:char*
- inputRight:char*
- output:char

PlatformsList

- platforms
- preferredPlatform:string
- useLocking:bool

+ initialize()
+ print()
+ printPreferred()
+ getRunningPlatform():string

Platform

- id
- profile
- version
- name
- vendor
- extensions
- key

+ initialize()
+ print()
+ printPreferred()
+ getRunningPlatform():string

DeviceList

- isInitialized:bool
- nb_cpu
- nb_gpu
- allDevicesInUse
+ preferredDevice

+ initialize()
+ print()
+ getRunningPlatform():string
+ nbDevices():int

Device

- isInitialized:bool
- deviceId:int
- device
- context
- isGPU:bool
- inUse:bool
- info

+ initialize()
+ print()
+ lock()
+ unlock()

Array

- padded:bool
- n:unsigned int
- sizeofElement:size_t
- hostArray: T*
- platform:string
- context
- commandQueue
- device
- deviceArray

+ initialize(n, sizeof, hostArray, context,
flags, platform, commandQueue, device)
+ releaseMemory()
+ hostToDevice()
+ deviceToHost()
+ setAsKernelArgument(kernel, order)

Data

- data:T

+ initialize(data:T)
+ setAsKernelArgument(kernel, order)

T

Kernel

- filename:string
- context
- deviceId
- compilerOptions
- name
- program
- kernel
- event
- globalWorkSize
- localWorkSize

+ initialize(filename, context, device)
+ build(name:string)
+ computeWorkSize()
+ appendCompilerOption(option:string)
+ launch(queue)

T

Figure 3.4: OpenCL module class diagram.

• BlockMatching: This class serves as an example of the implementation of a CUDA

algorithm in GCVL.

• Core: Class in charge of the creation of the CUDA environment, selection of the

best GPU, creation device arrays, etc.

• Device: Utility class that aids in the instantiation of compute devices.

• DevicesList: Class that holds a list of all the compute devices available in the

system. In addition, it tries to guess the best one depending on architecture, compute

units and clock speed.

• Array: Helper class for CUDA device array creation.

24 3.3. Technology

CUDA Module

...

Core

- device

+ printInfo()

Algorithm

+ compute()
- prepare()
- launch()
- postpare()

BlockMatching

- dim:int
- radius:int
- maxDisp:int
- normalize:bool
- width:int
- height:int
- inputLeft:char*
- inputRight:char*
- output:char

DeviceList

- count:int
- isInitialized:bool
- preferredDevice:int

+ initialize()
+ print()

Device

- id: int
- properties
- compute:bool
- smPerMultiproc: int
- computeUnits: int
- computePerf: ullong

+ print()
+ getName()

Array

- padded:bool
- n:unsigned int
- sizeofElement:size_t
- hostArray: T*
- platform:string
- context
- commandQueue
- device
- deviceArray

+ initialize(n, sizeof, hostArray, context,
flags, platform, commandQueue, device)
+ releaseMemory()
+ hostToDevice()
+ deviceToHost()
+ setAsKernelArgument(kernel, order)

T

Figure 3.5: CUDA module class diagram.

3.3 Technology

As mentioned before, GCVL uses the C++ programming language. In order to create a

true multi-platform framework, we have also employed the CMake [CHK+00] build system.

The compilers in which the code has been tested are the following:

• GCC 4.9: The GNU Compiler Collection (GCC) is a compiler system created by

the GNU Project supporting various programming languages.

• Clang 6.1: This is a compiler front end for C, C++ and other programming lan-

guages. It uses LLVM as its back end.

• Visual C++ 12.0: This compiler features tools for developing and debugging C++

code on Microsoft Windows platforms.

For GPGPU programming we have chosen OpenCL and CUDA, because of their inter-

operation capabilities with OpenGL. In addition these are the two most used GPGPU

frameworks, being OpenCL the leading open source GPGPU framework and CUDA the

leading proprietary framework.

In order to keep code versions organized and backed up, Git [Tor05] has been used as a

version control system. This is a distributed revision control system with an emphasis on

3. GCVL: GPU Computer Vision Library 25

speed, data integrity, and support for distributed, non-linear work-flows.

Since this is an open source project, we have also used GitHub [PWWH08], a web-

based Git repository hosting service. It offers all of the distributed revision control and

source code management functionality of Git as well as adding its own features. It provides

access control and several collaboration features such as bug tracking, feature requests, task

management, and wikis for every project. It is the ideal tool for open source collaboration.

In order to quickly pinpoint issues in the multiple target platforms, we will use the con-

tinuous integration tool Travis CI, an open-source hosted and distributed continuous

integration service used to build and test projects hosted in GitHub.

In addition, we have used Doxygen to document the code for maintainability, which is

a tool for writing software reference documentation. It is written within the code, and is

thus relatively easy to keep up to date and understand.

3.4 Usage

Once the design concepts behind GCVL and its technology have been explained, the only

task left is to know how the modules are used. We will first see how to run the CPU module

algorithms, next we will see how the OpenCL tools and algorithms work and last but not

least we will see how the CUDA module can be utilized to run the CUDA algorithms.

3.4.1 CPU Module

The CPU module usage is pretty straightforward, one only needs to include the corre-

sponding algorithm class; in our example it will be the BlockMatching algorithm (see

Listing 3.1). In this example, the two paths of the input images and the output image

pointer are passed to the BlockMatching class, next the BlockMatching settings are set

and the computation is started. The result will be available to the user in the output

pointer.

3.4.2 OpenCL Module

The OpenCL module inner workings are a little more complex, but its usage is still really

simple. The first step is to include the corresponding algorithm class and Core class; in

our example it will be the BlockMatching algorithm (see Listing 3.2). In this case, the

core, the two paths of the input images and the output image pointer are passed to the

BlockMatching class. Next, the BlockMatching settings are set and the computation is

26 3.4. Usage

#inc lude <gcv l / blockmatching . h>

int main (int argc , char ∗argv []) {

int dim = 5 , maxDisp = 16 ;

bool norm = true ;

s td : : unique ptr<unsigned char []> output ;

gcv l : :BlockMatching bm(argv [1] , argv [2] , output) ;

bm. setAggDim (dim) ;

bm. setMaxDisp (maxDisp) ;

bm. setNormal i ze (norm) ;

bm. compute () ;

}

Listing 3.1: How to use the BlockMatching class.

started. The result will be available to the user in the output pointer.

3.4.3 CUDA Module

The CUDA module is used in a similar manner to the OpenCL module, but using a

different namespace. The first step is to include the corresponding algorithm class and

Core class; in our example it will be the BlockMatching algorithm (see Listing 3.3). In

this case, the core, the two paths of the input images and the output image pointer are

passed to the BlockMatching class. Next, the BlockMatching settings are set and the

computation is started. The result will be available to the user in the output pointer.

3. GCVL: GPU Computer Vision Library 27

#inc lude <gcv l / openc l / o c l c o r e . h>

#inc lude <gcv l / openc l / oc lb lockmatch ing . h>

int main (int argc , char ∗argv []) {

int dim = 5 , maxDisp = 16 ;

bool norm = true ;

s td : : unique ptr<unsigned char []> output ;

gcv l : : openc l : :Core core ;

gcv l : : openc l : :BlockMatching bm(core , argv [1] , argv [2] , output) ;

bm. setAggDim (dim) ;

bm. setMaxDisp (maxDisp) ;

bm. setNormal i ze (norm) ;

bm. compute () ;

}

Listing 3.2: How to use the OpenCL BlockMatching class.

28 3.4. Usage

#inc lude <gcv l /cuda/ cudacore . h>

#inc lude <gcv l /cuda/ cudablockmatching . h>

int main (int argc , char ∗argv []) {

int dim = 5 , maxDisp = 16 ;

bool norm = true ;

s td : : unique ptr<unsigned char []> output ;

gcv l : : cuda : :Core core ;

gcv l : : cuda : :BlockMatching bm(core , argv [1] , argv [2] , output) ;

bm. setAggDim (dim) ;

bm. setMaxDisp (maxDisp) ;

bm. setNormal i ze (norm) ;

bm. compute () ;

}

Listing 3.3: How to use the CUDA BlockMatching class.

Chapter 4

Performance & Experimental

Results

In this chapter we will delve in the obtained performance results in the two test machines,

as well as taking a look at the experimental results obtained for a couple of test datasets.

The images that will be used for testing are described in Table 4.1. They were obtained

from the Middlebury Stereo Vision Page, that offers several test datasets from which we

have chosen a couple of them [SS02, SP07, HS07].

Dataset Width Height

Tsukuba 384 288

Bowling 1252 1110

Table 4.1: Datasets used in our tests.

4.1 Performance Results

Two computers with different hardware were used for testing. The first, Computer 1

has the following specs:

29

30 4.1. Performance Results

• Intel Core i7-3770 CPU (4 cores, 8 threads)

• NVIDIA GT 640 graphics card

• 16 GB of 1600 MHz DDR3 RAM

• WDC WD10EZRX HDD

The second, Computer 2 has the following specifications:

• Intel Core i7-4930K CPU (6 cores, 12 threads)

• NVIDIA GTX 780Ti graphics card

• 16 GB of 2133 MHz DDR3 RAM

• WD Caviar Black HDD

The operating system used to run the tests was Windows 7 x64, with the VC++ v110

compiler.

Aggregation Dimension (px)

5 6 7 8 9 10 11 12 13
M
ax

im
um

 D
isp

ar
ity

 (p
x)

0
20

40
60

80
100

120
140

T
im

e
 (

s)

0

1

2

3

4

5

6

CPU Performance

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

(a) Computer 1

Aggregation Dimension (px)

5 6 7 8 9 10 11 12 13
M
ax

im
um

 D
isp

ar
ity

 (p
x)

0
20

40
60

80
100

120
140

T
im

e
 (

s)

0

1

2

3

4

5

6

CPU Performance

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

(b) Computer 2

Figure 4.1: CPU performance results for the Tsukuba dataset.

The first test performed can be seen in Figure 4.1. In it we have used the Tsukuba dataset

to test CPU performance with multiple window sizes and maximum disparities. As we

can see, the diferences in small images when using a CPU with more cores are negligible;

in fact, probably because of cache issues the CPU with more cores fares worse. As we

can see, the performance achieved for the more demanding settings are not suitable for

real-time applications even with low resolutions like these.

4. Performance & Experimental Results 31

Aggregation Dimension (px)

5 6 7 8 9 10 11 12 13
M
ax

im
um

 D
isp

ar
ity

 (p
x)

0
20

40
60

80
100

120
140

T
im

e
 (

s)
0

10

20

30

40

50

60

70

80

CPU Performance

8

16

24

32

40

48

56

64

72

(a) Computer 1

Aggregation Dimension (px)

5 6 7 8 9 10 11 12 13
M
ax

im
um

 D
isp

ar
ity

 (p
x)

0
20

40
60

80
100

120
140

T
im

e
 (

s)

0

10

20

30

40

50

60

70

CPU Performance

8

16

24

32

40

48

56

64

(b) Computer 2

Figure 4.2: CPU performance results for the Bowling dataset.

Next, in Figure 4.2, we have tested the Bowling dataset for the same range of window

sizes and maximum disparities. These dataset possesses a higher resolution and we start

to see how the faster machine obtains better times than the slower one. But, since we

have increased resolution substantially, the timings obtained with this dataset are even

less suitable for real-time use cases.

Aggregation Dimension (px)

5 6 7 8 9 10 11 12 13
M
ax

im
um

 D
isp

ar
ity

 (p
x)

0
20

40
60

80
100

120
140

T
im

e
 (

s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

OpenCL Performance

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

(a) Computer 1

Aggregation Dimension (px)

5 6 7 8 9 10 11 12 13
M
ax

im
um

 D
isp

ar
ity

 (p
x)

0
20

40
60

80
100

120
140

T
im

e
 (

s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

OpenCL Performance

0.000

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

0.072

(b) Computer 2

Figure 4.3: OpenCL performance results for the Tsukuba dataset.

Since CPU approaches do not seem like they are going to allow real-time processing of the

chosen resolutions, we proceed in Figure 4.3 to test our OpenCL implementation with the

Tsukuba dataset employing the same settings. We instantly see that this implementation

improves computation times substantially. With this dataset, even the low end graphics

card is able to compute the disparity map in times suitable for real-time applications.

32 4.1. Performance Results

Computer 2 that has a more powerful graphics processor obtains even better results,

achieving further performance gains.

Aggregation Dimension (px)

5 6 7 8 9 10 11 12 13
M
ax

im
um

 D
isp

ar
ity

 (p
x)

0
20

40
60

80
100

120
140

T
im

e
 (

s)

0

1

2

3

4

5

6

7

8

OpenCL Performance

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

(a) Computer 1

Aggregation Dimension (px)

5 6 7 8 9 10 11 12 13
M
ax

im
um

 D
isp

ar
ity

 (p
x)

0
20

40
60

80
100

120
140

T
im

e
 (

s)

0.0

0.2

0.4

0.6

0.8

1.0

OpenCL Performance

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Computer 2

Figure 4.4: OpenCL performance results for the Bowling dataset.

Next, in Figure 4.4, we have performed the same test on the Bowling dataset. This

dataset requires a lot more processing power, that is why although the execution times

have improved substantially, Computer 1 is not obtaining the performance numbers

necessary for real-time processing. In contrast, Computer 2 does achieve results capable

of processing several frames of video per second.

Aggregation Dimension (px)

5 6 7 8 9 10 11 12 13
M
ax

im
um

 D
isp

ar
ity

 (p
x)

0
20

40
60

80
100

120
140

T
im

e
 (

s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

CUDA Performance

0.06

0.12

0.18

0.24

0.30

0.36

0.42

0.48

0.54

(a) Computer 1

Aggregation Dimension (px)

5 6 7 8 9 10 11 12 13
M
ax

im
um

 D
isp

ar
ity

 (p
x)

0
20

40
60

80
100

120
140

T
im

e
 (

s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

CUDA Performance

0.008

0.016

0.024

0.032

0.040

0.048

0.056

0.064

0.072

(b) Computer 2

Figure 4.5: CUDA performance results for the Tsukuba dataset.

Once we have seen how the OpenCL implementation performs, the only task left is to

test the CUDA module. The first test performed can be seen in Figure 4.5, in it we

have tested the CUDA implementation with the Tsukuba dataset. The results obtained

4. Performance & Experimental Results 33

resemble closely the OpenCL results, in some cases winning and losing by small margins.

Aggregation Dimension (px)

5 6 7 8 9 10 11 12 13
M
ax

im
um

 D
isp

ar
ity

 (p
x)

0
20

40
60

80
100

120
140

T
im

e
 (

s)

0

1

2

3

4

5

6

7

8

CUDA Performance

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

(a) Computer 1

Aggregation Dimension (px)

5 6 7 8 9 10 11 12 13
M
ax

im
um

 D
isp

ar
ity

 (p
x)

0
20

40
60

80
100

120
140

T
im

e
 (

s)

0.0

0.2

0.4

0.6

0.8

1.0

CUDA Performance

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Computer 2

Figure 4.6: CUDA performance results for the Bowling dataset.

The next test performed analyzes the CUDA code with the Bowling dataset (see Fig-

ure 4.6). Again, the results obtained are quite close to the OpenCL implementation

obtaining better or worse results depending on the settings used but with small differ-

ences.

0

1

2

3

4

5

6

7

8

9

Ti
m
e	
(s
)

OpenCL	 vs.	 CUDA

OpenCL CUDA

(a) Computer 1

0

0,2

0,4

0,6

0,8

1

1,2

Ti
m
e	
(s
)

OpenCL	 vs.	 CUDA	

OpenCL CUDA

(b) Computer 2

Figure 4.7: OpenCL vs. CUDA in the Bowling dataset.

Since execution times for the CUDA and OpenCL implementations are so close, in Fig-

ure 4.7 we have compared the execution times obtained in both test machines for the most

demanding dataset. As mentioned before both implementations are really close in terms

of performance.

The last analysis performed using GCVL compares the speedups obtained with the GPU

against the CPU implementation of the algorithm. The CPU execution times used to

calculate the speedup are from the high end CPU in Computer 2. The speedups obtained

34 4.2. Experimental Results

0

2

4

6

8

10

12

14

Speedup

OpenCL CUDA

(a) Computer 1

0

20

40

60

80

100

120

140

Speedup

OpenCL CUDA

(b) Computer 2

Figure 4.8: Speedup obtained in the Bowling dataset.

with both graphics cards are respectable, but the ones obtained with the Computer 2

are specially remarkable, with an average speedup of 77x.

4.2 Experimental Results

(a) Resulting depth map (b) Ground truth depth map

Figure 4.9: Depth map obtained with a maximum disparity of 16 and an aggregation
window of 5 in the Tsukuba dataset.

In order to test the implemented algorithm, we have processed the test images with GCVL.

The first results obtained were the depth maps of the Tsukuba dataset, they can be seen

in Figure 4.9 and Figure 4.10.

As we can see in the tests, as we increase the aggregation window size, the depth map

becomes smoother. The main drawback when increasing this parameter, is that a loss

of detail occurs, since the pixel window compared is bigger and the estimation is more

4. Performance & Experimental Results 35

(a) Resulting depth map (b) Ground truth depth map

Figure 4.10: Depth map obtained with a maximum disparity of 16 and an aggregation
window of 9 in the Tsukuba dataset.

statistically robust but less coarse.

(a) Bowling dataset (b) Textureless map

Figure 4.11: Textureless map of the Bowling dataset, pixels marked as white are
low-texture regions.

Moreover, we can see that there are some artifacts in the obtained depth maps. The first

reason why these artifacts occur is because of half-occluded (objects in the scene in one

image, and not in the other) pixels in the final disparity map. There can also be occluded

regions in the left and right images. In addition, there can be regions where there is little

or no texture in the scene (a good example of this can be seen in the bowling ball of the

Bowling dataset). These can be defined in [SS02] as regions where the squared horizontal

36 4.2. Experimental Results

intensity gradient averaged over a square window of a given size is below a given threshold

(see Figure 4.11).

(a) Resulting depth map (b) Ground truth depth map

Figure 4.12: Depth map obtained with a maximum disparity of 100 and an aggregation
window of 13 in the Bowling dataset.

We can see some of the aforementioned effects in the Second results obtained using the

Bowling dataset. The resulting depth maps can be viewed in Figure 4.12 and Figure 4.13.

In the first test we have seen how the aggregation window size influences the smoothness

of the disparity map, now we have used a different maximum disparity in each case. If we

choose a lower maximum disparity, the algorithm will be faster, but one runs the risk of

not finding the corresponding window in the right image.

In our datasets from the Middlebury Stereo’s website, then the answer is simple. The

maximum disparity value is the maximum value of the pixel in the ground truth map,

divided by the scale factor. If the user has a stereo vision set-up taking real-world imagery,

then we will have to do a bit of math to calculate the values. The first equation that we

will use is the following:

r =
bf

Nx
(4.1)

Being r the range of the object that we are trying to compute, b the distance between the

centers of the two cameras, f the focal length of the image sensor, x the pixel size of the

sensor and N the maximum disparity value.

Another aspect to account for is the uncertainty in detecting objects at a certain range

4. Performance & Experimental Results 37

(a) Resulting depth map (b) Ground truth depth map

Figure 4.13: Depth map obtained with a maximum disparity of 170 and an aggregation
window of 13 in the Bowling dataset.

and the actual range itself. The equation that relates these two variables is the next:

∆r =

(
r2

bf

)
x∆N (4.2)

Being ∆r the uncertainty in detecting the object at a certain range and ∆N the change in

disparity value. This means, that for a certain range, we will have some uncertainty in the

obtained measurements. For more information the user can check [KAW08a, KAW08b].

38 4.2. Experimental Results

Chapter 5

Conclusions and future lines of

work

In this chapter we will briefly take a look at the conclusions reached after finishing this

project, and the possible future lines of work that the project can follow.

5.1 Conclusions

The first conclusion reached, has been that all of the objectives of the project were met:

• Studying different Stereo Matching techniques.

• Design, implementation and documentation of tools to ease GPGPU programming.

• Design, implementation and documentation of the chosen algorithm.

• CPU parallelization of the implemented algorithm.

• GPU parallelization of the implemented algorithm.

After finishing and achieving all the aforementioned objectives, the other conclusions that

have been reached are:

• GPGPU is not always the answer: As seen in the results, if the workload is

not complex enough to compensate for kernel setup time, GPU computation time

will be higher than the time it takes the CPU to process the data. One has to

carefully consider if the workload and the chosen algorithms are optimal for GPU

parallelization or a lot of time can be wasted.

39

40 5.2. Future lines of work

• GPGPU tools significantly speed up the development process: Creating

multi-platform OpenCL and CUDA algorithms is not a trivial task. Without the

help of this library the implementation of the algorithms would be error prone and

slower.

• GPGPU device selection is complex: The automatic selection of the best GPU

computing device, is not an easy task. Improvements in architecture, clock speed,

etc. can render devices with more compute units obsolete; making it difficult to

automatically guess the best device. This is specially complex in OpenCL, because

of the variety of devices present in the ecosystem.

• GPGPU improves performance substantially: In Computer Vision tasks GPU

computing fits really well. In a wide variety of algorithms, the workloads are highly

parallel; allowing us to squeeze the maximum amount of processing power out of

GPUs.

5.2 Future lines of work

After finalizing the work on this project, several ideas for the expansion of the library

come to mind:

• GPU kernels optimization: As of know the implemented kernels of the Block

Matching algorithm are semi-naive implementations. It would be interesting to

further optimize these kernels so they would use local memory and would access the

data with more optimal patterns or other types of improvements.

• Multi-GPU: As of now, the GPU algorithms and tools are designed to work on a

single GPU device. The next step could be the adaptation of the algorithms to work

on multiple GPUs. This would increment the performance gap even further against

CPUs.

• MPI tools: Since this is a GPU computing library, we have not delved into the

usage of MPI to parallelize the algorithms. But in HPC, the usage of supercomputers

sometimes requires MPI implementations. The creation of helper tools and their

integration in multi-platform systems could be an interesting step forward.

• Boost Compute: The usage of this library for the OpenCL module, could pro-

vide STL-like common algorithms, common containers and iterators (for example,

vectors, etc.).

5. Conclusions and future lines of work 41

• Thrust: As in the proposed OpenCL module aforementioned improvement, in

CUDA we could use Thrust to achieve a similar result.

• Optimization of the algorithm: The improvement of the algorithm in terms of

performance using message passing techniques, could also yield improvements for

the CPU and GPU implementations.

• Block Matching: To improve the block matching algorithm, new correlation based

similarity measures should be implemented. Several algorithm improvements could

also be made to improve CPU and GPU computing times.

42 5.2. Future lines of work

Bibliography

[BBH93] Robert C Bolles, Harlyn H Baker, and Marsha Jo Hannah. The jisct stereo

evaluation. In DARPA Image Understanding Workshop, pages 263–274, 1993.

10

[Bec01] Kent Beck. Manifesto for agile software development. Agile Alliance, 2001.

17

[CHK+00] Andy Cedilnik, Bill Hoffman, Brad King, Ken Martin, and Alexander Neun-

dorf. CMake. http://www.cmake.org, 2000. 24

[Coc01] Alistair Cockburn. Agile Software Development. ISBN 978-0-20-169969-2.

Addison-Wesley Professional, first edition, 2001. 17

[FM04] James Fung and Steve Mann. Using multiple graphics cards as a general pur-

pose parallel computer: Applications to computer vision. In Pattern Recog-

nition, 2004. ICPR 2004. Proceedings of the 17th International Conference

on, volume 1, pages 805–808. IEEE, 2004. 12

[FP03] David A. Forsyth and Jean Ponce. Computer Vision, A Modern Approach.

ISBN 0-13-085198-1. Prentice Hall, second edition, 2003. 2, 5

[FTM02] James Fung, Felix Tang, and Steve Mann. Mediated reality using computer

graphics hardware for computer vision. In Wearable Computers, 2002.(ISWC

2002). Proceedings. Sixth International Symposium on, pages 83–89. IEEE,

2002. 12

[HMP92] Yuan C Hsieh, David M McKeown, and Frederic P Perlant. Performance

evaluation of scene registration and stereo matching for artographic feature

extraction. IEEE Transactions on Pattern Analysis & Machine Intelligence,

(2):214–238, 1992. 10

43

http://www.cmake.org

44 BIBLIOGRAPHY

[HS07] Heiko Hirschmüller and Daniel Scharstein. Evaluation of cost functions

for stereo matching. In Computer Vision and Pattern Recognition, 2007.

CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007. 29

[KAW08a] Bahador Khaleghi, Siddhant Ahuja, and QM Jonathan Wu. An improved

real-time miniaturized embedded stereo vision system (mesvs-ii). In Com-

puter Vision and Pattern Recognition Workshops, 2008. CVPRW’08. IEEE

Computer Society Conference on, pages 1–8. IEEE, 2008. 37

[KAW08b] Bahador Khaleghi, Siddhant Ahuja, and QM Jonathan Wu. A new minia-

turized embedded stereo-vision system (mesvs-i). In Computer and Robot

Vision, 2008. CRV’08. Canadian Conference on, pages 26–33. IEEE, 2008.

37

[Pra12] Stephen Prata. C++ Primer Plus. ISBN 978-0-321-77640-2. Addison-Wesley,

sixth edition, 2012.

[PWWH08] Tom Preston-Werner, Chris Wanstrath, and PJ Hyett. Github. https://

github.com/, 2008. 25

[SP07] Daniel Scharstein and Chris Pal. Learning conditional random fields for

stereo. In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE

Conference on, pages 1–8. IEEE, 2007. 29

[SS01] Linda G. Shapiro and George C. Stockman. Computer Vision. ISBN 0-13-

030796-3. Prentice Hall, first edition, 2001. 1, 5

[SS02] Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense

two-frame stereo correspondence algorithms. International journal of com-

puter vision, 47(1-3):7–42, 2002. 10, 29, 35

[Sze11] Richard Szeliski. Stereo correspondence. In Computer Vision, Texts in Com-

puter Science, pages 467–503. Springer London, 2011. 5

[Tor05] Linus Torvalds. Git. http://git-scm.com, 2005. 24

https://github.com/
https://github.com/
http://git-scm.com

	Introduction
	Motivation and context
	Objectives
	Structure

	Technological Foundations
	Computer Vision
	Stereo Vision
	Stereo Correspondence
	Block Matching

	GPGPU
	Architecture
	OpenCL
	CUDA

	GCVL: GPU Computer Vision Library
	Development Methodology
	Agile manifesto

	Design
	Class diagram
	General Tools
	CPU Module
	OpenCL Module
	CUDA Module

	Technology
	Usage
	CPU Module
	OpenCL Module
	CUDA Module

	Performance & Experimental Results
	Performance Results
	Experimental Results

	Conclusions and future lines of work
	Conclusions
	Future lines of work

