
Facultade de Informática

PROJECT REPORT
MASTER’S IN COMPUTER ENGINEERING

Reinforcement learning multiagent system
for simulating survival environment

Student: Rubén Montero Vázquez
Directors: Emilio José Padrón González

Luis Omar Álvarez Mures
Francisco Javier Taibo Pena

June 2020

To anyone willing to learn

Abstract

Reinforcement learning is an active field of research that has shown promising results in several
occasions. There are multiple algorithms capable of facing very complex problems, meaning
potential steps towards strong artificial intelligence. OpenAI has recently shown that in a
multiagent system, actors belonging to different teams are capable of developing strategies
and counterstrategies without being explicitly rewarded to do so. In this project we have
studied the main reinforcement learning algorithms that are relevant nowadays and we have
implemented amultiagent environment for survival simulation in order to test them, compare
them and discuss the results. Finally, we have designed PERLERT (Protocol for Evaluating
Reinforcement Learning Environments in Real Time) and implemented such protocol in a
client-server architecture that allows interacting with trained agents.

Resumen

Aprendizaje por refuerzo es un activo campo de investigación que ha mostrado resultados
prometedores en varias ocasiones. Existen múltiples algoritmos capaces de abarcar problemas
de gran complejidad y que suponen potenciales avances hacia la inteligencia artificial fuerte.
OpenAI ha demostrado recientemente que en un sistemamultiagente, actores pertenecientes a
diferentes equipos son capaces de desarrollar estrategias y contraestrategias sin ser explícitamente
incentivados para ello. En este proyecto hemos estudiado los principales algoritmos de aprendizaje
por refuerzo que están a la orden del día y hemos implementado un entorno multiagente de
simulación para la supervivencia para ponerlos a prueba, compararlos y discutir los resultados.
Finalmente, hemos diseñado PERLERT (Protocol for Evaluating Reinforcement Learning Environments
in Real Time) e implementado dicho protocolo en una arquitectura cliente-servidor que permite
interaccionar con los agentes entrenados.

Keywords:

• artificial intelligence

• reinforcement learning

• multiagent

• rllib

• tensorflow

• render

• godot

Palabras clave:

• inteligencia artificial

• aprendizaje por refuerzo

• multiagente

• rllib

• tensorflow

• render

• godot

II

Contents

1 Introduction 1
1.1 You can’t learn without participating . 2
1.2 But why bother to take an action? . 3
1.3 The world is there to be explored . 4

2 State of the art 5
2.1 Reinforcement learning algorithms . 5

2.1.1 Deep Q-learning (DQN) . 5
2.1.2 Policy gradients (PG) . 10
2.1.3 Proximal policy optimization (PPO) . 13
2.1.4 Other algorithms . 13

2.2 Standardization efforts and most used frameworks 14
2.2.1 TensorFlow . 14
2.2.2 OpenAI Gym . 14
2.2.3 RLlib . 14
2.2.4 Other frameworks . 15

2.3 Rendering tools and integration with machine learning problems 16
2.3.1 Unreal Engine: Plugin for TensorFlow 16
2.3.2 Unity3D: Machine learning . 16
2.3.3 Godot . 16
2.3.4 Blender . 16

3 Methodology, tools and roadmap 17
3.1 Methodology . 17
3.2 Tools . 18
3.3 Roadmap . 19

i

Contents

4 Environment design and implementation 21
4.1 Some design principles . 21
4.2 Environment development history . 22

4.2.1 v0.0.1 (Initial version) . 22
4.2.2 v0.0.2 (Force-based movement) . 24
4.2.3 v0.0.3 (Movable bridge) . 24
4.2.4 v0.1 (Multiagent approach with team-based rewards) 25
4.2.5 v0.2 (Custom metrics and configurable parameters) 26
4.2.6 v0.3 (Agent-centric observation space) 27
4.2.7 v1.0 (Individual rewards and no preparation phase) 30

5 Training results 33
5.1 DQN . 33
5.2 PG . 34
5.3 PPO . 36
5.4 Comparisons . 38

5.4.1 And what about the citizens? . 38

6 UX design and integration with rendering engine 41
6.1 Client application . 41

6.1.1 Development of a 2D map in Godot . 42
6.1.2 User interface . 45

6.2 Server application . 45
6.3 Communication protocol . 47

7 Outcome and future work 49
7.1 What now? . 50

A Protocol for Evaluating Reinforcement Learning Environments in Real Time
(PERLERT) 53

Bibliography 65

ii

List of Figures

1.1 Basic interaction in a reinforcement learning problem 3

2.1 Deep Q-learning basic architecture . 6
2.2 Graphical representation of f(x) = 2x3 − 5x2 7
2.3 Python implementation of gradient descent for f(x) = 2x3 − 5x2 7
2.4 Deep Q-learning architecture with target network 9
2.5 Example of different state distributions depending on agent policies 12
2.6 RLlib components . 15

3.1 General phases of iterations during initial stage of the project 18
3.2 Number of commits per day in Git repository 20

4.1 Description for custom Gym environment v0.0.1 23
4.2 Graphical representation of the environment v0.0.1 24
4.3 Rewards description for custom Gym environment v0.1 26
4.4 Graphical representation of the environment v0.1 26
4.5 Mean reward for DQN citizens in environment v0.3 28
4.6 Mean reward for DQN zombies in environment v0.3 28
4.7 Tiles explored in DQN 1v1 scenarios . 29
4.8 Mean distance and zombie reward in DQN 1v1 scenarios 29
4.9 Description for custom Gym environment v1.1.1 (1 of 2) 31
4.10 Description for custom Gym environment v1.1.1 (2 of 2) 32

5.1 Mean reward and mean Q for various gamma values in DQN 34
5.2 Mean reward for training using prioritized replay or dueling network in DQN 34
5.3 Mean reward for various learning rates in PG 35
5.4 Mean reward for various batch sizes in PG . 35
5.5 Mean reward and entropy for various learning rates in PPO 36

iii

List of Figures

5.6 Mean reward and entropy for various clip parameter values in PPO 36
5.7 Mean reward and entropy for various batch sizes PPO 37
5.8 Mean reward and KL-divergence for all trials in PPO 37
5.9 Citizen rewards for DQN, PG and PPO agents 38

6.1 Work in progress of some adaptations to sprites in the asset packs used 42
6.2 Work in progress of our 2D map in Godot (1 of 2) 43
6.3 Work in progress of our 2D map in Godot (2 of 2) 43
6.4 Final result of the 2D map creation process . 44
6.5 Our 2D map with non walkable areas highlighted as X tiles 44
6.6 Screenshots of Reinforcement Learning Zombies desktop application 45
6.7 Overall structure of server code . 46
6.8 Help output for lobby_creator.py CLI . 46
6.9 Help output for train.py CLI . 47

iv

List of Equations

1.1 Discounted reward expression . 3

2.1 Q-learning formula . 6
2.2 Loss for training ANN in deep Q-learning . 8
2.3 Reward function for policy optimization using policy gradient 11
2.4 Policy gradient theorem . 12
2.5 Surrogate clipped loss function . 13

v

List of Equations

vi

Chapter 1

Introduction

We all learn.
But, what is learning?

learning (lɜːnɪŋ)
NOUN
1. knowledge gained by study; instructions or scholarship
2. the act of gaining knowledge
3. psychology any relatively permanent change in behaviour that occurs as a direct result

of experience

Learning can be seen as the fuel for evolution. It enables us to achieve better results when
facing different problems and is a mandatory tool for fulfilling our purposes in life. What is
the purpose of life? Such question goes beyond the scope of this project, as we will try to
keep it as simple as possible. We will not be focusing on human ability to learn. We will be
focusing on computers.

In computer science, learning is a huge topic of research. Many years have passed since
Arthur Samuel wrote a learning program in 1952 based on the game of checkers. It improved
the more it played, incorporating moves that made up winning strategies [1].

Nowadays, artificial intelligence (AI) is being applied to a wide variety of fields from lan-
guage processing to autonomously operating cars. More concretely, machine learning (ML) is
considered a subset of artificial intelligence oriented to the study of algorithms that “improve
automatically through experience” [2], by “building a mathematical model based on training
data in order to make predictions or decisions without being explicitly programmed to do so
[3].”

Are computers capable of learning, then?
There are several types of machine learning algorithms. “Supervised learning algorithms

build a mathematical model of a set of data that contains both the inputs and the desired out-

1

1.1. You can’t learn without participating

puts [4].” A good example of supervised learning is image classification. It starts by defining
some kind of pattern that we want to identify in images, and trains a model to recognize it
using a labeled dataset [5]. This way we could make a computer automatically recognize cats
inside pictures or help to diagnose cancer in clinical patients.

Another approach is unsupervised learning. “This one differs from supervised learning in
that only input data is known, but there are not corresponding output variables in the training
set. The goal for unsupervised learning is to model the underlying structure or distribution
in the data in order to learn more about the data. Unlike supervised learning, there are not
correct answers or teacher. Algorithms are left to their own devises to discover and present
the interesting structure in the data [6].”

In between, there is another area of machine learning called reinforcement learning.

1.1 You can’t learn without participating

Reinforcement learning (RL) is an area of research focused on the key concepts of software

agent and environment. An environment is any representation of a task or scenario that has
an internal state St given a precise instant in time. An agent is a computer program of any
nature capable of interacting with the environment.

How does this interaction take place?

Agents make choices among a set of possible actions contained in an action space. The
action is fed to the environment, and the environment responds providing an observation and
a reward for the agent. If the observation represents the whole state of the environment we
will be talking about full observability. Otherwise, we speak of partial observability. In any-
way, the environment can be seen as a black box. We do not necessarily have a mathematical
model for the environment, and the only way to learn about it is interacting with it. In this
project, we will be considering such interactions to take place in discrete time steps.

“Reinforcement learning differs from supervised learning in not needing labeled input/out-
put pairs to be presented, and in not needing sub-optimal actions to be explicitly corrected.
Instead the focus is on finding a balance between exploration (of uncharted territory) and
exploitation (of current knowledge) [7].” By sub-optimal actions we speak of decisions taken
by the agent which are not the best choice for an arbitrary state at a given time step. But it
is hard to tell whether playing a specific opening move will lead us to winning a chess game,
right?

2

CHAPTER 1. INTRODUCTION

1.2 But why bother to take an action?

Getting up early on a Sunday to cook fried eggs for breakfast is not easy. But, in the same
way, there is a reason why software agents take actions in an environment: the reward. This
is another key concept in Reinforcement Learning. Every time the agent interacts with the
environment, it gets back the observation of the new environmental state and a reward.

Agent

Environment

State (t)

Action

Agent

Environment

State (t+1)

ObservationReward

Figure 1.1: Basic interaction in a reinforcement learning problem

Broadly, the aim of the agent is to maximise the rewards it receives. “The agent does not
merely wish to maximise the immediate reward in the current state, but wishes to maximise
the rewards it will receive over a period of future time [8].”

There are three main methods of assessing future rewards that have been studied in the
literature: total reward, average reward and total discounted reward. The total discounted
reward from time t is defined to be

rt + γrt+1 + γ2rt+2 · · ·+ γnrt+n + . . .

Eq. 1.1: Discounted reward expression

where rk is the reward received at any time k and γ is a number between 0 and 1 (usually
slightly less than 1). γ is termed the discount factor.

The effect of γ is to determine the present value of future rewards. If γ is set to zero, a
reward at time t + 1 is considered to be worth nothing at time t. If γ is set to be slightly
less than one, then the total discounted reward from the current state will take into account
expected rewards for some time into the future [8].

To sum up, discount factor γ plays an important role in reinforcement learning as it man-
ages the balance between learning from the short-term experience and weighting the impact
of long-term rewards. This is strongly related to the exploration vs exploitation trade-off

3

1.3. The world is there to be explored

mentioned before. One cannot learn only from the immediate effect of their actions, but also,
as it is said, in the long run we’re all dead.

1.3 The world is there to be explored

If we recap on the definition we gave at the beginning, reinforcement learning clearly has a
strong relation with learning in nature, because software agents will modify their behaviour
based on the experience obtained through interactingwith the environment. In aworldwhere
many dimensions of our existence still remain unexplored and, in many cases, the only way
to learn from an unknown context is to interact with it, reinforcement learning has huge
potential.

Nowadays, this area of artificial intelligence has been successfully applied to a wide range
of challenges such as the first successful autonomous completion on a real RC helicopter of
four aerobatic maneuvers [9], enough dexterity in a human-like robot hand to allow it to
manipulate and solve a Rubik’s cube [10], or the capability of robots to adapt to injuries or
damaged parts in a similar way as an animal would do, without being limited to pre-specified
self-sensing abilities and anticipated failure modes [11].

In this project we will explain different reinforcement learning methods and dive into
them by creating a multiagent simulation. Some agents (citizens) will compete against others
(zombies) in an environment similar to a hide-and-seek game. We will build an application
that, in a didactic way, analyzes the performance and characteristics of different agents and
training methods in this environment and also allows human interaction with it in order to
actively compare and learn about the system.

Within the scope of this project, we will also try to reproduce or reach similar results as
the ones obtained in OpenAI’s hide-and-seek project, where a multiagent simulation revealed
the capability of agents to develop six distinct strategies and counterstrategies by using tools
inside the environment without having explicit incentives to do so [12].

Additionally, we will integrate our simulation with a rendering engine for a better looking
final result.

4

Chapter 2

State of the art

One problem of humankind is individualism.
We all have certain tendency to be self-centered and rely solely on our capabilities,

focusing on the outcome of our work instead of the accomplishments of others. However, the
only way to break our limits is to do it together. Four eyes see more than two, and seven billion
minds think more than one, indeed.

In this chapter we will be commenting the most up-to-date reinforcement learning tech-
niques and frameworks.

For further information about them in relation to this project, custom trials run and other
characteristics, see Chapter 5.

2.1 Reinforcement learning algorithms

2.1.1 Deep Q-learning (DQN)

Q-learning is the classical approach to reinforcement learning problems. It consists on build-
ing a table with an entry for each state-action pair, holding its Q-value, which is the total
expected reward after taking such action at the given state.

Q(s, a)

However, this reward depends on future states and future actions, so it cannot be directly
inferred.

Q(st, at) = γ ·Q(st+1, at+1) + γ2 ·Q(st+2, at+2) + · · ·

This problem can be solved by applying the Bellman’s equation [13], which will update
the Q-value in the table iteratively until each entry in the table converges to the optimal value.
This update takes place every time the agent interacts with the environment.

5

2.1. Reinforcement learning algorithms

Qt+1(st, at) = Qt(st, at)︸ ︷︷ ︸
old value

+ α︸︷︷︸
learning

rate

·[
learned value︷ ︸︸ ︷

Rt+1︸ ︷︷ ︸
reward

+ γ︸︷︷︸
discount
factor

·max
a

Qt(st+1, at+1)︸ ︷︷ ︸
estimated

optimal future value

−Qt(st, at)︸ ︷︷ ︸
old value

]

Eq. 2.1: Q-learning formula

The most convoluted part of the formula is the estimated optimal future value, which con-
sists on the maximumQ-value associated with the action for the state under evaluation. It can
be seen as looking up in the table the action with the highest Q-value for the state in which
the agent happens to be, and then retrieving the corresponding Q-value. Also, the agent will
take such action in the next step, because it is optimal according to the current Q-table.

Although the theory is promising, it does not scale well. As environments grow in com-
plexity the amount of possible states becomes unhandleable.

How do we solve this?

There is a paradigm in machine learning called deep learning. “Deep learning is a class
of machine learning algorithms that uses multiple layers to progressively extract higher level
features from the raw input [14].” Modern deep learningmodels achieve this by using artificial
neural networks (ANN), although deep learning has greatly evolved in last decades due to the
possibility of processing larger amounts of data.

The main idea behind deep Q-learning is to use an ANN as a function aproximator for the
Q-value associated with each possible action for a given state.

State

Q-value for action 1

Q-value for action 2

Q-value for action n

Figure 2.1: Deep Q-learning basic architecture

In deep Q-learning, we train our agent by training a neural network instead of updating
the Q values of a table. But before sailing any further, let us not forget about the basics. How
does this training really take place?

6

CHAPTER 2. STATE OF THE ART

Let yourself roll down the hill

Gradient descent is a mathematical iterative algorithm for finding the minimum of a function.
It consists on taking steps proportional to the negative of the gradient of the function, what
implies that such function needs to be differentiable. This method was proposed by Cauchy
in 1847 [15].

Figure 2.2: Graphical representation of f(x) = 2x3 − 5x2

1 next_x = 5 # Start the search at x=5
2 gamma = 0.02 # Step size multiplier
3 precision = 0.00001
4 max_iters = 10000
5

6 # Derivative function
7 def df(x):
8 return 6 * x ** 2 - 10 * x
9

10 for _ in range(max_iters):
11 current_x = next_x
12 next_x = current_x - gamma * df(current_x)
13 step = next_x - current_x
14 if abs(step) <= precision:
15 break
16

17 print("Minimum at ", next_x)
18 # "Minimum at 1.666701170799059"

Figure 2.3: Python implementation of gradient descent for f(x) = 2x3 − 5x2

Artificial neural networks produce different outputs depending on their weights, which
are usually denoted as a parameter θ.

So, same as we found that for f(x) = 2x3−5x2 there is a local minimum near x = 1.667,
we want to discover which parameter value θ corresponds to the network producing themost

7

2.1. Reinforcement learning algorithms

accurate output values.
We do not use the derivative function, because it is not known. Instead, a loss function is

used, consisting on the mean squared error of the predicted Q-value and the target optimal
Q-value. It is important to notice the similarities between equations 2.1 and 2.2. However,
whereas Qt refers to looking up the Q-value inside a table at moment t, Qθt refers to the
output Q-value generated by an ANN parameterized by θ at moment t.

Loss = [R+ γ ·max
a

Qθt(st+1, at+1)−Qθt(st, at)]
2

Eq. 2.2: Loss for training ANN in deep Q-learning

Again, we are dealing with an unknown optimal Q-value, but “since R is the unbiased
true reward, the network is going to update its gradient […] to finally converge [16].”

Target network and prioritized experience replay

The main difference between Q-learning and deep Q-learning is that an exact value function
is replaced with a function estimator (an ANN). But this means that instead of updating just
one state-action pair per timestep, a change in the neural network might be updating many.
Sometimes this translates into the effect of catastrophic forgetting, which can make the agent
suddenly start performing exceptionally bad after being learning progressively for a while.

Why does this happen?
In a classical deep learning problem, the target to train the network stays the same. For

example, if an ANN is trained to recognize elephants in images, the target dataset does not
change during the whole training. This is not the case for deep reinforcement learning. Dur-
ing training, the neural network is pursuing a target that is constantly changing, and since
the same network calculates the predicted Q-value and the target Q-value, it is difficult to
make the training stable.

One proposed solution to address this issue is using a target network [17]. Such archi-
tecture would consist on having a copy of the Q-network with frozen weights and use it for
estimating the target. Then, periodically, the weights of the Q-network would be updated on
it. “This leads to more stable training because it keeps the target function fixed (for a while)
[16].”

Another problem that arises in deep reinforcement learning is sampling efficiency, which
means that samples obtained from the environment might be bringing poorly representative
information and therefore affecting the training process negatively. This happens because in
some environments the real complexity of the problem can reside only on certain states, and
at some points the actions do not affect the environment in meaningful ways.

8

CHAPTER 2. STATE OF THE ART

Update
weights
periodically Q

Prediction
network

Q'
Target
network

Input

Figure 2.4: Deep Q-learning architecture with target network

Prioritized experience replay attempts to improve this. Instead of directly running the
learning process of the network for state-action pairs as they occur during the simulation,
we allocate a large table that holds tuples of [state, action, reward, next state] [17]. Later on,
different strategies can be used to decide a subset of those states which we find more suitable
in order to feed the training process, and use them.

Double deep Q-learning (DDQN)

Using a neural network for estimating the Q-value is great — more concretely, £400 million
great [18]. But more improvements were to come after Google bought UK artificial intelli-
gence startup Deepmind.

Under certain conditions deepQ-learning networks tend to be overoptimistic. For instance,
an agent that learns to play a racing game might get some high initial rewards when turning
left and consequently never choose to turn right. In both Q-learning and deep Q-learning,
such overoptimistic behaviour can be blamed on the max operator. As discussed in Figure 2.1,
this operator (referred to as estimated optimal future value) is used to both update the Q-
network and select the next action to take.

The idea behind DDQN is to “decompose the max operation in the target into action
selection and action evaluation [19].” Simply put, the stable target network is used to estimate
the Q-network, which remains used for evaluating the next action. Doing so, effectively
reduces overoptimism.

As a side note, Double deep Q-learning (DDQN) is not to be confused with double Q-
learning, which appeared five years earlier and dwells on the same principle. However double
Q-learning was originated to improve the quality of a simple tabular Q-learning algorithm
[20].

9

2.1. Reinforcement learning algorithms

Dueling network architecture

Although DDQN algorithm demonstrated state-of-the-art performance in Atari 2600 domain
[19], this record was quickly beaten by the dueling network architecture [21].

Firstly, let us have a quick overview of some fundamental concepts for the dueling net-
work architecture. As it has been explained, the Q-value represents the value of choosing a
specific action at a specific state. Another important term is the V value, which corresponds
to the value of a certain state regardless of the possible actions. Finally, as its name reflects,
the advantage value, A(s, a), represents how good it is to select one action in comparison to
others, for a given state [22].

A(s, a) = Q(s, a)− V (s)

The dueling architecture splits the network into two streams. One estimates V (s) and
other estimates A(s, a). Thanks to this, the agent can learn which states are most valuable
without having to learn the effect of each action for each state.

2.1.2 Policy gradients (PG)

As it has been explained, in deep Q-learning the focus dwells on training a function approxi-
mator in order to get the proper Q-values for each state-action pair. Then, the agent usually
plays a greedy policy1 and simply selects the action with higher expected reward. Policy gra-
dients algorithms [23] are another large family of algorithms that go a step further — they
aim to directly train the policy of the agent.

Why policy gradients?
Q-value function estimation has several limitations. “First, it is oriented toward finding

deterministic policies, whereas the optimal policy is often stochastic2. Second, an arbitrarily
small change in the estimated value of an action can cause it to be, or not to be, selected.
Such discontinuous changes have been identified as a key obstacle to establish convergence
assurances [24].”

Optimize the policy directly

Policy gradient algorithms attempt to optimize the policy of the agent, which is usually repre-
sented as a parameterized function respect to θ, this is, πθ(s, a). As mentioned earlier in this

1 A policy (π) is a key concept in reinforcement learning. It represents a way of behaving. For a state s and
an action a it outputs the possibility of taking such action π(s, a). Due to this, it is frequently interpreted as a
function that maps states to actions π(s) = a.

2 Deterministic policies output a well defined action for the agent, while stochastic policies output the proba-
bilities of taking each action. Then, the actual action is sampled from the probability distribution provided by the
policy.

10

CHAPTER 2. STATE OF THE ART

chapter, when talking about θ we are normally referring to the weights of artificial neurons
in an ANN, as that is usually the approach used for implementing the policy of the agent.

So, same as we used a loss function to train the ANN in equation 2.2 we will now define a
reward function J(θ) so that we will find the θ value for which the reward of π is maximum.
Instead of using gradient descent, we will be speaking about gradient ascent because we want
to get higher rewards. Thus, we will seek for the steepest change in the positive direction.

The reward function for which we will need to compute the gradient is defined as follows
[23]:

J(θ) =
∑
s

dπθ(s) · V πθ(s) =
∑
s

dπθ(s)︸ ︷︷ ︸
state

distribution

·
∑
a

πθ(s, a)︸ ︷︷ ︸
action

distribution

·Qπθ(s, a)︸ ︷︷ ︸
expected
reward

Eq. 2.3: Reward function for policy optimization using policy gradient

Note that, while in deep Q-learning algorithms a function approximator (an ANN) is
trained in order to estimate the expected rewards Q(s, a), here the idea appears to be more
complicated.

The equation 2.3 says that given some policy parameter θ, the reward for the policy cor-
responds to the sum of the expected reward of each action that can be taken at any state that
the agent acting under such policy happens to be.

First, what does the state distribution represent?
Let us imagine a simple environment with three states. The agent can choose to move

right whenever in s1 or s2, and to move left whenever in s2 or s3. Also, for every state, agent
can choose not to move at all.

s1 s2 s3

move
right

move
left

move
left

not
move

not
move

not
move

move
right

Then, regardless of the starting state, if the agent travels forever the probability of ending
up in a certain state remains unchanged. This is the main reason why PageRank works and
is used by many search engines.

We can now say that the state distribution represents the probability of our agent ending
up in a given state. However, as shown in Figure 2.5, the policy affects the state distribution
of the environment. If we tried to solve the gradient ascent computation for J(θ), we would

11

2.1. Reinforcement learning algorithms

> p_matrix = [[0.75, 0.25, 0],

 [0.5, 0.25, 0.25],

 [0, 0.75, 0.25]]

> np.linalg.matrix_power(p_matrix, 99)

Probabilities stabilize

array([[0.6, 0.3, 0.1],

 [0.6, 0.3, 0.1],

 [0.6, 0.3, 0.1]])

s1 s2 s3

0.5

0.25

0.5

0.5 0.5 0.5

0.25

policy π:
p(move right, s1) = 0.5
p(not move, s1) = 0.5
p(move left, s2) = 0.25
p(not move, s2) = 0.5
p(move right, s2) = 0.25
p(move left, s3) = 0.5
p(not move, s3) = 0.5

> p_matrix = [[0.5, 0.5, 0],

 [0.25, 0.5, 0.25],

 [0, 0.5, 0.5]]

> np.linalg.matrix_power(p_matrix, 99)

Probabilities stabilize

array([[0.25, 0.5 , 0.25],

 [0.25, 0.5 , 0.25],

 [0.25, 0.5 , 0.25]])

p(s1) = 0.25, p(s2) = 0.5, p(s3) = 0.25

s1 s2 s3

0.25

0.5

0.75

0.75 0.25 0.25

0.25

policy ϕ:
p(move right, s1) = 0.75
p(not move, s1) = 0.25
p(move left, s2) = 0.5
p(not move, s2) = 0.25
p(move right, s2) = 0.25
p(move left, s3) = 0.75
p(not move, s3) = 0.25

p(s1) = 0.6, p(s2) = 0.3, p(s3) = 0.1

Figure 2.5: Example of different state distributions depending on agent policies

find that we do not know how the changes in the policy affect the state distribution, because
the environment is a black box function.

Policy gradient theorem [24] will help us with that, because “it provides an analytic ex-
pression of the gradient of J(θ) that does not involve differentiation of state distribution
[25].”

∇θJ(θ) = ∇θ

∑
s

dπθ(s) ·
∑
a

πθ(s, a) ·Qπθ(s, a)

score function gradient︷ ︸︸ ︷
∝

∑
s

dπθ(s) ·
∑
a

∇θπθ(s, a) ·Qπθ(s, a)

Eq. 2.4: Policy gradient theorem

Thus, computing the gradient of the reward function∇θJ(θ) is simplified a lot, because it
only involves the gradient of πθ , and not the gradient of the state distribution. Although the
problem of having a proper function estimator for the expected reward Q(s, a) still remains,
the policy gradient theorem is the basis for many reinforcement learning algorithms that no

12

CHAPTER 2. STATE OF THE ART

longer aim to calculate a value function, but to train the agent policy directly.

2.1.3 Proximal policy optimization (PPO)

According to OpenAI, “getting good results via policy gradient methods is challenging be-
cause they are sensitive to the choice of stepsize — too small, and progress is hopelessly slow;
too large and the signal is overwhelmed by the noise, or one might see catastrophic drops in
performance. They also often have very poor sample efficiency, taking millions (or billions)
of timesteps to learn simple tasks [26].”

And what did they propose in order to overcome such limitations?

Walking the path with little steps

“Proximal policy optimization (PPO) strikes a balance between ease of implementation, sam-
ple complexity, and ease of tuning, trying to compute an update at each step that minimizes
the cost function while ensuring the deviation from the previous policy is relatively small
[26].”

So, the basic idea in PPO is that policy updates will be clipped. This way, we ensure
that after each policy update the new policy does not deviate too far from the old one. We
will be talking about a loss function L(θ) instead of a score function J(θ). Furthermore, the
optimization will not target the loss function itself but a surrogate clipped loss function.

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)]

Eq. 2.5: Surrogate clipped loss function

A key concept for understanding this equation is the probability ratio rt(θ) =
πθ(s,a)

πθold
(s,a)

which is a way of measuring how far the new policy is from the old one. In PPO we will
use an hyperparameter ϵ that will force the policy to stay within an interval for each policy
update. If the advantage Ât for a training step is positive, the policy parameters will never be
updated so that rt goes beyond 1 + ϵ. If the advantage Ât is negative, it will never fall below
1− ϵ.

2.1.4 Other algorithms

There are many other reinforcement learning algorithms that are relevant nowadays. Diving
into all of them is not possible within the scope of this project. Soft Actor Critic [27] aims
to maximize not only the rewards but also the entropy of the policy. Augmented Random
Search [28] is a random search method for training linear policies for continuous control

13

2.2. Standardization efforts and most used frameworks

problems. Deep Deterministic Policy Gradient [29] is an algorithm that learns both a Q
function and a policy. And the list goes on…

2.2 Standardization efforts and most used frameworks

Reinforcement learning is a very promising branch of artificial intelligence. It has shown
meaningful advances and many new techniques have arisen. This means that very different
people are working and investing time on it, which makes it harder to unify all the work. In
this section we will discuss several frameworks related to the topic and relevant within the
context of this project.

2.2.1 TensorFlow

TensorFlow3 is an open source library to help develop and train machine learning models. It
has a wide range of tools that lets researchers push the state-of-the-art in machine learning.

It is a strong tool for creating and evaluating advanced artificial neural networks, and has
many utilities that make it a core component in several artificial intelligence projects. It can
be used with Python, JavaScript, C++ and Java.

2.2.2 OpenAI Gym

Gym4 is a toolkit for developing and comparing reinforcement learning algorithms [30]. It
provides a standard interface for the basic reinforcement learning problem definition (see
Figure 1.1) as well as a list of implemented environments and some agent examples.

OpenAI is an artificial intelligence research laboratory in San Francisco, California. Their
stated aim is to promote and develop friendly AI in such a way as to benefit humanity as a
whole.

2.2.3 RLlib

RLlib5 [31] is an open source library for reinforcement learning. It offers a huge variety
of implemented algorithms and agent policies and high scalability (the different layers and
components of RLlib6 are depicted in Figure 2.6). Even though RLlib is framework agnostic
by design, it natively supports TensorFlow and PyTorch.

RLlib runs on top of Ray7, which is a framework for building and running distributed
applications in Python.

3 https://www.tensorflow.org
4 https://gym.openai.com
5 https://github.com/ray-project/ray#rllib-quick-start
6 https://docs.ray.io/en/latest/rllib.html
7 https://ray.io

14

https://www.tensorflow.org
https://gym.openai.com
https://github.com/ray-project/ray#rllib-quick-start
https://docs.ray.io/en/latest/rllib.html
https://ray.io

CHAPTER 2. STATE OF THE ART

Figure 2.6: RLlib components

2.2.4 Other frameworks

PyTorch

PyTorch8 is another open source machine learning framework. Same as TensorFlow, it views
any model as a directed acyclic graph. However, while TensorFlow graphs must be defined
statically before the model can run, the dataflow is way more imperative and dynamic in
PyTorch. “You can define, change and execute nodes as you go [32].”

Arcade Learning Environment (ALE)

Arcade Learning Environment9 (ALE) is a simple framework that allows researches to build
reinforcement learning agents for Atari 2600 games [33]. Measuring the performance of
agents playing Atari games has become a common way of comparing and discussing how
good a new algorithm is.

A recent article from Deepmind10 reveals their work on an agent named Agent57. It relies
on a meta controller that switches the type of algorithm to use, and is able to outperform
human benchmarks for all the 57 games of the Atari suite. This is a recent breakthrough that
has never happened before because agents that performed well on some games or in a wide
range of games, did not manage to outperform humans in all of them [34].

PyGame Learning Environment (PLE)

PyGame Learning Environment11 is another similar framework for testing and measuring
reinforcement learning agents that mimics ALE.

8 https://pytorch.org
9 https://github.com/mgbellemare/Arcade-Learning-Environment

10 https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark
11 https://pygame-learning-environment.readthedocs.io/en/latest

15

https://pytorch.org
https://github.com/mgbellemare/Arcade-Learning-Environment
https://deepmind.com/blog/article/Agent57-Outperforming-the-human-Atari-benchmark
https://pygame-learning-environment.readthedocs.io/en/latest

2.3. Rendering tools and integration with machine learning problems

2.3 Rendering tools and integrationwithmachine learning prob-
lems

2.3.1 Unreal Engine: Plugin for TensorFlow

Unreal Engine (UE) is a game engine that has become very popular in the last years.
Unreal Engine: Plugin for TensorFlow12 is a plugin that enables training and implement-

ing machine learning algorithms for UE projects. It acts as a wrapper for certain TensorFlow
operations and allows them to run inside UE projects without the need for having TensorFlow
models as a separate component.

2.3.2 Unity3D: Machine learning

Unity3D is another popular game engine nowadays.
UnityML-agents13 is a toolkit that enables developers and researchers to use Unity projects

as environments for machine learning experiments: intelligent agents can be trained and later
used for multiple purposes.

2.3.3 Godot

Godot14 is an open source game engine for 2D and 3D game development. It has an uprising
community and many evolving features that are actively managed and developed.

We have chosen Godot as our graphics engine for creating an application, Reinforcement

Learning Zombies, that provides a visual output of the project results, allows interaction and
enables us to reach a wider audience.

2.3.4 Blender

Blender15 is an open source 3D creation suite. It is driven by a huge community and serves
as a powerful tool for many projects.

It used to provide a game engine for creating real time scenarios and interaction, but
unluckily such component was removed from the project in 201816 due to obsolescence.

12 https://github.com/getnamo/tensorflow-ue4
13 https://unity3d.com/machine-learning
14 https://godotengine.org
15 https://www.blender.org
16 https://developer.blender.org/rB159806140fd33e6ddab951c0f6f180cfbf927d38

16

https://github.com/getnamo/tensorflow-ue4
https://unity3d.com/machine-learning
https://godotengine.org
https://www.blender.org
https://developer.blender.org/rB159806140fd33e6ddab951c0f6f180cfbf927d38

Chapter 3

Methodology, tools and roadmap

How?
That is a very important question.

For instance, one might wonder “What is that thing on the roof?”
“Why is there a horse on the roof?”
But, most importantly, the real question is “How did a horse reach the roof?”
The core value of engineering is to create, understand and communicate how things are

done. In the previous chapters of this project report we have been dealing with why, and in
the following chapters the focus will be on what.

Now, let us dive into how.

3.1 Methodology

Choosing and sticking to an adequate methodology is key in almost every project. There are
several software development methodologies that have been proven to work great, such as
agile methodologies [35], waterfall [36], or rapid application development [37]. And I wish
this project grows big enough so that one day the topic of “which methodology to use” is put
on the table for a team of developers to discuss about it.

But that has not happened yet. This is still an individual project and the fundamental part
of how it is being done relies on self organization, appropriate documentation and guidance
provided by the team of supervisors.

So, in this terms, the methodology for this project from the beginning to the present can
be explained in two separated parts:

1. Initial stage: During the first months of the project, the methodology for advancing
towards a more solid state and a more well defined approach was similar to an incre-
mental lifecycle. Basically, the main goal of this stage was to research about reinforce-
ment learning algorithms and “what” and “how much” could be fitted within the scope

17

3.2. Tools

of the project.

Idea

Research

ProposalImplementation

Outcome

Consolidated

achievement

Figure 3.1: General phases of iterations during initial stage of the project

The outputs of this phase iterations were discussed and effectively re-oriented to an
appropriate path via e-mail threads and catch up meetings without a fixed schedule. It
is to be understood that for each iteration, the real outcome might happen to be way
smaller than the real effort behind it.

2. Mature stage: We can consider that the project achieved a mature stage when the
Godot integration was put in place and the RLlib framework usage was proposed. The
methodology for this stage has been more similar to an agile approach. Fixed catch up
meetings were scheduled every fortnight, in which most recent problems and results
were discussed and goals for the following period were set up. That means a 2-week
sprint has been taking place since March, 2020.

Main goals were also split into three milestones in which GitLab issues are added to:

• Improve custom Gym capabilities

• Test different agents (RLlib) and reach conclusions

• Integrate the simulation with a rendering engine

3.2 Tools

This project heavily relies on other libraries and projects that make it possible to keep our
focus on the long run goals. These tools are:

• RLlib: This powerful library provides several implementations of different reinforce-
ment learning agents and allows us to focus on the environment design and imple-

18

CHAPTER 3. METHODOLOGY, TOOLS AND ROADMAP

mentation. Also, the benefit can be humbly considered mutual because we are testing
several of the RLlib agent implementations, comparing and discussing the results.

• Godot: This is ourmain resource to achieve graphical output. In the very first meetings,
the project proposal originally consisted on applying reinforcement learning techniques
as a 3D rendering mechanism. That idea evolved, but the rendering part prevailed as an
attractive goal to be incorporated somehow into the project. Godot has been proven to
be a very useful rendering engine and worth learning about. It is to be mentioned too
that we have put a nice effort into using GDScript, a custom script language developed
by the Godot community.

• LATEX: We are using LATEX for creating the project report. It has been generated depart-
ing from the project1 for unifying project reports of degree projects and master projects
in the Computer Science Faculty of University of A Coruña.

• GiLab: We use GitLab for holding the Git repository associated with the project and
present it to any future developer. Additionally, it is useful to keep tasks and milestones
organized.

• Python: One of the most powerful programming languages and with very high poten-
tial for machine learning implementations. We use it to implement our custom Gym
environment (see Chapter 4), run the code for agent training and also for simulations
rollout.

• Tensorboard: RLlib uses Tensorflow as a main component for several reinforcement
learning agent implementations. This allows us to use Tensorboard for obtaining graph-
ics about their performance and easily add custom metrics to be compared.

3.3 Roadmap

As formerly stated, the project can be divided into two main phases. The different types of
workload for each of these two phases can be clearly observed in the plot of Figure 3.2.

• FromAugust 2019 until March 2020, the research stage shows several spikes that belong
to the different research iterations.

• From March 2020 on, the solid and consistent workload can be appreciated. In this
phase, the main goal was to create the Reinforcement Learning Zombies application and
implement and run well defined experiments for the different agents.

1 https://git.fic.udc.es/laura.milagros.castro.souto/Modelo_TFG

19

https://git.fic.udc.es/laura.milagros.castro.souto/Modelo_TFG

3.3. Roadmap

Figure 3.2: Number of commits per day in Git repository

Almost every single one of the 200+ commits belonging to this project follows the guide-
lines specified in Section 4.1 and has an explanatory commit message that aims to stick to
commonly accepted Git best practices.

For future work and next stages of our roadmap, refer to Chapter 7.

20

Chapter 4

Environment design and
implementation

What is the problem that we are trying to solve?
That should be the first question to be asked before one starts working.

As specified in Chapter 1, the main goal of this project is to dive into different reinforce-
ment learning algorithms by creating a multiagent simulation and analyze the performance
and characteristics of different agents and trainingmethods. Reinforcement learning has been
proven to perform well in many different domains. However, we do not want to apply rein-
forcement learning algorithms to solve predefined problems, but to analyze and understand
the different reinforcement learning approaches in a hide and seek style environment. That
is the main motivation to create a custom environment — it can be easily tuned to obtain
insights about the performance of the agents.

In this chapter we will be describing the environment implemented and used in this
project to train the different RL agents and run all the experiments.

4.1 Some design principles

Before jumping to the different phases of the environment development it would be appropri-
ate to expose certain design principles that have been taken into account during the process:

• Everything should have amotivation. Before writing a single line of code or choos-
ing to use a certain framework instead of another, such change must be motivated
meaningfully enough. Life is nothing but a fight and the only way to defend ourselves
is with arguments. So in order to have arguments to defend one decision after it has
been taken, those arguments must be known beforehand.

• Best code is no code. If something can be solved with 10 lines of code instead of 50,

21

4.2. Environment development history

then that is probably a better solution. Every single line of code has the potential to
contain bugs, so the process of debugging and understanding the code is easier if the
code is simpler. Not only for the original author but also for other programmers. And
we should see software as a tool open for anyone willing to give it a glance.

• KISS Keep it simple, stupid! is another popular principle. Every time we add complexity
to any system, we are forcing ourselves to put effort in the future to degrain it again.
Simplicity is a virtue.

• Whenever facing a problem, check if it has already been solved. Reinventing the
wheel is a common mistake in software development. It is desired to study if someone
has already faced a similar problem and how it was solved, because that is the only way
to improve as a community. If a direct solution can not be found, then it is desired to
at least study the endeavour of others so that we do not end up taking the same wrong
steps.

4.2 Environment development history

The environment itself has been conceived as a git submodule inside the repository from the
beginning of the project. The OpenAI Gym standard1 has been used to define and implement
it so that it could be easily integrated with other tools or frameworks.

4.2.1 v0.0.1 (Initial version)

The motivation for this version of the environment was to get in touch with reinforcement
learning algorithms and OpenAI Gym. It was a simple 2Dmap where an agent aimed to reach
a fixed goal point.

In this environment the main idea was to create an agent capable of walking through the
most appropriate terrain in order to reach the goal as soon as possible. To be noted that the
reward is modeled as a function directly related to the distance to the goal, which makes it
easy for an agent to distinguish whether an immediate action is better or not. This was key
for the Q-learning agent implemented to work properly.

The code documentation seen in Figure 4.1 can be checked out in the submodule repos-
itory2 browsing the initial commits. It conforms to the OpenAI documentation style in the
CartPole example3.

The map layout was also configurable and depending on the setup the agent might either
converge to solving of the environment or early finishing an episode by jumping outside of

1 http://gym.openai.com
2 http://gitlab.com/ruben.montero/gym-survival-multiagent
3 http://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py

22

http://gym.openai.com
http://gitlab.com/ruben.montero/gym-survival-multiagent
http://github.com/openai/gym/blob/master/gym/envs/classic_control/cartpole.py

CHAPTER 4. ENVIRONMENT DESIGN AND IMPLEMENTATION

1 Description:
2 A citizen needs to move through a map to reach a goal point.

Map layout is configurable, but it has some roads and mountains
by default.

3

4 Observation:
5 Type: Box(2)
6 Num Observation Min Max
7 0 x position 0 1
8 1 y position 0 1
9

10 ^ y (+)
11 |
12 |
13 |
14 |-----> x (+)
15

16 Note: Expressed in fractions of 1 where 1 is the maximum value
of the canvas size.

17

18 Actions:
19 Type: Discrete(4)
20 Num Action
21 0 Move up
22 1 Move right
23 2 Move down
24 3 Move left
25

26 Note: The amount of space that the agent moves is not fixed. It
depends on the terrain used to move.

27

28 Mountain = 0.2 % of canvas (0.002)
29 Grass = 0.5 % of canvas (0.005)
30 Road = 2.0 % of canvas (0.020)
31

32 Reward:
33 Reward is a value [-1, 1], representing the difference between

the Eulerian distance to the goal before taking the step and the
Eulerian distance to the goal after taking the step.

34

35 [...]

Figure 4.1: Description for custom Gym environment v0.0.1

the canvas. Note that in reinforcement learning an episode consists on sucesive timesteps
ended whenever the environment signals done=true.

In Figure 4.2 the output of the rendermethod can be seen. The agent is represented by a
small red circle and the goal point by a dark green circle. The agent is able to find the optimal
path using roads by applying the Bellman equation (2.1) over a few thousand of episodes.

23

4.2. Environment development history

Figure 4.2: Graphical representation of the environment v0.0.1

4.2.2 v0.0.2 (Force-based movement)

After this simple problemwas successfully solved by a Q-learning agent, the following natural
step was to add a small complexity to the environment and check if the good results prevailed.

An intermediate 0.0.2 version was born with the main change of modifying the nature of
the agent actions. Instead of directly updating its position, the agent would apply a force on
itself and act following the Newton’s laws of motion. The main motivation was getting closer
to the OpenAI emergent tool use problem statement [12].

4.2.3 v0.0.3 (Movable bridge)

One of the main differences between 0.0.2 version and OpenAI emergent tool use project [12]
was:

• Interaction with objects in the environment.

Thus, in 0.0.3 version that was tackled. The main focus dwelled initially on allowing a
single agent to interact with an object to reach the goal point. For this, an abyss was added
in the middle of the map, as an horizontal bar that split the canvas into two halves. The agent
could not step on the abyss. Its only chance to cross it was to move an object shaped like a
rectangle that could be considered as a bridge. The goal point was located in the bottom half
of the map.

This introduced several problems because the agent would often learn to move the bridge
but it would get stuck in a middle point where it could not move forward and get to the other
side of the abyss. This happened because the bridge was being moved a fixed distance but the
agent applied a force on itself and reached a velocity higher than this amount per timestep.

To fix this, an attempt was carried out where the action space was changed from Dis-

crete(5) to Discrete(9), allowing the agent to choose to either move or push the bridge
while moving. This was finally proven to obfuscate the training of the agent in a meaningful
way.

24

CHAPTER 4. ENVIRONMENT DESIGN AND IMPLEMENTATION

Another problem faced during this stage was that the agent would normally move the
bridge outside of the canvas and never get to use it appropriately. This was fixed by not
allowing the bridge to exit the canvas, but it was proven that subtleties in the environment
can make the same agent find the solution or converge to a local maximum of the Q-values
where the environment solution is never reached.

4.2.4 v0.1 (Multiagent approach with team-based rewards)

As the experiments with the first versions of environment started growing, it was decided
to keep the focus on the multiagent part of the system. For this, the different terrains of the
environment were removed and the movable bridge idea was discarded. However, tackling
the multiagent implementation of the environment was not trivial because Gym standard is
limited to single agent environments and there are not extended conventions or standards
for handling multiagent simulations. The reason for this is that depending on the problem
statement the adequate implementation can vary.

Multiagent support is not trivial

For example, in a board game environment one agent would act right after another. This
means that changes in the environment performed by one agent directly affect the observation
retrieved by the following agent, and this will happen sequentially during the whole episode.
However, for other types of environments it might be desired to get all the actions at once
and process them concurrently, providing a single observation each agent afterwards. This
gets more complicated if we consider real time environments where actions and observations
are transferred through a data stream instead of discrete steps, but that goes out of the scope
of this project.

For our custom problem, we relied on the MultiAgentEnv interface definition in the RLlib
project. This handles the multiagent situation by receiving a dictionary holding all the actions
in the step function and returning a dictionary with the observations and rewards.

It was implemented in awrapper class in themain repository that would receive and return
dictionaries with the information, but hold inside an instance of the custom Gym implemen-
tation and call its step function sequentially passing an agent_index parameter.

Team-based rewards

The most interesting part of this version was that we implemented team-based rewards.

25

4.2. Environment development history

1 Citizens are given a reward of +1 if all citizens are hidden and -1
2 if any citizen is being caught by a zombie. Zombies are given the
3 opposite reward, -1 if all citizens are hidden and +1 otherwise.
4

5 During preparation phase, all agents are given 0 reward.

Figure 4.3: Rewards description for custom Gym environment v0.1

Where are the buildings in this town?

Another huge topic of discussion in this environment version was the obstacles introduced
in the map layout. In order to reproduce a hide and seek game and get a closer approach to
[12], there should be objects that allowed some agents (the citizens) to hide from others (the
zombies). Also, during this stage of the development the integration with the Godot engine
was started (see Chapter 6).

Additionally, the observation space was changed according to [12], providing agents full
awareness of the position of their team mates and awareness of the agents in the other team
only if the distance to them is smaller than a certain configuration parameter. Another detail
is that such awareness is occluded if an obstacle is in the line of sight, as seen in Figure 4.4.

Figure 4.4: Graphical representation of the environment v0.1

The environment was renamed from gym-town-evolution to gym-survival-multiagent

and the older implementation was kept in a separated folder.

4.2.5 v0.2 (Custom metrics and configurable parameters)

After several experiments testing the RLlib agent implementations it was clear that discerning
if agents really learn to hide and seek or to develop team strategies was not a trivial task.

26

CHAPTER 4. ENVIRONMENT DESIGN AND IMPLEMENTATION

With this in mind, a new version was implemented that returned custom metrics in the
info parameter returned by the step function, in order to have additional information to
measure the performance of the agents. This additional data consisted on:

• The distance between agents allows us to tell if agents get closer to each other and what
is the ratio for learning to get closer or escape from the enemy team.

• The tiles explored is a basic metric for understanding how much distance agents travel
from their original location and it is especially useful when compared to a random
baseline.

• The number of steps in a good hiding place are an elaborated metric intended for telling
us whether citizens learn to stay quiet in a place surrounded by walls where, as any
human would judge, it is subjectively more difficult for the zombies to find them.

4.2.6 v0.3 (Agent-centric observation space)

The results provided by the 0.2 version were not very promising. This was blamed on the
nature of the observation space. Since the first version, positions were passed to the agents
as absolute (x, y) coordinates. This just does not play well with multiagent environments
because the position (0.35, 0.8) might represent something totally different depending on
the positions and actions of the rest of agents. In Q-learning and deep Q-learning this easily
prevents agents from converging to a reasonable output.

Empirically we also found that agents normally got stuck against walls, as they did not
have any direct information about the non-walkable areas of the environment.

Once again, imitating the work in [12], it was decided to change the observation space to
relative distances from the point of view of the agent and add distance to walls as an attempt
to emulate the lidar sensor presented there.

It was hard for them to learn

We trained two zombies playing against two citizens. Four RLlib DQNTrainer objects were
instantiated. After every training iteration, the weights of each agent were copied onto the
rest of the networks in order to synchronise them.

This is simultaneous training as done in [12].
As we can see, compared to the performance of random agents, citizens performed very

similarly. Considering that there are 240 timesteps per episode and 96 correspond to a prepa-
ration phase in which all agents were given 0 reward, the maximum possible reward was
144.

27

4.2. Environment development history

Figure 4.5: Mean reward for DQN citizens in environment v0.3

Figure 4.6: Mean reward for DQN zombies in environment v0.3

The outcome was similar for zombies. After more than 2 million training timesteps, they
still performed like random agents.

Rolling out the training results revealed that in some specific cases interesting behaviours
were exhibited. However, agents did not really respond well to obstacles. Some videos can
be found in issues in the project repository4, but anyway the performance of the agents was
undeniable far away from the results we wanted to imitate from the OpenAI emergent tool
use article [12].

Why?
In an attempt to answer this question, we simplified the training. Firstly, we run the

training with just one agent per team in order to prevent the Q-networks from getting biased
by team-based rewards. Later on, in the 1v1 scenario we run the following experiments:

• No preparation phase: The initial 96 timesteps where zombies movement was re-
4 https://gitlab.com/ruben.montero/town-survival-rl-simulator

28

https://gitlab.com/ruben.montero/town-survival-rl-simulator

CHAPTER 4. ENVIRONMENT DESIGN AND IMPLEMENTATION

stricted were removed.

• Citizen position fixed: The citizen could not move.

• No preparation phase and citizen position fixed: Both conditions applied.

These scenarios were designed aiming to allow zombies to “win”. They have higher max-
imum speed by design, so it was desired that they ended up outplaying citizens.

Figure 4.7: Tiles explored in DQN 1v1 scenarios

As we can see in Figure 4.7, removing the preparation phase was a key factor that made
the zombie explore more as it learned. Although it was being granted 0 reward, the decisions
taken in that phase have empirically demonstrated to reduce convergence. Changes in favor
of dueling network architecture or prioritized replay (see Section 2.1.1) did not exhibit better
results.

Figure 4.8: Mean distance and zombie reward in DQN 1v1 scenarios

29

4.2. Environment development history

Also, as seen in the left plot of Figure 4.8, when there was no preparation phase, the mean
distance between the two competitors was higher than in a random environment. We could
interpret from it that the zombie learned to chase the citizen, but the citizen also learned to
avoid it. So, citizen “won”, what is also shown in the right plot. The zombie began with very
negative rewards, since it started getting −1 rewards earlier in the episode given the lack of
a preparation phase. However, it learned that chasing the citizen was good, so it did, and the
citizen learned to keep the distance around timestep 70k.

When the citizen position was fixed, the reward obtained by the zombie was almost iden-
tical to the random case, and the question still remains open on why the preparation phase
drastically prevents the zombie from getting positive rewards.

On top of that, we can say that when both conditions were implemented, the zombie

learned to effectively catch the citizen. Actually, the zombie just learned to pursue a fixed spot
inside the map, similarly to our successful agent described in Section 4.2.1. As commented in
Section 2.1.1, having a moving target is a big problem in deep reinforcement learning because
it makes training unstable. But this is unavoidable because of the black box nature of the
environment function. However, if the citizen position is fixed, it is, obviously, pretty easy for
the zombie to get some food.

4.2.7 v1.0 (Individual rewards and no preparation phase)

Under the light of the former results, our attempt to reproduce OpenAI emergent tool use was
paused in favor of a simpler approach and it was decided that:

• Preparation phase should be removed.

• Team-based rewards should be turned into single individual rewards.

• Instead of training all agents at once, zombies would be trained first, targeting fixed
citizens. Later on, citizens would learn by playing against already trained zombies.

This allows us to really compare different RLlib implementations of reinforcement learn-
ing algorithms, as shown in Chapter 5.

Another key point is that observation space was made fixed. Instead of depending on the
number of allies and enemies, in v1.0 it consists on a fixed Box(7) that returns appropriate
information about the closer enemy.

By today, the current version of the environment is 1.1.1, containing certain bugfixes and
minor changes. It is fair to provide the code documentation (Figures 4.9 and 4.10) for the most
recent version, as that fully reflects what is currently held in the repository and serves as a
nice summary of this chapter.

30

CHAPTER 4. ENVIRONMENT DESIGN AND IMPLEMENTATION

1 Description:
2 N citizens escape from M zombies in a town.
3 Each agent is represented as a pair (x,y) coordinates in a 2D map.
4

5 Source:
6 Inspired in the OpenAI hide 'n' seek gym, that showed interesting
7 agent behaviours about emerging tool use in multiagent
8 environments: https://openai.com/blog/emergent-tool-use
9 Here we don't implement team based rewards nor tool usage, though.

10

11 Observation:
12 Type: Box(7)
13 Num Observation Min Max
14 0 top distance to closer wall 0 1
15 1 right distance to closer wall 0 1
16 2 bottom distance to closer wall 0 1
17 3 left distance to closer wall 0 1
18 4 agent speed 0 1
19 5 x distance to closer enemy team member -1 1
20 6 y distance to closer enemy team member -1 1
21

22 (I) x,y coordinates are interpretated left-right and top-bottom.
23

24 ___ x (+)
25 |
26 |
27 y (+)
28

29 (II) agent speed (4) is relative to maximum speed.
30 This is, mapped from [0, max_speed] to [0, 1].
31

32 (III) Distances are calculated from the agent's perspective.
33 Also, (5) and (6) are negative if target entity is to the
34 left|top, and positive if it's right|bottom.
35

36 (IV) If distance to closer enemy is > AWARENESS_RADIUS
37 then observations (5) and (6) will be 1.
38

39 Actions:
40 Type: Discrete(5)
41

42 Num Action
43 0 No-op
44 1 Move up
45 2 Move right
46 3 Move down
47 4 Move left

Figure 4.9: Description for custom Gym environment v1.1.1 (1 of 2)

31

4.2. Environment development history

1 Reward:
2 - Each citizen receives +1 reward while not being caught (*) by a
3 zombie and -1 otherwise.
4

5 - Each zombie receives +1 reward while "catching" (*) a citizen.
6 Otherwise, it receives (**):
7 > [0, +0.75] reward depending on the distance to closer enemy
8 team member. If very far away (> canvas width) it will be 0.
9 > Additionally, a factor of [-0.25, 0.25] is summed, calculated

10 from the agent's velocity. If zombie isn't moving, it gets
11 -0.25 and if it moves at maximum velocity, +0.25.
12

13 - During preparation phase, all agents are given 0 reward.
14

15 (*) To consider that a citizen is being caught:
16 - Distance between hider and seeker < CATCH_DISTANCE.
17 - Line of sight isn't obscured by non-walkable areas between them.
18

19 (**) These intrinsicly motivates zombie to explore and move
20 towards citizen, improving convergence.
21

22 Starting State:
23 Random positions for all agents, inside the walkable area.
24 If PREP_PHASE_STEPS > 0, during preparation phase zombies can't
25 move to give citizens a chance to hide.
26

27 Episode Termination:
28 Fixed episode duration of EPISODE_STEPS steps.
29

30 Configuration:
31 The following parameters can be passed during environment
32 initialization. See @init method.
33

34 Parameter Default
35 EPISODE_STEPS 240 Fixed episode length.
36 PREP_PHASE_STEPS 0 Zombies can't move and reward is +0
37 ACCELERATION 0.001 How rapid agents reach their maximum
38 speed. We use explicit integration.
39 CATCH_DISTANCE 0.1 Default: 10% canvas width.
40 AWARENESS_RADIUS 1 If small, observations (5) and (6)

will
41 be 1 until agents are that close.
42 CITIZEN_MAX_SPEED 0.005 Fraction of canvas width / timestep.
43 ZOMBIE_MAX_SPEED 0.01 Fraction of canvas width / timestep.
44 N_CITIZENS 2 Number of citizens.
45 N_ZOMBIES 2 Number of zombies.

Figure 4.10: Description for custom Gym environment v1.1.1 (2 of 2)

32

Chapter 5

Training results

Several trials have been run in order to obtain the best training result. But, how do we
determine which is best?
In this chapter, we will be showing relevant metrics and comparing the performance of

different state-of-the-art reinforcement learning algorithms implemented in the RLlib frame-
work. Note that we will be focusing on the training of a zombie agent, because that is a single
task that will serve as a milestone for the comparisons.

For further information on the environment itself or related design decisions, refer to
Chapter 4.

5.1 DQN

We have chosen to train DQN zombies because deep Q-learning is the most notorious rein-
forcement learning algorithm nowadays. It is the basis for many other methods and, also,
several techniques have been designed around it.

In deep Q-learning the gamma (γ) value, or discount factor, plays a special role. It con-
figures the exploration vs exploitation tradeoff. The closer γ is to 1, the more relevance do
future rewards have. When making it closer to 0, only immediate actions are relevant during
the training process.

In Figure 5.1 we can see the reward obtained by a DQN zombie training against a citizen

that does not move, and thus, does not make the training unstable.
First of all, let us focus on how quickly the agent improves from a mean reward around 60

per episode, same as a random agent would perform, to a greater mean reward. The training
is stable during the first 200 thousand timesteps, approximately. However, regardless of the
γ value, the agent never converges to a mean reward per episode greater than 150.

In the right plot of Figure 5.1 we can see the mean Q-value. This is not especially mean-
ingful because as one would expect, having a greater discount factor makes the mean Q grow

33

5.2. PG

Figure 5.1: Mean reward and mean Q for various gamma values in DQN

accordingly. However, it demonstrates that having a larger discount factor increases the vari-
ability of the Q-values during the training.

Although there is no clear winner on “which γ value is better”, Figure 5.2 shows that
dueling network architecture improves the training performance. The right graphic shows
that prioritized replay does not bring any improved result. Both trials share the same discount
factor, γ = 0.95.

Figure 5.2: Mean reward for training using prioritized replay or dueling network in DQN

5.2 PG

Policy gradient reinforcement learning algorithms are the base of the current state-of-the-art.
We have run a grid search over a set of different hyperparameters. We have used dif-

ferent learning rates and batch sizes. Note that there are many other hyperparameter search

34

CHAPTER 5. TRAINING RESULTS

techniques and some of them are already implemented and provided in Tune [38], a project
that belongs to the same repository as RLlib. However, we want to have complete trials for
different hyperparameters values in order to discuss about them.

Figure 5.3: Mean reward for various learning rates in PG

In Figure 5.3 we display training results for different learning rates. For values of 0.0001
and 0.0005 the results improve slowly but in a stable way, whereas 0.001 appears to learn
more unstably.

Figure 5.4: Mean reward for various batch sizes in PG

In Figure 5.4 we display training results for different batch sizes.
Batch size affects training meaningfully. A bigger batch size means a bigger “chunk” of

data to be fed into the neural network and processed. Therefore, more timesteps are needed in
order to perform the same amount of training interations as batch size grows, but the training
is less noisy and is more likely to slowly converge to a maximum.

We can see that having a bigger batch size makes the progress slower but more stable.

35

5.3. PPO

5.3 PPO

PPO is one of the most important reinforcement learning algorithms in the current state-of-
the-art. It was used for training the agents in the OpenAI emergent tool use problem [12]

We have run a grid search over a set of different hyperparameters. We have used different
learning rates, clip params and batch sizes.

Figure 5.5: Mean reward and entropy for various learning rates in PPO

In Figure 5.5 we display training results for the same clip parameter value 0.1 and batch

size 8000 while learning rate changes. It can be seen that a smaller learning rate benefits the
training. In the right plot the entropy at different stages of the training is shown. We could
say that this parameter measures how “chaotic” is the agent behaviour.

Figure 5.6: Mean reward and entropy for various clip parameter values in PPO

In Figure 5.6 we display training results for the same learning rate 0.0001 and batch size

8000 while the clip param changes. This is a very relevant parameter specific to PPO, as

36

CHAPTER 5. TRAINING RESULTS

smaller values ensure that new policy values do not deviate too much from previous ones,
and thus, the training is limited. As we can see, a smaller value makes the training more
stable.

Figure 5.7: Mean reward and entropy for various batch sizes PPO

In Figure 5.7 we display training results for the same learning rate 0.0001 and clip param-

eter value 0.1 while batch size changes.
We can see that a training batch size of 16000 timesteps provides the best result for our

PPO zombie.

Figure 5.8: Mean reward and KL-divergence for all trials in PPO

As we have seen, PPO agents reach higher reward values than DQN agents, although the
training can be very different depending on hyperparameters. In Figure 5.8 we display the
untagged graphics for all the aforementioned grid search trials.

The KL-divergence graphic shown at the right is especially useful, as it shows how much
a policy strives away from its previous values. It can be seen how the clip parameter affects
the evolution of some trials, and how the trials run with bigger batch sizes are more stable.

37

5.4. Comparisons

5.4 Comparisons

• In general, we have seen that DQN is a powerful method, but also very unstable. It’s
more difficult to perceive the learning progress of the agent. However, the dueling
network architecture effectively improves the quality of the algorithm. It still does
not enable it to go up beyond the third position in our ranking in terms of “maximum
reward per episode stably achieved by chaser agent”, which means, how good did our
zombie become.

• PG algorithm implementation of RLlib performs exceptionally good in our custom en-
vironment. The learning curve grows in a stable way. However, it takes longer to train
and has not reached the same reward than the next algorithm.

• PPO has proven to achieve better training results in less iterations. It gets the better
results for the zombie and demonstrates that clipping policy updates makes the policy
evolve step by step.

5.4.1 And what about the citizens?

Although the evaluation of the algorithms as a zombie in our environment was successful, we
were intrigued also by how a citizen, training against a zombie trained using the same policy,
would perform.

Figure 5.9: Citizen rewards for DQN, PG and PPO agents

That is why we trained DQN, PG and PPO algorithms competing against their same type

38

CHAPTER 5. TRAINING RESULTS

of algorithm, using the same hyperparameters as the ones that had achieved better reward as
a zombie1.

As we can see, the citizen training for DQN is very unstable, although it seems to converge
at the end. The PG performs a bit unstable too due to the learning rate chosen, and PPO
provides the more stable results. Also, to be noted, it seems that the citizen that struggled the
most during the zombie training phase was the PPO one, although PG algorithm with smaller
learning rates obtained similar results. In spite of that, these graphics represent that DQN and
PG are more vulnerable to training hyperparameters, while PPO is more robust. In any case,
the three of them get higher rewards and are capable of learning to avoid their competitor
and survive.

1 DQN: gamma = 0.9, dueling = true, replay = false. PG: batch size = 8000, learning rate = 0.001.
PPO: batch size = 16000, clip param = 0.1, learning rate = 0.0001.

39

5.4. Comparisons

40

Chapter 6

UX design and integration with
rendering engine

“The best big idea is only going to be as good as its implementation.”
— Jay Samit1

This project was originally conceived as a research project with a single goal, which was
to investigate and compare different reinforcement learning techniques. However, this goal
was soon perceived as an opportunity to implement an application to present the results and
reach a wider audience. Additionally, during the development process of this application a
protocol has been designed and implemented in order to communicate the UI frontend and
the simulation server backend. Such protocol is extensible and is intended to work on top of
any Gym environment, supporting multiple instances per server and multiagent integration.
This makes it exceptionally easy to test the performance of any reinforcement learning agent
over a local or remote network and also allows human interaction with the environment and
other agents, as discussed in Section 6.3.

The application Reinforcement Learning Zombies, developed as part of this project, can be
obtained for desktop environments in Windows2, Linux3 and macOS4.

Issues, suggestions and contributions are always welcome in the project repository5.

6.1 Client application

As discussed in Section 2.3.3, Godot has been the rendering engine chosen to create the graph-
ical client in this project. Such development is divided into two main phases. The first one

1 Source: Post from Jul 31, 2016 (https://twitter.com/jaysamit/status/759774654626164736)
2 https://gitlab.com/ruben.montero/rlz-godot/-/tree/master/windows
3 https://gitlab.com/ruben.montero/rlz-godot/-/tree/master/linux
4 https://gitlab.com/ruben.montero/rlz-godot/-/tree/master/macos
5 https://gitlab.com/ruben.montero/town-survival-rl-simulator

41

https://twitter.com/jaysamit/status/759774654626164736
https://gitlab.com/ruben.montero/rlz-godot/-/tree/master/windows
https://gitlab.com/ruben.montero/rlz-godot/-/tree/master/linux
https://gitlab.com/ruben.montero/rlz-godot/-/tree/master/macos
https://gitlab.com/ruben.montero/town-survival-rl-simulator

6.1. Client application

consists on rendering the reinforcement learning rollouts as they are — various agents con-
sidered to be zombies and citizens simulating a survival environment. The second one relates
to the user interface for the application menus and everything else presented in it.

6.1.1 Development of a 2D map in Godot

Software development should be understood as something evolutive and core features should
be prioritized. The first step towards our goal was to implement the representation of our
reinforcement learning rollouts.

Due to this, the art style for the simulation was the first topic of discussion.
Initially, it was desired to implement a 3D world and have the agents modeled as meshes

inside it. However, out custom Gym environment never really evolved from a 2D conception
of the map layout, so a 3D render soon started to sound overkill.

After discovering the potential of a 2D simulation based on a tilemap, all efforts were
headed into that direction. Using Godot tilemaps allows us to “draw the layout by ’painting’
the tiles onto a grid [39].” Also, the art type was defined and asset packs that matched it were
searched for. Finally, it was decided to use a pair of asset packs licensed as Creative Commons
which have been properly credited inside the application.

Figure 6.1: Work in progress of some adaptations to sprites in the asset packs used

As seen in Figure 6.1, some extra work was done in order to obtain a better looking final
result.

The heavy lifting of the development of a 2D map was carried out once the fundamentals
about this method were properly learned. We have to thank the official Godot documentation,
examples and community for making this process simpler and faster. It took no more than a
couple of weeks to complete an initial version of the graphical map.

Some interesting facts that can be spotted are:

42

CHAPTER 6. UX DESIGN AND INTEGRATION WITH RENDERING ENGINE

Figure 6.2: Work in progress of our 2D map in Godot (1 of 2)

Figure 6.3: Work in progress of our 2D map in Godot (2 of 2)

• The 2D map consists on several grids ordered in different layers. Some of them are
assigned a z-index higher than the agents sprites, and some others a lower one. That
depends on whether it is desired that agents are rendered above the layer (e.g.: the front
part of a building) or below it (e.g.: a roof).

• Map is fully surrounded by non walkable areas because we do not want the agents to
walk away from the simulation zone.

• The good hiding places as described in Section 4.2.5 are the small corridor on the left,
above the red and green cars; the nook in the top-right corner, to the right of the gray
and green cars; and the areas surrounded by trees in the middle of the map.

The final result of the process is shown in Figure 6.4.
Needlessly to be said, the buildings and other obstacles that can be found in the map

correspond to non walkable areas in the custom Gym environment.

43

6.1. Client application

Figure 6.4: Final result of the 2D map creation process

Figure 6.5: Our 2D map with non walkable areas highlighted as X tiles

The definition of the map layout as described in Section 4.2.4 was done after the tilemap
was setup. In Figure 6.5 the tiles considered to be obstacles are coloured in an upper layer.
These can be compared with the custom Gym environment layout, which was formerly pre-
sented in Figure 4.4.

44

CHAPTER 6. UX DESIGN AND INTEGRATION WITH RENDERING ENGINE

Because of how areas in Figure 6.5 are marked, they can be easily translated to a raw
text file that is then read and interpreted by our custom Gym environment implementation.
Thanks to this method of integration, any change in the map layout of the rendering client
can be easily translated to the reinforcement learning environment logic, and vice versa.

6.1.2 User interface

The current Reinforcement Learning Zombies application design can be considered the evolu-
tion from a beta stage.

In Figure 6.6, a couple of screenshots displaying the lobby and the main screen are shown.
There is also a startup wizard and a screen for displaying training results. Note that we have
chosen to stick to this “minimalist” design because it matches with the selected art style.

Figure 6.6: Screenshots of Reinforcement Learning Zombies desktop application

6.2 Server application

A simple server application has been implemented to host the simulations.
Figure 6.7 depicts the overall structure of the project’s repository folder python3. This

directory contains the custom Gym environment as seen in Chapter 4, and a couple of Com-
mand Line Interfaces (CLI).

These can be used to launch server lobbies or to train agents (zombies or citizens) to be
used later.

45

6.2. Server application

Libraries

interactive

training

util

gym_survival_multiagent

town_zombies_interactive_env.py

zombies_lobby_manager.py

zombies_lobby.py

zombies_simulation_manager.py

zombies_simulation.py

no_move_policy.py

pg_tf.py

dqn_tf.py

town_callbacks.py

ppo_tf.py

checkpoint_adapter.py

town_zombies_multiagent_wrapper_env.py

lobby_creator.py

train.py

python3

Gym module

Command Line Interface (CLI)

Figure 6.7: Overall structure of server code

1 usage : l o b b y _ c r e a t o r . py [−h] −−l obby CHECKPOINT_PATH , N_CITIZENS , N_ZOMBIES
2 −−po r t PORT
3
4 Launch l o b b i e s f o r ’ Re in fo r cemen t Lea rn ing Zombies ’ c l i e n t apps to r e g i s t e r
5 and p a r t i c i p a t e in mu l t i a g en t s imu l a t i o n s . I f you want to run t h i s on a
6 remote machine and l e a v e i t up a f t e r SSH logout , you might c on s i d e r us ing
7 ’ nohup your_command_scr ipt . sh & ’ , a s t h i s program runs in a never−ending
8 l oop (a l t e r n a t i v e l y , i t cou ld be launched i n t o a t e rm i n a l mu l t i p l e x e r ,
9 such as s c r e en or tmux) .

Figure 6.8: Help output for lobby_creator.py CLI

46

CHAPTER 6. UX DESIGN AND INTEGRATION WITH RENDERING ENGINE

1 usage : t r a i n . py [−h] −−mode MODE −−p o l i c y POLICY [−−gr id−s e a r ch]
2 [−− i t e r a t i o n s ITERATIONS] [−−checkpo in t−d i r CHECKPOINT_DIR]
3 [−−zombie−che ckpo in t ZOMBIE_CHECKPOINT]
4 [−− a c c e l e r a t i o n ACCELERATION]
5 [−−awareness−r a d i u s AWARENESS_RADIUS]
6 [−−ca tch−d i s t a n c e CATCH_DISTANCE]
7 [−− c i t i z e n−max−speed CITIZEN_MAX_SPEED]
8 [−−ep i sode−s t e p s EPISODE_STEPS]
9 [−−prep−phase−s t e p s PREP_PHASE_STEPS]

10 [−−zombie−max−speed ZOMBIE_MAX_SPEED] [−−due l i n g]
11 [−−gamma GAMMA] [−−p r i o r i t i z e d −r e p l a y]
12 [−−batch−s i z e BATCH_SIZE] [−− l e a r n i ng−r a t e LEARNING_RATE]
13 [−−c l i p−param CLIP_PARAM] [−−t au TAU] [−−ac to r−l r ACTOR_LR]
14 [−− c r i t i c −l r CRITIC_LR]
15
16 Tra in an agent in o rde r to be used in the hide ’ n ’ seek s t y l e gym environment .
17 I n t ended usage c o n s i s t s on f i r s t t r a i n i n g a zombie and o b t a i n i n g ch e ckpo i n t s
18 t o be used f o r t r a i n i n g a c i t i z e n a f t e rwa r d s . T r a i n i ng r e s u l t s can be viewed
19 i n Tensorboard i f i n s t a l l e d .

Figure 6.9: Help output for train.py CLI

6.3 Communication protocol

In order to communicate our custom Gym environment step function with Godot, it was
needed to connect the two ends somehow. A few ideas were weighted:

• Usage of Linux pipes for unidirectional interprocess communication [40].

• Usage of shared memory for interprocess communication via system calls like ftok(),
shmget(), shmat, shmdt(), shmctl().

• Usage of commonly written/read files managed through a filesystem.

The winning idea was to elaborate a custom simple protocol using UDP messages to both
obtain the information from the simulation server and send back the actions chosen by the
client.

This has some fundamental advantages. It allows us to totally separate the rendering
client from the environment logic so that those parts can be run in different machines. It
is also platform independent, which makes it possible for any device running any operative
system to act as a client for the Gym environment as long as it supports UDP/IP protocol. This
is also a especially useful within the scope of our project because it is focused on multiagent
environments.

A protocol baptised as PERLERT has been created for this purpose. It has been written
conforming to RFC Style Guide [41], via “xml2rfc” version 2 vocabulary [42], which consists
on a format definition for XML source that can be translated6 into properly formatted ASCII

6 http://xml2rfc.tools.ietf.org

47

http://xml2rfc.tools.ietf.org

6.3. Communication protocol

RFC.
For further information on this protocol, refer to Appendix A.

48

Chapter 7

Outcome and future work

What is learning?
That was the first question to be asked in this project report. Now, the truth is that we

have reviewed a few algorithms that computers can use to learn:

• DeepQ-Learning: This algorithm approximates a value function through an ANN, but
is very susceptible to variabilities in the environment which usually lead to unstable
training. It was successfully used in the world of videogames because that provides
the ideal conditions for evaluating limited and predictable problems, but still, I do not
think it is suitable for real life problems. This works well for simpler problems where
adaptation is not crucial.

• Policy Gradients: Because this algorithms attempts to approximate the agent policy

as a whole instead of playing a greedy policy over a value function, it is more powerful.
However, a fine tuning of hyperparameters is very important in this algorithm because
they affect the training process meaningfully.

• Proximal Policy Optimization: This is an algorithm belonging to the Policy Gradient
family. However, it uses a clipped loss function that prevents the policy from deviating
too much from its previous values. This makes the training more stable, helps finding
appropriate hyperparameters and makes the algorithm more adaptive.

We have created a custom Gym environment in which we have tested these algorithms.
OpenAI and RLlib projects were leveraged to build and evolve our environment.

We have also developed server and client applications for running and evaluating multi-
agent reinforcement learning environments, using Godot as rendering engine. A communi-
cation protocol between the Gym and Godot was implemented and formalised as PERLERT,
a Protocol for Evaluating Reinforcement Learning Environments in Real Time.

Finally, some utilities to train and test agents using different hyperparameters have been
added, and we have also opened up the challenge to train an agent that performs better than

49

7.1. What now?

the PPO implementation from RLlib. The project is actively maintained and could be the
cradle for future research in the field of reinforcement learning.

7.1 What now?

In the future stages of this project, we consider:

• Adding support for testing new algorithms and perform a research on their suitability
for our custom environment.

• Keeping active research in reinforcement learning. Is the policy gradient a gradient? is
a paper [43] that questions the mathematical basis of the policy gradient theorem in
relation to the discount factor. In special, it complains about a “widespread misunder-
standing regarding discounted policy gradient methods”. It is very relevant to properly
understand the theorethical basis of whatever is put in practice.

• Regaining focus on the multiagent part of the simulation. For that, instead of consid-
ering our problem a Markov Decision Process (MDP) where any state can be the result
of a previous state and an action (see Figure 1.1), we will discuss about interpreting the
state as a tuple. First, what is perceived by the agent. Second, a hidden state whose di-
mension is unknown. For instance, if our zombie perceives (a, b, c, d) distance to walls,
and (x, y) distance to the citizen (who is moving right), then such state is not equiva-
lent to a similar (a, b, c, d, x, y) where citizen is moving left. Is there any possible way
to train policies that take into account the existence of hidden information during the
learning process?

50

Appendices

51

Appendix A

Protocol for Evaluating
Reinforcement Learning

Environments in Real Time
(PERLERT)

53

1

2

3

4 I n t e r n e t Eng inee r i ng Task Force R . Montero
5 I n t e r n e t−Dra f t Un i v e r s i t y o f A Coruna
6 I n t ended s t a t u s : I n f o rma t i o n a l May 30 , 2020
7 Exp i r e s : December 1 , 2020
8

9

10 P r o t o c o l f o r Ev a l u a t i n g Re in fo r cemen t Lea rn ing Environments in Rea l Time
11 p e r l e r t −01
12

13 Ab s t r a c t
14

15 This document d e f i n e s a s imp l e UDP p r o t o c o l f o r communicat ing a
16 s e r v e r s imu l a t i n g a r e i n f o r c emen t l e a r n i n g environment and a c l i e n t
17 ob s e r v i ng i t and re spond ing with a c t i o n s .
18

19 Re in fo r cemen t l e a r n i n g prob lems a r e u s u a l l y d e f i n e d wi th in the scope
20 o f a Markov De c i s s i o n P ro c e s s (MDP) where an agent sends an a c t i o n
21 be l ong ing to an a c t i o n space to an environment . The environment a c t s
22 as a b l a c k box r e t u r n i n g an o b s e r v a t i o n and a reward f o r the agent ,
23 whose goa l i s t o maximize the t o t a l o b t a i n ed rewards .
24

25 Although the problem s t a t emen t i s easy to unders tand , t h e r e a r e no
26 conven t i on s on how to communicate a r e i n f o r c emen t l e a r n i n g s imu l a t i o n
27 with a c l i e n t agent , e i t h e r in a l o c a l network or over the I n t e r n e t .
28 Add i t i o n a l l y , g i v i n g an answer to t h i s can be e s p e c i a l l y u s e f u l when
29 i t comes to mu l t i a g en t suppor t and a n a l y s i s .
30

31 The p r o t o c o l PERLERT de f i n e d in t h i s document assumes t h a t s e r v e r and
32 c l i e n t have sha red c e r t a i n i n f o rma t i on be fo rehand v i a ano the r way o f
33 communicat ion l i k e a web page s e rved us ing HTTP p r o t o c o l . For
34 example , the c l i e n t must know a po r t number and an i n s t a n c e number
35 b e f o r e p roceed ing to p a r t i c i p a t e in a s imu l a t i o n run on a s e r v e r .
36

37 Also , a l though i t i s o f t e n d e s i r e d to know the f u l l f e edback from the
38 environment , PERLERT f o c u s e s on r e a l−t ime i n t e r a c t i o n where human
39 agen t s can i n t e r a c t with AI agen t s even i f t h a t means t h a t
40 i n f o rma t i on can be l o s t due to network packe t l o s s .
41

42 S t a t u s o f Th i s Memo
43

44 This I n t e r n e t−Dra f t i s submi t t ed in f u l l conformance with the
45 p r o v i s i o n s o f BCP 78 and BCP 7 9 .
46

47 I n t e r n e t−Dr a f t s a r e working documents o f the I n t e r n e t Eng inee r i ng
48 Task Force (IETF) . Note t h a t o th e r groups may a l s o d i s t r i b u t e
49 working documents as I n t e r n e t−Dr a f t s . The l i s t o f c u r r e n t I n t e r n e t−
50 Dr a f t s i s a t h t t p s : / / d a t a t r a c k e r . i e t f . org / d r a f t s / c u r r e n t / .

54

APPENDIX A. PROTOCOL FOR EVALUATING REINFORCEMENT LEARNING ENVIRONMENTS
IN REAL TIME (PERLERT)

1 Montero Exp i r e s December 1 , 2020 [Page 1]
2

3 I n t e r n e t−Dra f t PERLERT May 2020
4

5

6 I n t e r n e t−Dr a f t s a r e d r a f t documents v a l i d f o r a maximum of s i x months
7 and may be updated , r ep l a c ed , or o b s o l e t e d by o the r documents a t any
8 t ime . I t i s i n a p p r o p r i a t e to use I n t e r n e t−Dr a f t s as r e f e r e n c e
9 ma t e r i a l or to c i t e them o the r than as ”work in p r og r e s s . ”

10

11 This I n t e r n e t−Dra f t w i l l e x p i r e on December 1 , 2 0 2 0 .
12

13 Copyr igh t No t i c e
14

15 Copyr igh t (c) 2020 IETF Trus t and the pe r sons i d e n t i f i e d as the
16 document au tho r s . A l l r i g h t s r e s e r v e d .
17

18 This document i s s u b j e c t to BCP 78 and the IETF Trust ’ s L ega l
19 P r o v i s i o n s R e l a t i n g to IETF Documents
20 (h t t p s : / / t r u s t e e . i e t f . org / l i c e n s e−i n f o) i n e f f e c t on the da t e o f
21 p u b l i c a t i o n o f t h i s document . P l e a s e rev iew th e s e documents
22 c a r e f u l l y , a s they d e s c r i b e your r i g h t s and r e s t r i c t i o n s with r e s p e c t
23 t o t h i s document . Code Components e x t r a c t e d from t h i s document must
24 i n c l u d e S im p l i f i e d BSD L i c en s e t e x t as d e s c r i b e d in S e c t i o n 4 . e o f
25 the Tru s t Lega l P r o v i s i o n s and a r e p rov ided wi thout warranty as
26 d e s c r i b e d in the S im p l i f i e d BSD L i c en s e .
27

28 Tab le o f Conten t s
29

30 1 . I n t r o d u c t i o n . 2
31 1 . 1 . Requ i rements Language 3
32 2 . Communication Phases . 3
33 3 . Messages S p e c i f i c a t i o n 3
34 3 . 1 . Terms . 3
35 3 . 2 . C l i e n t Message Types 5
36 3 . 3 . S e r v e r Message Types 6
37 4 . UDP/ IP Po r t s . 7
38 5 . Example Case . 8
39 6 . Add i t i o n a l Con s i d e r a t i o n s 8
40 7 . IANA Con s i d e r a t i o n s . 9
41 8 . S e c u r i t y Con s i d e r a t i o n s 9
42 9 . Normat ive R e f e r en c e s . 9
43 Author ’ s Address . 10
44

45 1 . I n t r o d u c t i o n
46

47 This document s p e c i f i e s PERLERT (P r o t o c o l f o r Ev a l u a t i o n o f
48 Re in fo r cemen t Lea rn ing Environments in Rea l Time) .
49

50 I t i s i n t ended to be used in the c on t e x t o f r e i n f o r c emen t l e a r n i n g
51 prob lems a n a l y s i s . In r e i n f o r c emen t l e a r n i n g prob lems an agent sends
52 an a c t i o n to an environment . The environment a c t s as a b l a c k box

55

1 Montero Exp i r e s December 1 , 2020 [Page 2]
2

3 I n t e r n e t−Dra f t PERLERT May 2020
4

5

6 r e t u r n i n g an o b s e r v a t i o n and a reward f o r the agent , whose goa l i s t o
7 maximize the t o t a l o b t a i n ed rewards .
8

9 The main purpose o f PERLERT i s to make i t e a s i e r to t e s t and
10 i n t e g r a t e d i f f e r e n t l y implemented agen t s and run s imu l a t i o n s e r v e r s
11 s e p a r a t e d l y from tho se agen t s .
12

13 1 . 1 . Requ i rements Language
14

15 The key words ”MUST” , ”MUST NOT” , ”REQUIRED” , ”SHALL” , ”SHALL NOT” ,
16 ”SHOULD” , ”SHOULD NOT” , ”RECOMMENDED” , ”MAY” , and ”OPTIONAL” in t h i s
17 document a r e to be i n t e r p r e t e d as d e s c r i b e d in RFC 2119 [RFC2119] .
18

19 2 . Communication Phases
20

21 There a r e two main s e p a r a t e d phases in which c l i e n t and s e r v e r s h a l l
22 exchange PERLERT messages .
23

24 l obby
25 This phase i s o r i e n t e d to l e t agen t c l i e n t s r e g i s t e r t h emse l v e s
26 wi th in the a v a i l a b l e s l o t s in formed by the s e r v e r . I t i s
27 e s p e c i a l l y u s e f u l when i t comes to env i ronments with mu l t i a g en t
28 suppor t .
29

30 r o l l o u t
31 This i s the main phase . The term ” r o l l o u t ” here a c t s as a
32 synonym of ” s imu l a t i o n ” . In t h i s s e c t i o n the loop :
33

34 (a c t i o n) −> (ob s e r v a t i on , reward)
35

36 . . . t a k e s p l a c e u n t i l c l i e n t s a r e n o t i f i e d by the s e r v e r t h a t the
37 s imu l a t i o n has f i n i s h e d .
38

39 3 . Messages S p e c i f i c a t i o n
40

41 Messages d e f i n e d in the f o l l ow i n g s e c t i o n s MUST be implemented as
42 UDP/ IP datagrams [RFC768] .
43

44 Also , a l l messages SHOULD use the same t e x t encod ing . I t i s
45 RECOMMENDED th a t both s e r v e r and c l i e n t encode messages us ing UTF8
46 [RFC3629] .
47

48 3 . 1 . Terms
49

50 In o rde r o f appearance :
51

52 SERVER_INSTANCE_NAME Tag used to d i s t i n g u i s h d i f f e r e n t env i ronments
53 be ing he ld by one same se rve r , e . g . : ” c a r t p o l e ” .

56

APPENDIX A. PROTOCOL FOR EVALUATING REINFORCEMENT LEARNING ENVIRONMENTS
IN REAL TIME (PERLERT)

1 Montero Exp i r e s December 1 , 2020 [Page 3]
2

3 I n t e r n e t−Dra f t PERLERT May 2020
4

5

6 SERVER_INSTANCE_NUMBER P o s i t i v e i n t e g e r used to d i s t i n g u i s h
7 d i f f e r e n t i n s t a n c e s o f the same environment be ing he ld by one
8 same se rve r , e . g . : ” 0 ” .
9

10 HEADER Shorthand f o r SERVER_INSTANCE_NAME : SERVER_INSTANCE_NUMBER ,
11 e . g . : ” c a r t p o l e : 0 ” .
12

13 SERVER_LOBBY_PORT UDP/ IP po r t on which s e r v e r i s l i s t e n i n g f o r
14 incoming messages r e l a t e d to the lobby phase . I t i s n e c e s s a r y
15 t h a t c l i e n t s know the SERVER_LOBBY_PORT be fo rehand .
16

17 SERVER_ROLLOUT_PORT UDP/ IP po r t on which s e r v e r i s l i s t e n i n g f o r
18 incoming messages r e l a t e d to the r o l l o u t phase . I t w i l l be
19 n o t i f i e d by the s e r v e r to the c l i e n t s r i g h t b e f o r e the s imu l a t i o n
20 s t a r t s .
21

22 CLIENT_PORT UDP/ IP po r t o f agen t c l i e n t s . S e r v e r SHOULD NOT send
23 datagrams to c l i e n t s i f they have not been r e g i s t e r e d f i r s t ,
24 f o l l ow i n g the p r o c e s s e xp l a i n e d in nex t s e c t i o n .
25

26 AGENT_KEY Key used to i d e n t i f y one a v a i l a b l e agen t s l o t , e . g . :
27 ” agen t0 ” .
28

29 AGENT_TAG Tag used to i d e n t i f y one agen t f i l l i n g one a v a i l a b l e s l o t .
30 S p e c i f i c c l i e n t s can use a custom tag to i d e n t i f y themse l v e s
31 wi th in the scope o f the lobby phase , e . g . : ” j ohn_doe_q_ l e a rn ing ” .
32

33 BOOL_VALUE ” t r u e ” or ” f a l s e ” p a r t i c l e s , w i thou t b a c k t i c k s .
34

35 ACTION Act ion chosen by an agent . I t MUST NOT con t a i n the co lon
36 c h a r a c t e r (:) , s emico lon (;) , or equa l s i gn (=) . There a r e no
37 o the r r e s t r i c t i o n s on how t h i s f i e l d i s formed as long as i t i s
38 we l l under s tood by both c l i e n t and s e rve r , e . g . : ” move_ l e f t ” or
39 ” 5 , 6 . 7 8 ” .
40

41 SLOT_STATUS ” open ” or ” c l o s e ” p a r t i c l e s , w i thou t b a c k t i c k s .
42

43 AGENT_KIND Free form f i e l d used to d i f f e r e n t i a t e a s p e c t s o f agen t s
44 r e l e v a n t dur ing the lobby phase , e . g . : ” c i t i z e n ” or ” zombie ” . I t
45 MUST NOT con t a i n the co lon c h a r a c t e r (:) , s emico lon (;) , comma
46 (,) or equa l s i gn (=) . There a r e no o the r r e s t r i c t i o n s on how
47 t h i s f i e l d i s formed as long as i t i s we l l under s tood by both
48 c l i e n t and s e r v e r .
49

50 READY_STATUS ” ready ” or ” no t_ ready ” p a r t i c l e s , w i thou t b a c k t i c k s .
51

52 AGENT_SLOT Shorthand f o r
53 AGENT_KEY=SLOT_STATUS , AGENT_KIND ,AGENT_TAG , READY_STATUS ;

57

1 Montero Exp i r e s December 1 , 2020 [Page 4]
2

3 I n t e r n e t−Dra f t PERLERT May 2020
4

5

6 [AGENT_SLOT] Appearance o f 1 . . n AGENT_SLOT .
7

8 MESSAGE I n f o rma t i v e message s en t by s e r v e r i n s t a n c e s dur ing lobby
9 phase .

10

11 TIMESTAMP Number o f m i l l i s e c o n d s s i n c e UNIX Epoch (Jan 1 , 1 9 7 0)
12 a c co r d i ng to s e r v e r t ime .
13

14 STEP_NUMBER P o s i t i v e i n t e g e r i n d i c a t i n g the s t e p number f o r a
15 running s imu l a t i o n .
16

17 OBSERVATION Obse rva t i on f o r an agent r e c e i v e d upon a s imu l a t i o n s t e p
18 run on the s e r v e r . I t MUST NOT con t a i n the semico lon c h a r a c t e r
19 (;) , or equa l s i gn (=) . There a r e no o the r r e s t r i c t i o n s on how
20 t h i s f i e l d i s formed as long as i t i s we l l under s tood by both
21 c l i e n t and s e rve r , e . g . : ” x : 0 . 5 4 , y : 0 . 9 5 ” .
22

23 REWARD Reward f o r an agent r e c e i v e d upon a s imu l a t i o n s t e p run on
24 the s e rv e r , u s u a l l y modeled as a s i n g l e f l o a t i n g po i n t va l u e . I t
25 MUST NOT con t a i n the semico lon c h a r a c t e r (;) , or equa l s i gn (=) .
26

27 EXTRA Add i t i o n a l i n f o rma t i on f o r an agent r e c e i v e d upon a s imu l a t i o n
28 s t e p run on the s e r v e r . I t MUST NOT con t a i n the semico lon
29 c h a r a c t e r (;) , or equa l s i gn (=) . There a r e no o the r
30 r e s t r i c t i o n s on how t h i s f i e l d i s formed as long as i t i s we l l
31 under s tood by both c l i e n t and s e rve r , e . g . :
32 ” did_jump : t rue , jump_length : 6 . 8 4 ” .
33

34 3 . 2 . C l i e n t Message Types
35

36 This s e c t i o n s p e c i f i e s the con t en t fo rmat f o r the message type s t h a t
37 s h a l l be implemented by PERLERT c l i e n t s .
38

39 l obby i n f o rma t i on r e qu e s t
40 Message s en t by c l i e n t s to r e qu e s t lobby i n f o rma t i on a s s o c i a t e d
41 with a g iven s e r v e r i n s t a n c e .
42

43 HEADER ; lobby
44

45 l obby r e g i s t r a t i o n r e qu e s t
46 Message s en t by c l i e n t s to r e qu e s t to p a r t i c i p a t e in a s imu l a t i o n
47 s e r v e r i n s t a n c e .
48

49 HEADER ; r e g i s t e r =AGENT_KEY ,AGENT_TAG
50

51 C l i e n t s a r e a l l owed to i s s u e mu l t i p l e lobby r e g i s t r a t i o n
52 r e que s t s , but on ly the l a s t one c o r r e c t l y r e c e i v e d by the s e r v e r
53 w i l l t ake e f f e c t .

58

APPENDIX A. PROTOCOL FOR EVALUATING REINFORCEMENT LEARNING ENVIRONMENTS
IN REAL TIME (PERLERT)

1 Montero Exp i r e s December 1 , 2020 [Page 5]
2

3 I n t e r n e t−Dra f t PERLERT May 2020
4

5

6 l obby ready r e qu e s t
7 Message s en t by c l i e n t s to in form the s e r v e r whether they a r e
8 ready to p a r t i c i p a t e in the s imu l a t i o n or not .
9

10 HEADER ; ready=AGENT_KEY , BOOL_VALUE
11

12 r o l l o u t a c t i o n
13 Message s en t by c l i e n t s to in form about the d e s i r e d a c t i o n to be
14 run in the s imu l a t i o n . I t i s not needed to send a ” r o l l o u t
15 a c t i o n ” message per each s imu l a t i o n t ime s t e p . I n s t e ad , the
16 s e r v e r w i l l use the l a s t r e c e i v e d a c t i o n f o r each c l i e n t and f e ed
17 i t i n t o the environment u n t i l r e c e i v i n g a new a c t i o n . S e r v e r
18 i n s t a n c e s can choose which a c t i o n f e ed to the environment
19 s imu l a t i o n u n t i l agen t c l i e n t s p rov i d e a v a l i d a c t i o n .
20

21 HEADER ; a c t i o n =ACTION
22

23 3 . 3 . S e r v e r Message Types
24

25 This s e c t i o n s p e c i f i e s the con t en t fo rmat f o r the message type s t h a t
26 s h a l l be implemented by PERLERT s e r v e r s .
27

28 l obby i n f o rma t i on
29 Message responded by s e r v e r s in fo rming c l i e n t s about lobby agent
30 s l o t s . Th i s datagram MUST be s en t to a c l i e n t upon r e c e i v i n g a
31 ” lobby i n f o rma t i on r e qu e s t ” , and to a l l c l i e n t s whenever the
32 l obby i s a l t e r e d due to a ” lobby r e g i s t r a t i o n r e qu e s t ” or a
33 ” lobby ready r e qu e s t ” .
34

35 HEADER ; [AGENT_SLOT]
36

37 The message format MAY omit the t r a i l i n g semico lon c h a r a c t e r (;) .
38

39 l obby r e g i s t r a t i o n r e sponse
40 Message s en t by s e r v e r s upon a s u c c e s s f u l r e g i s t r a t i o n r e qu e s t .
41

42 HEADER ; r e g i s t e r e d =AGENT_KEY
43

44 S e r v e r s MUST NOT a l l ow a s i n g l e c l i e n t to be r e g i s t e r e d in
45 mu l t i p l e s l o t s . B e f o r e p roceed ing to r e g i s t e r one c l i e n t in one
46 agen t s l o t , such c l i e n t must be removed from any s l o t where i t
47 may have been r e g i s t e r e d f i r s t .
48

49 S e r v e r s MUST r e g i s t e r c l i e n t s with a d e f a u l t ” no t_ ready ” s t a t u s .

59

1 Montero Exp i r e s December 1 , 2020 [Page 6]
2

3 I n t e r n e t−Dra f t PERLERT May 2020
4

5

6 l obby message
7 Message s en t by s e r v e r s to r e g i s t e r e d c l i e n t s c on t a i n i n g r e l e v a n t
8 g en e r a l i n f o rma t i on .
9

10 HEADER ; message=MESSAGE
11

12 l obby s t a r t
13 Message s en t by s e r v e r s to a l l r e g i s t e r e d c l i e n t s in fo rming about
14 the UDP/ IP po r t f o r the r o l l o u t once the s imu l a t i o n i s about to
15 s t a r t . The s e r v e r can choose to s t a r t the s imu l a t i o n a t any t ime
16 but i t MUST NOT do i t i f any c l i e n t i s i n a ” no t_ ready ” s t a t u s .
17

18 HEADER ; s t a r t = po r t : SERVER_ROLLOUT_PORT
19

20 r o l l o u t s t e p
21 Message s en t by s e r v e r s to a l l r e g i s t e r e d c l i e n t s c on t a i n i n g the
22 i n f o rma t i on p rov ided by the environment f o r a s i n g l e s t e p . Note
23 t h a t ” r o l l o u t s t e p ” messages shou ld be s en t in a r e g u l a r
24 da t a s t r e am con t a i n i n g enough da t a per t ime un i t so t h a t c l i e n t s
25 can p r op e r l y r ende r the environment , but shou ld not exceed a
26 r e a s on a b l e amount o f UDP pa ck e t s . I t i s RECOMMENDED to l i m i t a
27 maximum of 30 ” r o l l o u t s t e p ” p a ck e t s per second .
28

29 HEADER : TIMESTAMP : STEP_NUMBER ; obs=OBSERVATION ; reward=REWARD; done=B
30 OOL_VALUE
31

32 Se r v e r MAY send a d d i t i o n a l i n f o rma t i on by c on c a t e n a t i n g an e x t r a
33 p a r t i c l e l i k e t h i s :
34

35 HEADER : TIMESTAMP : STEP_NUMBER ; obs=OBSERVATION ; reward=REWARD; done=B
36 OOL_VALUE ; e x t r a =EXTRA
37

38 Because s e v e r a l messages o f t h i s type w i l l be s en t over the
39 network , i t i s recommended t h a t they a r e as condensed as
40 p o s s i b l e . For example , i t i s RECOMMENDED t h a t f l o a t i n g po i n t
41 v a l u e s e i t h e r be l ong ing to the OBSERVATION or the REWARD are
42 rounded to a minimal needed amount o f d e c ima l s .
43

44 4 . UDP/ IP Po r t s
45

46 A l l messages s en t by one c l i e n t MUST use the same UDP/ IP sou r c e
47 CLIENT_PORT dur ing the whole i n f o rma t i on exchange proce s s , s i n c e the
48 agen t sends a ” lobby r e g i s t r a t i o n r e qu e s t ” to the s e r v e r u n t i l i t
49 r e c e i v e s a ” r o l l o u t s t e p ” r e sponse with ” done ” f l a g as ” t r u e ” .
50

51 ” lobby i n f o rma t i on ” , ” lobby r e g i s t r a t i o n r e sponse ” , ” lobby message ” ,
52 and ” lobby s t a r t ” da tagrams MUST use the same UDP/ IP sou r c e
53 SERVER_LOBBY_PORT f o r a g iven s e r v e r i n s t a n c e .

60

APPENDIX A. PROTOCOL FOR EVALUATING REINFORCEMENT LEARNING ENVIRONMENTS
IN REAL TIME (PERLERT)

1 Montero Exp i r e s December 1 , 2020 [Page 7]
2

3 I n t e r n e t−Dra f t PERLERT May 2020
4

5

6 ” r o l l o u t s t e p ” datagrams MUST use the same UDP/ IP sou r c e
7 SERVER_ROLLOUT_PORT f o r a g iven s e r v e r i n s t a n c e .
8

9 5 . Example Case
10

11 This s e c t i o n p r ov i d e s a b r i e f example o f da tagrams exchanged by one
12 c l i e n t and one s e r v e r dur ing a PERLERT s e s s i o n .
13

14 CLIENT SERVER
15

16 ==================== LOBBY PHASE ======================
17 UDP po r t : 55555 UDP po r t : 32322
18

19 c i t y : 7 ; l obby −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>
20

21 <−−−−−−−−−−−−−− c i t y : 7 ; agen t0 =open , c i t i z e n , cpu , ready
22

23 c i t y : 7 ; r e g i s t e r =agent0 , p a t r i c k −−−−−−−−−−−−−−−−−−−−>
24

25 <−−−−−−−−−−−−−−−−−−−−−−−−−− c i t y : 7 ; r e g i s t e r e d = agen t0
26

27 c i t y : 7 ; ready=agent0 , t r u e −−−−−−−−−−−−−−−−−−−−−−−−−−>
28

29 <−−−−−−−−− c i t y : 7 ; agen t0 = c l o s e , c i t i z e n , p a t r i c k , ready
30 <−−−−−−−−−−− c i t y : 7 ; message= S imu l a t i on w i l l s t a r t . . .
31

32 <−−−−−−−−−−−−−−−−−−−−−−−−−−− c i t y : 7 ; s t a r t = po r t : 3 2 3 2 3
33

34 ==================== ROLLOUT PHASE =====================
35 UDP po r t : 55555 UDP po r t : 32323
36

37 c i t y : 7 ; a c t i o n =walk −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−>
38

39 <−− c i t y : 7 : 1 5 9 0 8 5 3 1 1 6 3 2 3 : 0 ; obs =45 ; reward =0 ; done= f a l s e
40 <−− c i t y : 7 : 1 5 9 0 8 5 3 1 2 1 0 5 8 : 0 ; obs =47 ; reward =0 ; done= f a l s e
41 <−− c i t y : 7 : 1 5 9 0 8 5 3 1 2 6 4 2 3 : 0 ; obs =48 ; reward =1 ; done= f a l s e
42 <−− c i t y : 7 : 1 5 9 0 8 5 3 1 3 0 4 2 9 : 0 ; obs =49 ; reward =0 ; done= f a l s e
43 <−−− c i t y : 7 : 1 5 9 0 8 5 3 1 3 4 8 3 3 : 0 ; obs =51 ; reward =1 ; done= t r u e
44

45 F i gu r e 1
46

47 6 . Add i t i o n a l Con s i d e r a t i o n s
48

49 Because packe t l o s s might p r even t some PERLERT in f o rma t i on from
50 a r r i v i n g to the o the r end , the f o l l ow i n g c o n s i d e r a t i o n s a r e to be
51 t aken i n t o account :

61

1 Montero Exp i r e s December 1 , 2020 [Page 8]
2

3 I n t e r n e t−Dra f t PERLERT May 2020
4

5

6 Af t e r send ing the ” lobby s t a r t ” message , the s e r v e r i n s t a n c e SHOULD
7 keep the SERVER_LOBBY_PORT open f o r f i v e (5) s econds and re send the
8 ” lobby s t a r t ” message to any c l i e n t communicat ing to such po r t a f t e r
9 the s imu l a t i o n has s t a r t e d .

10

11 Af t e r the s imu l a t i o n i s f i n i s h e d f o r a g iven c l i e n t , t h i s i s , the
12 ” r o l l o u t s t e p ” message c on t a i n s the ” done ” f l a g as ” t r u e ” , the s e r v e r
13 i n s t a n c e SHOULD keep the SERVER_ROLLOUT_PORT open f o r t en (1 0)
14 seconds and l i s t e n i n g to datagrams from such c l i e n t . The s e r v e r
15 i n s t a n c e SHOULD resend the a p p r o p r i a t e ” r o l l o u t s t e p ” datagram upon
16 r e c e i v i n g a c l i e n t message wi th in t h a t p e r i o d .
17

18 7 . IANA Con s i d e r a t i o n s
19

20 This memo i n c l u d e s no r e qu e s t to IANA .
21

22 8 . S e c u r i t y Con s i d e r a t i o n s
23

24 Both c l i e n t and s e r v e r imp l emen t a t i on s SHOULD use a f i x e d b u f f e r s i z e
25 as sma l l as p o s s i b l e f o r r e c e i v i n g the UDP/ IP pa ck e t s .
26

27 Both c l i e n t and s e r v e r MAY c i ph e r the con t en t o f the messages .
28 Although asymmetr ic p ub l i c k / p r i v a t e key p a i r s usage i s recommended ,
29 i t i s a l s o encourage to use symmetr ic c i p h e r i n g with a pre−sha red key
30

31 PERLERT i s e s p e c i a l l y v u l n e r a b l e to IP spoo f i ng a t t a c k s , because
32 a c t i o n s r e c e i v e d dur ing the r o l l o u t phase a r e only i d e n t i f i e d by the
33 IP o f the sende r . Using an VPN i s RECOMMENDED in o rde r to t u n n e l i z e
34 the i n f o rma t i on exchange .
35

36 9 . Normat ive R e f e r en c e s
37

38 [RFC2119] Bradner , S . , ” Key words f o r use in RFCs to I n d i c a t e
39 Requirement L e v e l s ” , BCP 14 , RFC 2119 ,
40 DOI 1 0 . 1 7 4 8 7 / RFC2119 , March 1997 ,
41 < h t t p s : / /www. r f c−e d i t o r . org / i n f o / r f c 2 119 > .
42

43 [RFC3629] Yergeau , F . , ”UTF−8 , a t r a n s f o rma t i o n format o f ISO
44 10646 ” , STD 63 , RFC 3629 , DOI 1 0 . 1 7 4 8 7 / RFC3629 , November
45 2003 , < h t t p s : / /www. r f c−e d i t o r . org / i n f o / r f c 3 6 29 > .
46

47 [RFC768] Po s t e l , J . , ” User Datagram P r o t o c o l ” , August 1980 ,
48 < h t t p s : / / t o o l s . i e t f . org / html / r f c 7 6 8 > .

62

APPENDIX A. PROTOCOL FOR EVALUATING REINFORCEMENT LEARNING ENVIRONMENTS
IN REAL TIME (PERLERT)

1 Montero Exp i r e s December 1 , 2020 [Page 9]
2

3 I n t e r n e t−Dra f t PERLERT May 2020
4

5

6 Author ’ s Address
7

8 Ruben Montero
9 Un i v e r s i t y o f A Coruna

10 Rua San Roque 9
11 A Coruna , G a l i c i a 15002
12 ES
13

14 Phone : +34 692 983 851
15 Emai l : ruben . montero@udc . e s
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 .

63

64

Bibliography

[1] B. Marr, “A short history of machine learning – every manager should read,” 2016. [On-
line] Last access on June 25, 2020. Available in: www.forbes.com/sites/bernardmarr/
2016/02/19/a-short-history-of-machine-learning-every-manager-should-read

Referenced on page 1

[2] T. Mitchell, Machine learning. McGraw Hill, 2017.
Referenced on page 1

[3] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.
Referenced on page 1

[4] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Prentice
Hall, 2009.

Referenced on page 2

[5] Google, “Machine learning practicum: Image classification,” 2020. [Online] Last access
on June 25, 2020. Available in: https://developers.google.com/machine-learning/
practica/image-classification/#how_image_classification_works

Referenced on page 2

[6] J. Brownlee, “Supervised and unsupervised machine learning algorithms,” 2016. [Online]
Last access on June 25, 2020. Available in: https://machinelearningmastery.com/
supervised-and-unsupervised-machine-learning-algorithms

Referenced on page 2

[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A survey,”
Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, 1996.

Referenced on page 2

[8] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s College,
Cambridge, UK, may 1989. [Online] Last access on June 25, 2020. Available in:
http://www.cs.rhul.ac.uk/~chrisw/thesis.html

65

www.forbes.com/sites/bernardmarr/2016/02/19/a-short-history-of-machine-learning-every-manager-should-read
www.forbes.com/sites/bernardmarr/2016/02/19/a-short-history-of-machine-learning-every-manager-should-read
https://developers.google.com/machine-learning/practica/image-classification/#how_image_classification_works
https://developers.google.com/machine-learning/practica/image-classification/#how_image_classification_works
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms
https://machinelearningmastery.com/supervised-and-unsupervised-machine-learning-algorithms
http://www.cs.rhul.ac.uk/~chrisw/thesis.html

Bibliography

Referenced on page 3

[9] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of reinforcement
learning to aerobatic helicopter flight,” in Advances in Neural Information Processing

Systems 19 (NIPS 2006). MIT Press, 2006, pp. 1–8. [Online] Last access on June 25,
2020. Available in: http://heli.stanford.edu/papers/nips06-aerobatichelicopter.pdf

Referenced on page 4

[10] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder,
L. Weng, Q. Yuan, W. Zaremba, and L. Zhang, “Solving rubik’s cube with a
robot hand,” ArXiv, 2019. [Online] Last access on June 25, 2020. Available in:
https://arxiv.org/abs/1910.07113

Referenced on page 4

[11] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can adapt like
animals,” ArXiv, 2015. [Online] Last access on June 25, 2020. Available in:
https://arxiv.org/abs/1407.3501

Referenced on page 4

[12] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and I. Mordatch,
“Emergent tool use from multi-agent autocurricula,” ArXiv, 2019. [Online] Last
access on June 25, 2020. Available in: https://arxiv.org/abs/1909.07528

Referenced on pages 4, 24, 26, 27, 28, 36

[13] J. Francis, “Introduction to reinforcement learning and openai gym. a demon-
stration of basic reinforcement learning problems,” 2017. [Online] Last
access on June 25, 2020. Available in: https://www.oreilly.com/radar/
introduction-to-reinforcement-learning-and-openai-gym

Referenced on page 5

[14] L. Deng and D. Yu, “Deep learning: Methods and applications,” Foundations and Trends®

in Signal Processing, vol. 7, no. 3–4, pp. 197–387, 2014. [Online] Last access on June
25, 2020. Available in: http://dx.doi.org/10.1561/2000000039

Referenced on page 6

[15] C. Lemaréchal, “Cauchy and the gradient method,” Documenta Mathematica, vol. Extra
Volume: Optimization Stories, pp. 251–254, 2012.

Referenced on page 7

66

http://heli.stanford.edu/papers/nips06-aerobatichelicopter.pdf
https://arxiv.org/abs/1910.07113
https://arxiv.org/abs/1407.3501
https://arxiv.org/abs/1909.07528
https://www.oreilly.com/radar/introduction-to-reinforcement-learning-and-openai-gym
https://www.oreilly.com/radar/introduction-to-reinforcement-learning-and-openai-gym
http://dx.doi.org/10.1561/2000000039

BIBLIOGRAPHY

[16] A. Choudhary, “A hands-on introduction to deep q-learning using openai gym
in python,” 2019. [Online] Last access on June 25, 2020. Available in: https:
//www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python

Referenced on page 8

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis, “Human-level control through deep reinforcement learning,” Nature,
vol. 518, 2015. [Online] Last access on June 25, 2020. Available in: https:
//www.nature.com/articles/nature14236

Referenced on pages 8, 9

[18] S. Gibbs, “Google buys UK artificial intelligence startup Deepmind for £400m,”
The Guardian, Mon 27 January 2014. [Online] Last access on June
25, 2020. Available in: https://www.theguardian.com/technology/2014/jan/27/
google-acquires-uk-artificial-intelligence-startup-deepmind

Referenced on page 9

[19] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” CoRR, vol. abs/1509.06461, 2015. [Online] Last access on June 25, 2020.
Available in: http://arxiv.org/abs/1509.06461

Referenced on pages 9, 10

[20] H. V. Hasselt, “Double q-learning,” in Advances in Neural Information Processing Systems

23, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, Eds.
Curran Associates, Inc., 2010, pp. 2613–2621. [Online] Last access on June 25, 2020.
Available in: http://papers.nips.cc/paper/3964-double-q-learning.pdf

Referenced on page 9

[21] Z. Wang, N. de Freitas, and M. Lanctot, “Dueling network architectures for deep
reinforcement learning,” CoRR, vol. abs/1511.06581, 2015. [Online] Last access on
June 25, 2020. Available in: http://arxiv.org/abs/1511.06581

Referenced on page 10

[22] C. Yoon, “Dueling deep q networks,” 2019. [Online] Last access on June 25, 2020. Avail-
able in: https://towardsdatascience.com/dueling-deep-q-networks-81ffab672751

Referenced on page 10

[23] L. Weng, “Policy gradient algorithms,” 2018. [Online] Last access on June 25, 2020. Avail-

67

https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python
https://www.analyticsvidhya.com/blog/2019/04/introduction-deep-q-learning-python
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/nature14236
https://www.theguardian.com/technology/2014/jan/27/google-acquires-uk-artificial-intelligence-startup-deepmind
https://www.theguardian.com/technology/2014/jan/27/google-acquires-uk-artificial-intelligence-startup-deepmind
http://arxiv.org/abs/1509.06461
http://papers.nips.cc/paper/3964-double-q-learning.pdf
http://arxiv.org/abs/1511.06581
https://towardsdatascience.com/dueling-deep-q-networks-81ffab672751

Bibliography

able in: https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.
html

Referenced on pages 10, 11

[24] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for re-
inforcement learning with function approximation,” Advances in Neural Information

Processing Systems, vol. 12, pp. 1057–1063, 2000.
Referenced on pages 10, 12

[25] S. Thomas, “An introduction to policy gradients with cartpole and doom,” 2018. [Online]
Last access on June 25, 2020. Available in: https://www.freecodecamp.org/news/
an-introduction-to-policy-gradients-with-cartpole-and-doom-495b5ef2207f

Referenced on page 12

[26] J. Schulman, O. Klimov, F. Wolski, P. Dhariwal, and A. Radford, “Proximal
policy optimization,” 2017. [Online] Last access on June 25, 2020. Available in:
https://openai.com/blog/openai-baselines-ppo/#ppo

Referenced on page 13

[27] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor,” 2018. [Online] Last
access on June 25, 2020. Available in: https://arxiv.org/abs/1801.01290

Referenced on page 13

[28] H. Mania, A. Guy, and B. Recht, “Simple random search provides a competitive
approach to reinforcement learning,” 2018. [Online] Last access on June 25, 2020.
Available in: https://arxiv.org/abs/1803.07055

Referenced on page 13

[29] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” 2015. [Online] Last access
on June 25, 2020. Available in: https://arxiv.org/abs/1509.02971

Referenced on page 14

[30] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016.

Referenced on page 14

[31] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. E. Gonzalez, M. I. Jor-
dan, and I. Stoica, “RLlib: Abstractions for distributed reinforcement learning,” in
International Conference on Machine Learning (ICML), 2018.

Referenced on page 14

68

https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://www.freecodecamp.org/news/an-introduction-to-policy-gradients-with-cartpole-and-doom-495b5ef2207f
https://www.freecodecamp.org/news/an-introduction-to-policy-gradients-with-cartpole-and-doom-495b5ef2207f
https://openai.com/blog/openai-baselines-ppo/#ppo
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1803.07055
https://arxiv.org/abs/1509.02971

BIBLIOGRAPHY

[32] K. Dubovikov, “Pytorch vs tensorflow - spotting the difference.” [Online]
Last access on June 25, 2020. Available in: https://towardsdatascience.com/
pytorch-vs-tensorflow-spotting-the-difference-25c75777377b

Referenced on page 15

[33] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning environ-
ment: An evaluation platform for general agents,” Journal of Artificial Intelligence

Research, vol. 47, pp. 253–279, jun 2013.
Referenced on page 15

[34] A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, D. Guo, and C. Blun-
dell, “Agent57: Outperforming the atari human benchmark,” 2020.

Referenced on page 15

[35] A. Alliance, “What is agile software development?” [Online] Last access on June 25,
2020. Available in: http://www.agilealliance.org/the-alliance/what-is-agile

Referenced on page 17

[36] OxAgile, “Waterfall software development model.” [Online] Last access on June 25,
2020. Available in: https://www.oxagile.com/article/the-waterfall-model

Referenced on page 17

[37] J. Martin, “Rapid application development,” 1991. [Online] Last access on June 25, 2020.
Available in: https://archive.org/details/rapidapplication00mart

Referenced on page 17

[38] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica, “Tune: A
research platform for distributed model selection and training,” arXiv preprint

arXiv:1807.05118, 2018.
Referenced on page 35

[39] J. Linietsky and A. Manzur, “Using tilemaps,” 2020. [Online] Last access on June
25, 2020. Available in: https://docs.godotengine.org/en/stable/tutorials/2d/using_
tilemaps.html

Referenced on page 42

[40] L. P. Manual, “pipe - overview of pipes and fifos,” 2017. [Online] Last access on June 25,
2020. Available in: https://man7.org/linux/man-pages/man7/pipe.7.html

Referenced on page 47

69

https://towardsdatascience.com/pytorch-vs-tensorflow-spotting-the-difference-25c75777377b
https://towardsdatascience.com/pytorch-vs-tensorflow-spotting-the-difference-25c75777377b
http://www.agilealliance.org/the-alliance/what-is-agile
https://www.oxagile.com/article/the-waterfall-model
https://archive.org/details/rapidapplication00mart
https://docs.godotengine.org/en/stable/tutorials/2d/using_tilemaps.html
https://docs.godotengine.org/en/stable/tutorials/2d/using_tilemaps.html
https://man7.org/linux/man-pages/man7/pipe.7.html

Bibliography

[41] H. Flanagan and S. Ginoza, “Rfc style guide,” Internet Requests for Comments, RFC
Editor, RFC 7322, 9 2014. [Online] Last access on June 25, 2020. Available in:
https://www.rfc-editor.org/rfc/rfc4180.txt

Referenced on page 47

[42] J. F. Reschke, “The xml2rfc version 2 vocabulary,” Internet Requests for Comments,
RFC Editor, RFC 7749, 2 2016. [Online] Last access on June 25, 2020. Available in:
http://xml2rfc.tools.ietf.org/rfc7749.html

Referenced on page 47

[43] C. Nota and P. S. Thomas, “Is the policy gradient a gradient?” ArXiv, 2020. [Online] Last
access on June 25, 2020. Available in: https://arxiv.org/pdf/1906.07073.pdf

Referenced on page 50

70

https://www.rfc-editor.org/rfc/rfc4180.txt
http://xml2rfc.tools.ietf.org/rfc7749.html
https://arxiv.org/pdf/1906.07073.pdf

	Introduction
	You can't learn without participating
	But why bother to take an action?
	The world is there to be explored

	State of the art
	Reinforcement learning algorithms
	Deep Q-learning (DQN)
	Policy gradients (PG)
	Proximal policy optimization (PPO)
	Other algorithms

	Standardization efforts and most used frameworks
	TensorFlow
	OpenAI Gym
	RLlib
	Other frameworks

	Rendering tools and integration with machine learning problems
	Unreal Engine: Plugin for TensorFlow
	Unity3D: Machine learning
	Godot
	Blender

	Methodology, tools and roadmap
	Methodology
	Tools
	Roadmap

	Environment design and implementation
	Some design principles
	Environment development history
	v0.0.1 (Initial version)
	v0.0.2 (Force-based movement)
	v0.0.3 (Movable bridge)
	v0.1 (Multiagent approach with team-based rewards)
	v0.2 (Custom metrics and configurable parameters)
	v0.3 (Agent-centric observation space)
	v1.0 (Individual rewards and no preparation phase)

	Training results
	DQN
	PG
	PPO
	Comparisons
	And what about the citizens?

	UX design and integration with rendering engine
	Client application
	Development of a 2D map in Godot
	User interface

	Server application
	Communication protocol

	Outcome and future work
	What now?

	Protocol for Evaluating Reinforcement Learning Environments in Real Time (PERLERT)
	Bibliography

