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Abstract

Parallel Molecular Dynamic (MD) simulations generate an enormous amount
of data throughout their execution. At each determined interval of timesteps, they
output a snapshot of the molecular system they are computing. This snapshot is
called a frame and the collection of frames is called a trajectory. The trajectories
need to be saved and analyzed to allow scientists to infer more information from
them. Traditionally, the simulations are executed first, to only then, when they fin-
ish and the trajectories are already saved on disk, computing the analytics. This
approach is called Post-Mortem Analytics. As the MD simulations improve, thus
being able to handle more atoms and computing more timesteps, the output and its
analysis, usually done sequentially, have started to become the bottleneck. Solving
this bottleneck requires parallelizing the analytics, running them on-line and in a
similar scale. This can be done in-situ, using the same nodes as the simulation,
or in-transit, by using staging nodes. However, implementing these techniques
with standard HPC tools (such as MPI) can get really complicated for the scien-
tists, since it is now necessary to think about data partitioning, load balancing.
Our idea is to leverage Apache Flink, a task-parallel analytics engine from the
Big data world, in this HPC context. Benefiting from its easier Map-reduce-like
programming model to allow scientist to easily extract parallelism from their an-
alytics algorithms. We have built a complete in-transit analytics framework, con-
necting a MD simulation to Apache Flink and to a distributed database, Apache
HBase. To demonstrate the expressibility of this programming model, we have
implemented two common analytics, a position histogram and the identification of
neighbor atoms. We assessed the performance of this framework, concluding that
it can handle simulations of sizes used in the literature.

Résumé

Les simulations parallèles de dynamique moléculaire (DM) génèrent une énorme
quantité de données tout au long de leur exécution. A chaque intervalle de temps
déterminé, ils produisent un instantané du système moléculaire qu’ils calculent.
Cet instantané s’appelle une image et la collection d’images s’appelle une trajec-
toire. Les trajectoires doivent être sauvegardées et analysées pour permettre aux
scientifiques d’en déduire plus d’informations. Traditionnellement, d’abord les si-
mulations sont exécutées, ensuite faire l’analyse. Cette approche est appelée Ana-
lytique Post-Mortem. Au fur et à mesure que les simulations MD s’améliorent, ce
qui permet de traiter plus d’atomes et de calculer plus de pas de temps, la sortie
et sa analyse, généralement effectuée séquentiellement, ont commencé à devenir le
goulot d’étranglement. Pour résoudre ce goulot d’étranglement, il faut paralléliser
les analyses, les exécuter en ligne et à une échelle similaire de la simulation. Ceci
peut être fait in-situ, en utilisant les mêmes nœuds que la simulation, ou in-transit,
en utilisant des nœuds de staging. Cependant, la mise en œuvre de ces techniques
avec des outils HPC standard (tels que MPI) peut s’avérer très compliquée pour
les scientifiques, puisqu’il est maintenant nécessaire de penser au partitionnement
des données, à l’équilibrage de charge. Notre idée est de tirer parti d’Apache Flink,
un moteur d’analyse parallèle aux tâches du monde des grandes données, dans ce



contexte HPC. Bénéficier de son modèle de programmation de type Map-reduce-
like pour permettre aux scientifiques d’extraire facilement le parallélisme de leurs
algorithmes d’analyse. Nous avons construit un cadre d’analyse en transit complet,
reliant une simulation MD à Apache Flink et à une base de données distribuée,
Apache HBase. Pour démontrer l’expressivité de ce modèle de programmation,
nous avons mis en œuvre deux analyses communes, un histogramme de position
et l’identification des atomes voisins. Nous avons évalué le rendement de ce cadre,
concluant qu’il peut traiter des simulations de tailles utilisées dans la littérature.
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1
Introduction

Molecular dynamics (MD) simulations emulate the motion of the atoms in a closed system.
For that, they compute the position, the speed, the energy, the accelerations, the forces on each
atom and how they affect the other atoms. The simulations are configured in order that at each
t timesteps computed they store a snapshot of the molecular system, this is called as a frame.
A collection of frames defines a trajectory.

The computational biologists have interest on the frames and the trajectories to be able to
study the phenomena that happen in the system, which would not be possible to resolve if only
the final result was stored. They might want to perform multiple analysis on these data to add
additional information to the trajectories.

Simulations are highly parallelized, distributed and optimized. However, traditionally, the
trajectory and frame analysis are done in a post-mortem approach, i.e, storing the frames on
local disks, on the simulation nodes, and executing the analysis later. Furthermore, these anal-
ysis would frequently be computed sequentially. As the simulations improve, thus being able
to cope with more and more atoms and longer simulations periods, the output started to become
the bottleneck, slowing the simulations down and making the analysis time prohibitively long.
One possible solution to this is sending the data to other nodes, using high speed network links,
to perform the analytics on-line before storage. This technique is called In-transit analytics. By
using extra nodes, it is possible to perform complex analysis and deal with storing at the same
time.

In addition, the analytics should also be improved, exploring more parallelism and becom-
ing more scalable. However, computational biologists might have difficulties when implement-
ing their parallel analysis with classical high performance computing (HPC) approaches, such
as MPI, due to the complexity associated to the data partitioning, communications, synchro-
nizations and simultaneously using task programming (e.g. OpenMP).

The goal of this work is to study the adoption of Apache Flink, a processing engine from
the Big Data world, to compute MD analysis in an in-transit configuration.

Apache Flink is a distributed stream processing framework from the Big Data world, usu-
ally used for computing analytics over streams of businesses data. In our case, we use it to
process the streams of frames outputted by MD simulations. In spite being highly scalable,
fault tolerant and conceived from scratch to work with stream-based data, its main character-
istic, for this work, is its programming model, the dataflow programming paradigm, which is
based on assembling operators to describe the programs. This higher level of abstraction al-
lows the scientists to program their parallel analysis without having to take care of complicated
details, such as data distributions and communication.



Flink’s programming model not only provides Map and Reduce operators, typical in the
Big Data world, but it also offers a wider range of transformations for the programmer to use,
such as join , split, filter functions, etc. Flink’s engine is capable of extracting the underlying
parallelism from the dataflow by itself. The user does not need to explicitly say where and
when each computation will take place and the communication of data. This makes of Flink a
powerful and easy-to-program tool.

Nonetheless, as Flink is a Big Data tool, it may not privilege the same characteristics as an
HPC tool does. For instance, Flink has emphasis on fault tolerance, through storing checkpoints
and being able to restore from those backed-up states, while from an HPC point of view this
tends to be neglected, due to its costs in performance, even though it is starting to became
increasingly important when going to exascale machines.

In this work we have built a complete on-line parallel analytics framework for MD with
an in-transit approach, and assessed Flink as as the core component of such a framework. The
framework built uses Flink as processing engine, Apache HBase as storage system, which is a
non-relational distributed data-base, and ZeroMQ messaging framework for making the con-
nection with a simulation. To assess the viability of this framework, we have connected it to
CoMD, a MD proxy application that emulates the regular workload in MD simulations. There-
fore, the over-all set-up consisted in using multiple dedicated nodes of a cluster to run CoMD
(simulation), Flink (analysis) and HBase (storage). Later on, two common analytics in this
field were implemented to demonstrate the expressibility of Flink’s programming paradigm: a
position histogram of atoms and the identification of neighbor atoms.

For performance evaluation purposes, we assessed the maximal throughput the system can
handle when Flink just relays the data to HBase and when it also computes the analytics. A
scalability experiment was done, by scaling the system by a factor of 4 and measuring the
maximal throughput it achieved.

Results indicate that the system was able to handle the pressure of big simulations, around
32 million atoms, achieving throughputs of 78 MB/s while also computing the Histogram ana-
lytics. A thorough analysis of data collected during the experiments indicates the bottleneck of
the system was HBase.
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2
Context

2.1 Molecular Dynamics Simulations and Analytics
Molecular Dynamics (MD) simulations simulate the motion of the atoms in a closed system.
Through Newton’s Laws of motion, they compute all the necessary information to characterize
the state of each atom, position, speed, forces applied to it, kinetic energy and how it affects the
other atoms. They have a wide range of applications, from refining the structure of proteins in
chemistry and biochemistry to studying the proprieties of nanotechnological devices, in physics
[19].

Commonly, for these simulations, it is interesting to keep track of the evolution of the sys-
tems instead of only storing the final state. Therefore, the users can specify the rate, in terms
of a number of timesteps, with which the simulation emits its data. The data of one timestep
is called a frame, and a collection of frames describes a molecular trajectory. Analyzing these
frames and trajectories allows the scientists to acquire a better understanding of what is hap-
pening in the system.

For instance, on [3], they study the behavior of hydrophobic gates in ion channels, which
act like nanopores on cell membranes that regulates the passage of ions in and out. These gates
can be either opened or closed, which is determined by the pore hydration, the amount of water
molecules inside the pore. Therefore, by making a water count on those regions of the system,
it is possible to enrich the results of the simulation by having the information of the state of the
channels.

Until around the first decade of the XXI century, most of the improvements made in the
MD field were to optimize the performance of the simulation itself, through parallelization
and through the use of other software and hardware techniques. This made these simulations
highly parallelized and very scalable[1]. Meanwhile, as the trajectory analysis did not received
the same parallelization and optimization effort, they continued to be mostly sequential[14].

Later on, with the resolution increase the simulations were capable to handle, what means
more atoms to process and bigger trajectories (more timesteps computed) being generated,
storing and analyzing the trajectories started to become the bottleneck. This was caused by the
growth of the frames size and the increased frequency of the simulation (number of timesteps
computed per second), which generated more I/O pressure. The scalability problems came
from two fronts: the slower speeds of the persistent storage systems and the prohibitively longer
times needed to perform the sequential analytics over the bigger trajectories [19, 15].

At that time, the analytics were performed post-mortem, in a off-line way, meaning that
the simulation would generate the trajectories that would be first stored to disk, to later be



read for the analytics. The simplest solution taken by scientists to reduce the I/O pressure was
reducing the frequency of snapshots of the system. However, this approach negatively impacts
the capability of observing fast moving phenomena, that would no longer be captured by the
less frequent snapshots.

To cope with this, the in-situ analysis paradigm started to draw interest of the community
[20]. It is characterized by computing the analysis in-site, inside the simulation nodes on helper
cores, and in an on-line manner, happening while the simulation is running. To deal with the
input pressure, the focuses of this new approach were based on the following concepts:

• Reducing the size of the data stored on disk, since hard drives are several orders of
magnitude slower than the main memory and the CPU.

• Computing the analysis on-line and alongside the simulation, allowing the analysis to run
in a similar scale as the simulation itself and reducing the total amount of time necessary
to run the simulation and the analytics a posteriori. One other advantage of this approach
is the ability to get feedback and partial analytics results from the simulation while it is
still running.

However, computing analytics in-situ introduces a series of constraints and challenges[20]:
As it is running with the simulation, complex analysis that take more time to be computed
might slow the simulation down. The data decomposition of the simulation and the analysis
algorithms do not always match, since they might have very different data-access patterns, gen-
erating more data transfers. Some analyses might require tunning input parameters specifically
to the simulation that would change the overall performance of the algorithm, but the optimal
values are not known prior to the end of the simulation.

Another different approach is called in-transit. Here, the analysis and data reduction are
also processed on-line, but in staging nodes, which do not process the simulation. This is a
slightly more decoupled version of in-situ. Despite paying the price of the raw data transfer
between the simulation nodes and the analysis ones, this offers more flexibility. For instance,
more complex analytics might be performed since the hardware is not being shared with the
simulation processes.

Even though these two different approaches are viable and are already well known in the
field, this does not solve the difficulty scientists have to implement the analytics they want.
In fact, the opposite happens. These techniques end up requiring more expertise of the pro-
grammer than the classical post-mortem strategy, due to workload, shared resources and timing
issues.

2.2 Related Work
This section covers a brief review of the evolution of MD analytics frameworks, when it comes
to easing the developer of the analysis programs.

Gromacs [12] is a well known, mature and open source molecular simulation application
for the field of chemistry and biology. Even though it is not its focus, since its 3.0 version,
its distribution also comes with several trajectory analysis programs. These algorithms are for
post-mortem analytics. As the simulation application itself, these analysis tools are mostly
coded in C, but only a few of them are parallel.
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In terms of usability, each analysis is a different program. No framework for developing
new analytics was provided. Therefore, if a scientist needs a different type of analysis, this user
would have to code it from scratch.

In turn, MDAnalysis [14] is already a MD trajectory analysis toolkit designed to simplify
the development of new analytics. It is implemented in Python and has some performance-
critical routines implemented in C. This toolkit is object-oriented, providing the abstractions
of atoms, residues, segments, trajectories, timesteps and so on, as objects. Not only that, MD-
Analysis provides several modules to ease the implementation of analytics. For example, there
are packages to compute distances, densities, to select groups atoms based on a specific char-
acteristic, etc.

Even though MDAnalysis succeeds offering a higher level abstraction for implementing
MD trajectory analytics, when it comes to parallelizing the algorithms, it relies on the same
traditional complicated approaches, MPI and/or Open MP. Also as Gromacs, it is designed for
Post-Mortem analytics.

In terms of performance, the authors compare the framework’s performance with Gromacs
and other two analysis softwares: VMD and CHARMM. They analyze the execution time of 6
different analytics over the same trajectory. MDAnalysis was faster than the others when com-
puting simple calculations, however on cases with more complex operations, where NumPy is
used, the performance starts to degrade. They claim this could be improved by using Cython
or C on the critical paths.

Himach [19] was the first MD analysis framework to provide parallel execution capabilities
based on Google’s Map-Reduce. Attracted to its ease of use, since it masks the data-distribution
and the load balancing for the user, they decided to apply the same paradigm to the MD field.
To use this programming model, they established a new of thinking the analytics algorithms,
based on 3 phases:

The first one is the Trajectory Definition, where the user determines the frames of interest.
Instead of specifying a time-series of frames, this creates a set of frames that will be processed,
allowing not only for out-of-order processing but also exposing parallelism between them. The
second phase is called ‘Per-frame data acquisition and analysis’, where all the potentially useful
data from the frames are extracted. This phase resembles the map of Map-Reduce. Finally,
the third part is the cross-frame analysis, behaving like a reduce. This last part may also be
conducted more than once depending on the algorithm the user wants to implement.

Himach was implemented in Python.
Himach has a run-time which is responsible for assigning the tasks to the processors, co-

ordinating the parallel I/O requests, storing and managing intermediate values (temporary key-
value pairs) and orchestrating the data exchange between processes. Another important aspect
of Himach is that it uses MPI calls (through the PyMPI library) for the interprocess communi-
cations and does so in a distributed way, instead of having Map-Reduce’s single master node
(centralized) controlling the progression of the execution and communications. Thus, avoiding
this as a bottleneck.

Their results showed that this solution scales almost linearly (around 90% of the linear
curve) until 32 MPI processes, but from that point the I/O and the communications start to
degrade the scalability, reaching only 45% of the linear curve when with 512 processes.

Despite its reasonable scalability and good performance, this approach is still for off-line
and post-Mortem analytics only.

On [7], the authors have developed a framework for asynchronous In-Situ and In Transit
analytics. With this framework, the analytics are programed as a dataflow graph, by assembling



components together. On this graph, the edges are communication channels, and the vertices
are the modules. The description of these data pipelines is also done in Python.

Each module is a piece of code running an infinite loop and implements an interface con-
taining: a wait operation, that suspends the module until it has new input data available; a get
operation, to fetch new input data; and a non-blocking put operation, for outputting data.

Given the modules, the application script simply consists in describing how the data go
through them and how they are connected. The frameworks uses a runtime daemon, that runs
in each node, for deploying the application in the nodes and for relaying the messages from
module to module, according to the application description. As these modules can run in
different nodes, it is the deamons’ responsibility to manage the communications between nodes.

Therefore, by using this framework, scientists can build more complex analytics set-ups,
mixing in-situ and in-transit scenarios, while counting with the abstraction it offers in terms of
synchronizations for the communications.

One of the analytics the autors have implemented using this framework is a QuickSurf
algorithm, which computes a isosurface from a volumetric density map. For instance, one
module of this algorithm is the computation of Morton indices (or Z-Order index), which is
also used this work.

In adition to the previous algorithm, the authors have also integrated MDAnalysis and Gro-
macs analysis tools as modules for their framework, even though, individually, these tools are
still sequential, requiring whole frames as input.

In this paper, when they experiment their Quicksurf implementation, they run it in sim-
ilar scalles to those being used by the in-situ community to benchmarks their frameworks.
Therefore, the simulation they use to generate their input runs on 128 nodes, where each node
generates 2 MB/s.

On [17], they compare three already existing general purpose task-parallel frameworks,
Spark, Dask and RADICAL-Pilot, with respect to their ability of supporting post-mortem MD
analytics on HPC environments. They also assess them in comparison to classical HPC MPI
approaches.

Apache Spark is a Big Data framework for data analytics which extends Map-Reduce by
providing a set of transformations over Resilient Distributed Datasets (RDD). This data struc-
ture is cached in memory, thus being well suited for iterative computations. A Spark job is
a sequence of multiple stages, which mean a series of local operations (e.g. maps) followed
by a distributed action (e.g. reduce). The dataflow generated by the combination of these
transformations and actions is translated into an execution plan by Spark’s DAGScheduler.

Dask is a parallel computing library for Python. Differently from Spark, it also provides a
lower-level task API (called ´Delayed API’) that allows build more complex execution graphs.

Radical-Pilot is a Python implementation of the Pilot systems paradigm, which consists in
decoupling the workload specification, resource selection, and task execution via the declara-
tion of job placeholders and late-binding for the execution of the applications [13].

For the comparison, they have implemented 2 different post-mortem analytics with each
framework: the Path Similarity of groups of atoms based on the evolution of their pair-wise
distances along the timesteps and the Leaflet Finder algorithm, to identify bi-lipid membranes,
which involves discovering all the neighbor atoms (based on a cut-off distance) and identifying
the two biggest connected components.

After assessing the scalability of each framework and each analysis, they conclude that
Spark outperformed Dask when it comes to communication intensive tasks and also on iterative
algorithms, due to the in-memory RDDs. Dask’s lower and higher level APIs proved to be more
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versatile than Spark, although both have presented some limitations, requiring work-arounds.
Radical-Pilot proved to be more useful for coarse-grained task-level parallelism and when it
was necessary to integrate other existing HPC analytics frameworks (like MDAnalysis). Even
though none of them out-performed their MPI counter-part, their easier programming paradigm
and not so big performance gap still creates a strong case for using them for HPC analytics.

2.3 Apache Flink
Apache Flink is a Big Data open source framework for processing analytics on business data,
in the form of streams and also batches of data. It is meant to be distributed, high-performing,
highly available, fault-tolerant, and accurate.

Flink is Java-based and supports programs (scripts) written either in Java, Scala or even
in Python (with some limitations). Its programming model is based on dataflow and provides
Map-Reduce-like operations, allowing users to easily implement parallel algorithms.

Map-Reduce [6] is a programming model for processing large data-sets in parallel, pro-
posed by Google. Programs of this model implement a Map function, that generates key-value
pairs, and a Reduce function, that groups the pairs by key and operate over the list of values.
On this model, the maps may occur in parallel and so does the reduction for each key.

The concept of stream refers to data that are continuously being produced, ingested and
processed. Streams can be either bounded (finite) or unbounded (infinite). For instance, the
data stream generated by a set of meteorological sensor is unbounded, while the one generated
by an aircraft during one flight is bounded.

Flink uses the paradigm of stream processing to unify batch processing, real time processing
and stream processing itself. A batch can be seen as a specific case of a bounded stream
that triggers the computation only once. However, in practice, Flink provides a different API
for batches (called Data Sets), to benefit from some possible optimizations and to improve
compatibility with legacy applications which see streams as a sequence of batches [5]

Figure 2.1 – Diagram of Flink’s software stack [2]

Figure 2.1 depicts the software stack of the framework. Its core layer, the runtime, is
a distributed streaming dataflow engine, which run flink (dataflow) jobs. More specifically,



every flink job is a Directly Acyclic Graph (DAG) of stateful operators linked to input and
output streams. Not only the Batch and Stream processing APIs are different, but they also
count with different sets of additional libraries[5]. On top of DataSet, there is Flink ML, for
machine learning applications and Gelly for graph processing. On top of Datastream, there is
the Complex event processing library (for detecting event patterns in unbounded stream). Both
processing modes provide a Table API for SQL integration.

Figure 2.2 – Diagram of the Flink’s architecture [2]

Figure 2.2 shows how the three main Flink’s components work. A Flink program is trans-
formed in a dataflow graph and is submitted by the Client to the Job Manager. The Job Manager
is the process responsible for coordinating the distributed execution of the programs. It keeps
track of the state of each operator, of the progression of each stream, it coordinates the check-
points (for fault-tolerance) and schedules new operators. However, the data processing itself
occurs in the Task Managers (TM), the workers. There is one TM for each Flink worker node.
Each of them is executed by a different Java Virtual Machine and perform the operations over
the streams. They also report their status to the Job Manager, so that it can keep track of the
state of the system. Each TM provides one task slot for each core in its CPUs, which can also
be called sub-tasks.

By the time the DAG of the job is computed, the possible parallelization of the operators
are taken into account. At specific points of the execution, the streams might be splited into
stream partitions that can be distributed or re-assigned to other sub-tasks. Therefore, the user
does not need to explicitly control the distribution of the data.
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To process the streams and their operator chain, the TM uses intermediate streams and pools
of reusable buffers. Each operator consumes the input stream from a buffer, process it and then
serializes the output stream into another buffer. As these buffer pools are shared between every
task of each TM, this ends up providing a natural way of dealing with Back pressure. Back
pressure is the name given to the situation where some operator are not able to consume and
compute the data at the same rate as it is receiving, i.e. a bottleneck; therefore, the previous
operators in the chain must be slowed down, for the system not to collapse. In other words,
when such an event happens, more buffers will be used to store the input of the slow operator.
As the amount of buffers is shared by tasks in a TM, the other operators run out of free buffers
to produce their output stream, thus halting the pipeline until the buffers are freed.

2.3.1 DataStream Operators

A Flink program is composed by, at least, a data source, a data pipeline and a data sink. The
data source ingests the data into Flink. The data pipeline describes operators that the data will
pass through. The data sink is the output of a stream. Therefore, a Flink program is expressed
by assembling operators and chaining transformations.

Table 2.1 describes the most important operators for data transformation and Listing 2.1
shows an example of Flink program. This code is a simplified version of the Word Count
implementation bundled in the Flink distribution [2]. Line 9 represents the data source, gener-
ating a DataStream, while line 20 is a sink to the standard output. As the reader can observe in
this code, the code is agnostic to the data distribution and communication. Flink’s run-time is
responsible from inferring this information by itself.

Listing 2.1 – Word Count Example
1 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws E x c e p t i o n {
2
3 / / s e t up t h e e x e c u t i o n e n v i r o n m e n t
4 f i n a l S t r e a m E x e c u t i o n E n v i r o n m e n t env = S t r e a m E x e c u t i o n E n v i r o n m e n t .

g e t E x e c u t i o n E n v i r o n m e n t ( ) ;
5
6 S t r i n g i n p u t F i l e = " i n p u t D a t a . d a t a " ;
7
8 / / read t h e t e x t f i l e from g i v e n i n p u t pa th
9 DataStream < S t r i n g > t e x t = env . r e a d T e x t F i l e ( i n p u t F i l e ) ;

10
11 DataStream <Tuple2 < S t r i n g , I n t e g e r >> c o u n t s =
12 / / s p l i t up t h e l i n e s i n 2− t u p l e s c o n t a i n i n g : ( word , 1 )
13 t e x t . f l a t M a p ( new T o k e n i z e r ( ) )
14 / / group by t h e t u p l e f i e l d "0" ( word )
15 . keyBy ( 0 )
16 / / sum up t u p l e f i e l d "1" ( a c c u m u l a t o r )
17 . sum ( 1 ) ;
18
19 / / Ou tpu t t o s t d o u t
20 c o u n t s . p r i n t ( ) ;
21
22 / / e x e c u t e program
23 env . e x e c u t e ( " WordCount Example " ) ;
24 }



Table 2.1 – Transformations available in the Data Stream API. This table is based on the official
Flink documentation web page [2].

Map Takes each element of the stream and produces a
new one. The datatypes may be different

FlatMap Takes each element of the input stream and emits
zero or more elements.

Filter Filters the elements of the input stream
KeyBy Partitions the DataStream, grouping elements

with the same key value
Reduce Rolls over the elements, combining the current el-

ement with the last reduced value, through pre-
aggregations (before the window is fired)

Fold Waits until the window is completed and fired, by
buffering the elements. Combines each element
with the previous folded value. It is more flexi-
ble then a reduce operation since the folded value
may be a custom object and pre-initialized

Aggregation Similar to reduce but only for these operations:
min; max; sum; minBy; maxBy and sumBy

Window Used only on KeyedStreams, groups the data ac-
cording to their time charachteristic

WindowAll Used only on non-KeyedStreams, groups all the
data according to their time characteristic. This is
frequently a non-parallel transformation

Window Apply For KeyedStreams. Applies a custom function
over the data grouped by the window and the key.
Allows access to every single element

WindowAll Apply Same as Window Apply, but for non Keyed
Streams.

Window Reduce, Window Fold, Aggregation on
Windows

Same as their other counterparts, but work on
windowed streams

Union Merges two streams of the same type
Window Join Analogous to an SQL left join.
Connect Connect two streams of different types
Window CoGroup, CoMap, CoFlatMap Similar to their regular counterparts, but for con-

nected streams
Split Separates one stream in one or more sub-streams
Selects Recover one sub-stream after a split function
Iterate Allows the creation of a loop by feeding back el-

ements to the original stream, that originated the
loop.

Extract Timestamps Extracts the timestamps of an element. This is
usually used when working with event time

10



In addition to the operators presented on Table 2.1, Flink also provides a wide range of
different data sources and sinks.

2.3.2 Windows and Notions of Time
Due to the continuous character of the streams, Flink needs a way to group data together in
terms of time, to know how the time passes (watermarks) and when to fire the computations.
Differently from Apache Spark, that groups the records in resilient distributed dataset (RDD),
Flink provides the abstraction of Windows, grouping data based on a time-based criteria.

Flink offers a lot of flexibility regarding the types of windows. They may gather data by
a certain time interval, which is called window length, and may slide by a different amount,
overlapping or not. A tumbling window has fixed length and does not overlap. A sliding
window allows the overlapping of windows. Other types of windows are: Counting window,
which gathers per quantity of elements; Session window, which assigns the elements to the
windows regarding the time passed since the previous element and the Global window, which
gathers every element in single window.

Orthogonal to the type of the windows, Flink provides 3 different notions of time for them
to work with: Ingestion time, when the record was first created inside Flink’s engine, by a data
source; Processing time, when it is processed by each operator and Event time which represents
the time when source of data, outside Flink, created it. The latter offers more flexibility to the
user, since the information used to assign an event timestamp to the elements might not be a
timestamp, and actually, any value that the user might want.

Once Flink is able to group data into windows, it still needs to know when it should trig-
ger the execution of the operators for that window or wait for more elements to come. This is
done through Watermarks, which do nothing more that signaling the end of the current window,
meaning that Flink can fire the execution of operators. Emitting watermarks is of crucial im-
portance when it comes to implementing your own data-source, since all the down-stream op-
erators will depend on this information to work correctly. Flink also provides ways to deal with
late elements, elements that came after a watermark has been emitted. In this case, however,
all the pipeline will be re-executed, thus it requires the down-stream sinks to be idempotent.



3
The Framework

Our idea is to use Apache Flink to perform in-transit molecular dynamics analysis. Our specific
interest on Apache Flink comes from being able to leverage all the benefits it offers to the
Big Data world bringing them to the MD analytics context. Some of its characteristics are:
easy-to-use task programming model, stream processing capability, low latency, distributed
and scalable.

Indeed, Apache Flink is not alone as Big Data analytics engine, Apache Spark is more
mature tool and is largely used in this industry. Both engines process streams and batches.
However, as opposed to Spark, Flink was meant to work with streams from its very beginning,
offering more powerful and flexible abstractions (e.g. different notions of time and window
operators), better memory management and lower latency with higher throughput.

We propose to use of Flink for in-transit MD analytics in order to bring its qualities to this
HPC context. For that, we have built a complete analytics framework that resembles as close
as possible a real scenario used for molecular dynamics. Figure 3.1 depicts it. Each component
will be detailed from section 3.1 to 3.3. Following that, we explain how they were assembled
together (section 3.4) and we describe the implementation of two common MD analytics on
section 3.5.

3.1 The simulation: CoMD

CoMD [8] is a proxy application for MD simulations. It was created by ‘The Exascale Co-
Design Center for Materials in Extreme Environments (ExMatEx)’ team.

In the high performance computing (HPC) field, proxy application stands for a simplified
version of a real application. Even though they are smaller, these mini-apps share the same
characteristics of the original program in terms of operations, of workload and of work bal-
ance. Therefore, they are performance models of the real applications, used when the result
of the simulation itself is not the end-goal, but instead only the simulation’s characteristics are
interesting, which is the case of this work.

In practice, CoMD relieves the user of having to provide several input parameters that in a
regular simulation it would be necessary, e.g. the initial configuration of atoms, requiring much
less information to be able to run.

CoMD offers 4 different approaches for computing the simulation: A sequential version;
One using Open MP ; one using MPI and another combining MPI and OpenMP. In this work,
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we have used exclusively the MPI version . In CoMD-MPI, each MPI process computes a fixed
and different set of atoms.

The initial reference for the system that CoMD computes is a face-centered cubic (FCC)
lattice of copper atoms. CoMD replicates and stacks them in each axis of the 3D space to
increase the number of particles on the system. Each FCC unit is called a unit cell.

Through command line parameters, it is possible to tune the system the CoMD will com-
pute. The main parameters used on this work were: the parallelism of the execution, the number
of unit cell per axis(nx,ny,nz), the number of processes (or tasks) on each axis(xproc,yproc,zproc),
the total number of timesteps to compute and the frame output interval.

In terms of processes and workload, to perform a strong scalability study, it is necessary
to keep the total problem size fixed and compare the execution time while increasing (or de-
creasing) the number of processes. Therefore, it is necessary to keep nx,ny,nz constant while
changing xproc,yproc,zproc. To perform a weak scalability test, where each process has a fixed
workload nx.ny,nz should follow the changes in xproc,yproc,zprox.

3.2 The communication: ZeroMQ
ZeroMQ [10] or ØMQ, is a high-performance asynchronous messaging framework used for
interconnecting applications and designed to be easy to use. It provides its own sockets, which
are able to send and receive atomic messages over different transport layers, such as TCP, multi-
cast, inter-process and in-process communications. These sockets can be connected in a wide
range of configurations, 1-1, N-N and N-M, forming different communications patterns, such
as ‘Request-reply’,‘Pub-Sub’,‘Push-Pull’ (pipeline) and ‘Exclusive pair’.

From those, the connection pattern ’Push-Pull´ was the one used in this work. The push
sockets are the senders and the pull ones represent the receivers. This allows for a one way
N-M connection (N senders, M receivers). When a message is pushed, it will be sent to all the
available Pull sockets and it will be kept in a queue . Upon executing a Pull, the next message
not-yet-pulled by any other pull socket will be removed from the queue and delivered to the
calling application. Thus, despite of having N-M connections, only the first receiver to pull
the message will read it. This message ends up being discarded from all the other receivers’
buffers. In other words, two receivers never get to read the same messages.

More precisely, on this work, we have implemented a N-1 Push-Pull communication pat-
tern. Therefore, multiple producers may push and only one consumer will pull the messages.

In terms of the content of the messages, ZeroMQ is agnostic to the datatype, meaning that
it transfers only byte blobs and it is the user’s duty to parse the information correctly on each
end-point of the communication.

3.3 The storage system: Apache HBase
Apache HBase is an open-source distributed database based on Google’s proprietary ‘BigTable’.
It is a non-relational database that runs on top of another distributed file system, most com-
monly the Hadoop File System (HDFS). HBase has near-optimal write performance, when it
comes to I/O channel saturation, and has an excellent read performance, according to [9].

HBase, by its own, does not provide any declarative query language support and it is not
compliant with SQL, however it is possible to use it in combination with Apache Phoenix or
Apache Trafodion to obtain similar features.



HBase can be seen as distributed, sparse, persistent and multidimensional sorted map. This
map is indexed by a row key, a column key and a timestamp. Each table in HBase is a set of
rows, which are alphabetically sorted and identified by a row-key. Each row contains columns.
Each column is indeed a column family, which might contain multiple sub-columns, which
are called ‘Column Qualifiers’. Together, the column family and the column qualifier form
the column name (i.e ‘column_family:column_qualifier’). The number of column qualifiers a
column family has might change from row to row.

Each value (and each update of a value) inside HBase has a timestamp assigned to it, which
can be assigned by the user directly or even automatically when the put request is handled by
the system.

The worker nodes in HBase are called Region Servers. Each region server contains an
arbitrary number of regions. Each region is responsible for storing rows of one specific table,
based on an interval of row-keys. The actual content of the rows are stored in HFiles on the
underlying File System. Who coordinates which region server is responsible for which region
and their row-key intervals is the master node.

Even though HBase has master and slave nodes (Region Servers), it does not mean that all
the requests go through the master and are later processed by the slaves. Each HBase client
maintains a cache of the Meta table, which is used to keep track of the servers, the region
identifiers and the interval of row-keys accepted by each region server. This allows the client
to directly communicate with the correct worker node, without having to go through the master
node every time. The master node is used for handling administrative requests, managing the
regions assignments, flushing data and so on.

Regarding HBase’s parallelism, when HBase is set to split the tables automatically, it stars
by creating one single region. When this region gets bigger than the threshold (‘hbase. hregion.
max. filesize’), it splits the current region in two (its content and its row-key interval), then the
master node assign these new regions to the region servers it considers convenient. This means
that, in the automatic mode, HBase might take some time to start distributing the data.

To avoid that, it is possible to pre-split the table right from the beginning. However, the
drawback is that it is possible to create hotspots when the row-key intervals are not correctly
balanced. Even though, once these pre-split regions reach their maximal size, the region and
its row-key interval continues to be automatically split. As a side-note, the standard automatic
split does not offer any guarantee on load balancing, except when a custom region split policy
, specified by the user, is used.

It is also important noticing that the choice of the row-key has a direct impact on the overall
performance. Typically, sequential keys (such as time-series) yield a bad performance since the
put requests get directed to a single region, not benefiting from parallelism. Therefore, the best
scenario is when the row-keys are randomly uniformly distributed. However, this might not be
possible in some cases. One possible work-around is salting the key by prefixing it with a more
random information.

3.4 Putting the Pieces Together

Figure 3.1 depicts how the system is connected. The nodes in green run CoMD-mpi, CoMD
parallelized with MPI. In red, there are the Flink worker nodes. In blue, there are the HBase
region server nodes, which are responsible for storing the data received by Flink.
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In addition to the nodes shown in the figure, there is an extra node, the master, which
manages either Flink’s workers and HBase’s region servers. Even though, these services are
centralized, they are not in charge of the actual processing of the data. For instance, as it will
be explained in the following sections, on HBase’s case, the master node is responsible for
providing the name of the region server that should handle that request.

On Flink’s side, each Flink worker node runs one Task manager, providing one Task Slot
per core. The master node runs the single Job Manager. The Job Manager has full autonomy to
chose where and when to schedule the tasks on the workers. On this system, Flink is responsible
for receiving the data generated by CoMD, processing it and sending to the storage nodes.

Figure 3.1 – Diagram of the set-up made. Every labeled figure denotes one separate node.
CoMD refers to the MD simulation, Flink for nodes running the stream processing engine;
HBase the storage nodes and ØMQ (ZeroMQ) to the messaging framework.

To connect all of those components together, it was necessary to implement a Flink program
and to slightly modify CoMD. The first point was making the CoMD nodes communicate with
Flink’s ones, through ZeroMQ, and then connecting Flink to HBase.

3.4.1 Connecting CoMD to Flink
We decided to use ZeroMQ to connect the CoMD MPI processes to Flink. As Flink did not
have a ZeroMQ source by the time this work was being developed, we had to develop our own
connector. The implementation of this data source had to deal with lower level aspects, such as
threads and the partitioning of the ZeroMQ connections throughout every Flink sub-task.

To better understand how the data source was implemented, it is important to explain how
Flink and CoMD interact with each other. They communicate through ZeroMQ push-pull
sockets, where Flink is the consumer (pull) and CoMD, the producer (push). This framework
has as parameter a port interval, that is used by Flink to bind the consumer sockets and by the
CoMD processes to establish the communications channels. In the set-up phase, each Flink
sub-task picks a port number from the interval received as parameter, based on its sub-task
ID. Then, they write a file, named after the chosen port number, on a known location in the
underlying network file system (accessible by all the other nodes), containing the hostname of



the node that picked that port number. This is done to allow CoMD to discover the hostname
of the node responsible for each port. After writing this file, the Flink sub-tasks open a new
ZeroMQ socket in pull mode, bind them to the chosen port and start waiting for messages.

On CoMD’s side, each MPI process computes the port number it should use based on the
port interval passed as parameter and its MPI rank. Then, they read the files that correspond
to their port number to find out the address of the Flink’s sub-task responsible for that port,
which allows them to open a ZeroMQ connection with them, in pull mode. It is important to
notice that due to the nature of this application, more than one CoMD process might connect
to the same port. From that point, the simulation starts computing the timesteps. At each given
interval of timesteps, the simulation is configured to output its current frame. For that, each
CoMD MPI process message to send to Flink through the socket.

The content of these messages is: its MPI rank (an int); the simulation timestep which the
data refers to (an int); the current timestamp (long); an array of the atoms’ IDs (int[]) and an
array of the position of the atoms (double[][3]). Benefiting from an abstraction provided by
ZeroMQ, the multi-part messages, each of the informations sent are sent separately, through
consecutive send calls. However, ZeroMQ buffers them together and only sends them when
the final message part is given - the position of the atoms. This helps mitigating the latency
effects when multiple short messages are sent, optimizing the transfer bandwidth. Nonetheless,
on the consumer side, Flink still has the illusion of receiving multiple messages, thus requiring
multiple receive calls. Another important feature from ZeroMQ that we benefit from is the
atomic messages. Even though there are several producers sending multi-part messages, from
the consumer point of view they do not get scrambled when reading the socket. This means
that when a consumer starts to read the first part of a multi-part message, the subsequent read
operations will return the next parts of the same message. Only after finishing reading an entire
message, it will be able to read the pieces from another one.

When a Flink sub-task receives and reads a complete message, it emits a tuple containing
the same content and an extra timestamp (of the moment the message was read by flink). The
emitted tuples get assigned to the same distributed stream, meaning that each sub-task will
receive different messages which ,in turn, will generate elements on a single stream that has
its content distributed throughout the Flink nodes. Thus, from the user point of view, it is a
single stream, not requiring him or her to be aware of the fact that data are, in practice, spread
throughout the Flink cluster.

One important aspect of developing a Flink source is to set up correctly the notion of time
and how it progresses. On this project, the notion of time used was ‘Event Time’, using the
simulation’s timestep as timestamp.

Expressing how the time progresses is done through the watermarks. They symbolize that
from that point on that window is already over, firing the execution of all the windows up
until that timestamp. Due to the characteristics of our design, where one socket might receive
messages from several clients (CoMD MPI processes), each sub-task must be aware of the
number of clients communicating with it and keep track of number of messages received for
each timestep. Thus, emitting a watermark whenever it received all the expected message for
each timestep. Flink is capable of managing the coherence of the watermarks between the sub-
tasks and also the downstream operators in a transparent way. The user only needs to describe
how the watermarks are emitted considering one single sub-task. In practice, Flink keeps track
of the watermarks from all the upstream operators (and sub-tasks), so that it only triggers the
execution of the window when this operator has already received the expected watermarks from
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all of its input sources.
As a side note, Flink provides a mechanism to deal with late elements, but it requires the

subsequent sink operators in the chain to be idempotent, since the operations pipeline might be
execute multiple times.

This completes the description of how Flink ingests the CoMD contents. From this point,
the stream is ready to go through Flink’s data pipelines, finishing in the HBase sinks.

3.4.2 Connecting Flink to HBase

Differently from ZeroMQ, HBase had already an official connector available, therefore imple-
menting the sink was more straight-forward. It was only necessary to extend the ‘OutputFor-
mat’ class in combination with the HBase API, specifying how each element from the stream
would be outputted and how to configure, open and close the connection. In general, what the
implemented code does is generating a put request for HBase for each element that the sink
consumes.

During this work three HBase sinks were implemented, one for storing all the trajectories’
data, one for storing the results of the histogram analysis and another for the neighbors. In this
section, only former will be detailed.

Basically, the trajectories’ data is stored in one table where the rows are identified by a key
of the form :“ MPI Rank + _+Timestep”. This salted key allowed for easy recovering of the key
while making sure of spreading the row throughout the HBase’s region servers. Each row has
one column family, called ‘data’, with 4 different qualifiers. The qualifiers identify the content
of the column; they are: ‘id’,‘array’ (for the positions); ‘sent_timestamp’,for the timestamp got
from CoMD ; ‘received_timestamp’, for the moment when Flink received the message.As this
content is stored on the same column family, the data from one row is not distributed through
the HBase’s region servers, staying together in only one.

Regarding the configuration of HBase, the trajectories’ table is pre-split in up to 10 pre-
splits, so that it starts distributing the put requests between the region servers right from the
beginning. The distribution of the row-key values throughout the 10 splits was done so that
each split is responsible for storing all the rows that start with one specific decimal digit (the
first one of the message’s MPI rank, in this case). In practice, this is very effective when the
number of MPI processes is power of 10 (i.g 100), otherwise it unbalances the workload a bit.
However, this is still a better option than using auto-splitting, since it only splits when the file
reaches a threshold and it does not have information on the pattern of the row-keys. In addition,
the table was set to store information on disk-only, even though it does use buffers and caches
to process the operations, and it was also set to not compress the data.

3.5 Analytics

The main motivation for applying Flink in the context of Molecular Dynamics analytics is its
easy-to-use dataflow programming model. We have implemented two analytics: a position
histogram and the identification of neighbor atoms. The histogram is a common routine for
computing several other analysis. The identification of neighbors is an important procedure to
identify molecule structures.



3.5.1 Position Histogram
The idea of this algorithm is to divide the space into non-overlaping bins and count the number
of atoms on each of them for every timestep. The complexity of this algorithm is O(n), where
n is the number of atoms.

In order to split the space into disjoint bins, we chose to use the Morton code (Z Order
Curve) [16], which is a classical approach on this field and also on computer graphics. It is a
way of indexing a higher dimensional space in 1D, filling its space while following a Z-shaped
curve, as seen in Figure 3.2. The Z-index of a position in a 3D space is obtained by interleaving
the bits of each axis. The number of bits that were interleaved designates the oder of the Z
Curve. For example, the point in binary (001 , 010, 100) is mapped to 001 010 100.

Figure 3.2 – Z-Order Curves in a 2D space of degrees 1,2,3 and 4, respectively

To keep the code independent of the total maximal space the simulation can occupy, since
it is an unknown value for Flink, the discretization of the space is done through converting the
double values to integer (applying a floor function), applying a mask on them to select only the
N least significant bits and then computing the Morton code with them. The mask is used to
control the total amount of bins. This way, we obtain a more balanced workload distribution
on each bin and to keep the algorithm agnostic of the size of the system. If we haven’t done so,
the system size would need to be a parameter and be set correctly for each different CoMD run.

Having explained how the algorithm works, it is now possible to describe the implementa-
tion, on Listing 3.1. After obtaining the message input stream from the ZeroMQ source (in line
2), a flat map operator (in line 10) is used to split the messages that contains arrays of atoms
into one element per atom, computing the its Z-index and add an extra integer field to allow the
counting, set to 1. From that point, in line 19, it is just a matter of keying the stream by (group-
ing by) the Z-Index, establishing a ’Tumbling Event Time Window´ of size 1 and reducing the
stream by summing the count values.

Listing 3.1 – Short version of the Histogram analysis’ code with output on the standard output.
The complete version is on Appendix A.1

1 / / Get t h e Message s t r e am from ZeroMQ
2 DataStream <Tuple6 < I n t e g e r , I n t e g e r , Long , Long , byte [ ] , byte [] > > t e x t =

env
3 . addSource ( new ZeroMQBinarySt reamFunct ion (hwm, p o r t , n p o r t s , −1,

c o n f i g F i l e P a t h , nComdCl ien ts ) )
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4 . name ( " Queue " )
5 ;
6
7 / * Compute His togram * /
8
9 / / Messages are s p l i t i n t o Atoms ( Tuple3 <Times tep , ZIndex , Count >)

10 DataStream < Tuple3 < I n t e g e r , Long , I n t e g e r > > atoms = t e x t
11 . f l a t M a p ( new M e s s a g e P a r s e r ( ) )
12 . name ( " S p l i t a toms " ) ;
13
14 i n t t i m e s t e p = 0 ;
15 i n t z In de x = 1 ;
16 i n t c o u n t = 2 ;
17 long windowSize = 1 ;
18
19 DataStream <Tuple3 < I n t e g e r , Long , I n t e g e r >> a n a l y t i c s R e s u l t s = atoms
20 . keyBy ( z I nd e x )
21 . window ( TumblingEventTimeWindows . o f ( Time . m i l l i s e c o n d s ( windowSize ) ) )
22 . sum ( c o u n t ) . name ( " Count atoms " )
23 . p r o j e c t ( t i m e s t e p , z Index , c o u n t )
24 ;
25
26 / / P r i n t t h e r e s u l t s i n t h e s t a n d a r d IO
27 a n a l y t i c s R e s u l t s . p r i n t ( ) ;

As it is possible to see in the code snippet above, Flink abstracts the key-value pairs from
the elements it processes. This simplifies the code for the user, since he or she only needs to
provide the number (or name) of the fields used as key a value.

In this algorithm, the flat maps are local operations. The keyBy, which in the batch process-
ing context is called groupBy, operator is exploited by Flink’s runtime to extract parallelism
from the code. Each Key value, will be assigned (based on a hash function) to a sub-task. This
assignment persists throughout all the windows that are processed. Thus the window operator
does not influence the parallelism, it just groups the data according to its timestamp. The ’sum´
operator is also a local operation, not requiring data exchange between sub-tasks.

Regarding the output of this analytics, 2 possibilities were implemented: storing outputting
in the standard output,which is the one seen in the presented snippet, and writing to a separate
HBase table, called ’flink_analytics´. This table has a key of the format ’Z-index_Timestep´
and its splits follow the same logic as the ones of the trajectories’ table, each one is responsible
for storing the rows that start with one specific decimal digit. Therefore, by having the Z-index
first, the rows get spread throughout the different regions.

The entire code for this analytics is available on Appendix A.1

3.5.2 Neighbors Identification

Identifying neighbor atoms is another common piece of analytics in the MD world. Useful
for identifying grouping of atoms, this is one of the major steps to identify atom or molecule
structures, for instance the Leaflet Finder algorithm presented in [14], to locate the two leaflets
that form a lipid bilayer.

The base-line for the neighbor identification algorithm is computing the distances between
all the atoms and using a cut-off distance to determine when the atoms are effectively neighbors.
The complexity of the naïve approach for this algorithm is O(N2) in terms of distance compu-



tations, where N is the number of atoms in the system. To reduce this amount of operations we
divide the molecular system domain in a 3D grid, re-using the Z-Order curve, introduced on
the previous section, as an acceleration data structure. By making the side size of the bins in
this grid equal to the cut-off distance R, we make sure that the only possible neighbors atoms
are located inside itself and the neighbors bins (or Z cells), thus reliving us of computing use-
less distances between atoms that are far away from each other. Figure 3.3 depicts the relevant
neighbor cells for the yellow bin, in a 2D scenario for clarity. No single point in the yellow bin
may be closer than R and not be included the union of yellow and blue cells. In 3D, each cell
has 27 neighbor cells.

Figure 3.3 – 2D Domain discretization with cut-off distance equal to the bins’s side length.

For mapping the positions to the bins, some modifications on the discretization model and Z
index encoding were necessary. Fixing the bins side length to R required the code to be aware
of the maximal extent of the simulation space, becoming an extra parameter. By knowing
the maximal space-size and the cut-off distances, it was possible to deduce how many cells
are there in each dimension and the precise bin location in Cartesian coordinates for every
possible position. The bins’ Cartesian index were then encoded to acquire the Z-order index,
by interleaving the 21 least significant bits of each coordinate, which results in a 63-bit Z-index.
We continued to use the Morton encoding, instead of using the Cartesian coordinates, for the
only purpose of keeping this algorithm closer to what would be implemented in MPI. On those
cases Morton indexes are frequently used to sort the data, allowing for better exploiting the data
locality due to its Z shaped go through.

Not only the neighbor identification analytics has a much more expensive computational
cost and less local character, in comparison with the position histogram, but it also demands
a more complex data distribution and communication pattern when parallelizing it with regu-
lar approaches, MPI or OpenMP. For instance, orchestrating the propagation of the neighbor
cells, mapping more than one cell the same MPI rank and translating the cell identifier to the
responsible MPI process.

Using Flink’s programming model requires the user to modify his or her algorithm, adapt-
ing to Flink Map-reduce-like paradigm. However, when the problem is broken down into the
dataflow steps, it becomes much simpler then a regular MPI code.

Listing 3.2 – Pseudo code for the Neighbor Identifying Analysis
1 DataStream <Tuple2 <Long , Atom>> atoms = messages . f l a t M a p ( new EmitAtoms ( ) ) ;
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2
3 f i n a l i n t z In de x = 0 ;
4
5 DataStream <Tuple2 < I n t e g e r , I n t e g e r >> n e i g h b o r s = atoms
6 . keyBy ( z I nd e x )
7 . window ( TumblingEventTimeWindows . o f ( Time . m i l l i s e c o n d s ( windowSize ) ) )
8 . a p p l y ( new A p p l y C u t O f f D i s t a n c e ( ) ) ;
9

10
11 DataStream <Tuple2 < I n t e g e r , I n t e g e r >> c o u n t = n e i g h b o r s . map ( new MapFunction <

Tuple2 < I n t e g e r , I n t e g e r > , Tuple2 < I n t e g e r , I n t e g e r > >() {
12
13 @Override
14 p u b l i c Tuple2 < I n t e g e r , I n t e g e r > map ( Tuple2 < I n t e g e r , I n t e g e r > a rg0 )

throws E x c e p t i o n {
15 / / TODO Auto−g e n e r a t e d method s t u b
16 a rg0 . f1 = new I n t e g e r ( 1 ) ;
17 re turn a rg0 ;
18 }
19
20 } )
21 . windowAll ( TumblingEventTimeWindows . o f ( Time . m i l l i s e c o n d s ( windowSize ) ) )
22 . sum ( 1 ) ;
23
24 c o u n t . p r i n t ( )
25 . s e t P a r a l l e l i s m ( 1 )
26 . name ( " Sink t o s t d o u t " ) ;
27
28
29
30 }

The pseudo-code on Listing 3.2 summarizes the algorithm. Basically, the CoMD messages
are split into tuples of Z-indices and atoms, which contains their ID, position. A set of all the
neighbors Z-cells of this atom is computed from their Cartesian coordinates. For each Z-index
associated with this particle, a tuple <Z-Index,Atom> is emitted. Until this point, all operations
are local. Next, the stream is keyed by the Z-Index, which implies data movement based on
a hash function over the z-index, it is windowed by the simulation’s timestep and a Window
Function is applied to compute the distance between each pair of atoms. The window function
allows the user to freely iterate over the content of the keyed window. If the distance is smaller
than the cut-off distance, a tuple containing both atoms’ ID is emitted, symbolizing a neighbor
relation.

To verify that all the elements were computed by Flink, an windowAll aggregation is done
to count the number of neighbor relations found, emitting one single tuple per timestep. This
operation implies gathering all the data in one single node, thus impacting the performance.
An actual analysis would instead apply other operations, not considered here for simplification
purpose.

This algorithm is very costly in terms operations and memory because of the emission of
copies of the atoms to all the related Z cells, and for every Z cell at the same time. During
this phase, all the tuples are kept in memory. On top of that, there is the fact that the tuples
used were immutable, meaning that the tuples are not re-used when they go from operator to
operator.



Indeed, with lower level programming paradigms there is more room for optimizations, for
instance the union of the Z-cells could have been done two by two instead of grouping all 27
cells at the same time. However, this Flink program stands out in terms of expressivity and ease
of use. For instance, the mapping between Z-indices and sub-tasks was entirely abstracted by
Flink, through an internal default hash function.

3.5.3 Flink Limitations Found
During the process of developing analysis with Flink, we came across with 2 major limitations:
Flink is not capable of switching from Stream processing to Batch processing in run-time and
the IterativeStream API might not work correctly when a complex loop logic is used.

We have discovered these two restrictions while trying to implement the Leaflet Finder
analytics, as done in [17]. This algorithm is normally used to find Phospholipid Bilayer mem-
branes, which are the cells’ exterior membrane. As its name says, its inner and outer surface
are made of phospholipid molecules. The proposed algorithm was to identify neighbor phos-
pholipid molecules based on a cut-off distance, compute the connected components algorithm
and, finally, select the two biggest components for each timestep.

Flink already had an implementation of the Connected Components using the Gelly API,
for DataSets (batches). However, the equivalent API for streaming, the experimental Gelly
Streaming API, was not as complete and versatile as its batch counterpart. Gelly Streaming
was capable of computing connected components, but only a single-pass version of it and where
only one graph was constructed along the progression of time. Nonetheless, Gelly Streaming
did have an API for computing discrete separated graphs for each window, called ‘GraphWin-
dowStream’. However, this latter API, that would fit the requirements we had, did not have a
connected components implementation.

We also discovered that, differently from Spark, a DataStream cannot be converted to a
DataSet without storing it somewhere and reading it with another Flink instance, running in
batch mode. From that point, the only choice was to implement the algorithm from scratch
using IterativeStream API.

This IterativeStream API is supposed to allow iterative processing over the streams. Using
it is just a matter of calling the iterate method on a DataStream, performing some computations
and separating the elements that shall be fed back to the loop and the ones that shall leave it.
Without using this API, it is not possible to have iterative behavior on Flink, since the core
representation of a Flink job is a directed acyclic graph (DAG) for the dataflow, which does not
allow loops. This design choice was taken to avoid uncontrolled data duplication.

The classical connected components algorithm has as its input, a list of vetices a the list
of edges connecting the neighbor vertices. For each vertex, a unique label is assigned. Then
it sends its label to all its directly connected neighbors. Upon receiving these messages from
its neighbors, the vertex changes his label, keeping the lowest label. If it needed to change his
label, it needs to send its new label to its neighbors once again. By doing this iterations, the
algorithm converges.

Due to the iterative nature of the connected components, it was absolute necessary to use
IterativeStreams. The actual problem came from the fact the use of complex operations inside
the loop, such as join, which Flink cannot correctly deal with. The effect was that only one
iteration was done.

After entering in contact with Flink’s development team, through the official mail list, we
were informed that this issue was already identified and it is being addressed by Flink Improve-
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ment Proposal 15, which does not have yet an estimation of when it will be accepted and be
part of the official distribution of Flink.

Therefore, we had to abandon the Leaflet Finder algorithm and we chose to use only its first
step, identifying the neighbors.



4
Experiments

This whole environment was set-up inside Grid 5000 [4] (G5K), a testbed for experiments on
high performance computing, distributed systems, big-data and cloud. Grid 5000 infrastructure
is composed of several clusters on several sites throughout France and Luxembourg. In all the
experiments, all the nodes used were equal and part of one single cluster, in order to avoid
introducing an other parameters that can alter the results. The specifications of the machines
used for all the experiments are presented on Table 4.1.

Table 4.1 – Hardware description

Cluster Name Paravance
CPU 2 x Intel Xeon E5-2630 v3

Cores/CPU 8
Threads/Core 2

Memory 128 GB
Storage 2 x 558 GB HDD
Network 2 x 10 Gbps

To enable experiment reproducibility, we relied on different software tools that enabled us
to control the full deployment and execution of experiments, from the OS up to the last lever
software used. Due to the strong coupling that these tools had with Grid 5000, a separate git
repository was created, called Vebida-Deployment. It has two main purposes: The first one is
building the system image that will be used on the experiment nodes, allowing us to precisely
control what is installed on them. This is done through the use of Kameleon Image Builder[18],
a tool that allows the creation on systems images based on scripts. Table 4.2 describes the
software stack installed on system we used.

The second purpose is describing and executing the experiments. For that a python script
was made. This script uses Execo[11], a G5K python API that allows running remote com-
mands over SSH and lower level commands, such as requesting and deploying nodes. In more
details, this python script was used to set-up the configuration of the software stack, to configur-
ing the clusters for Flink, HBase and CoMD, to launch the experiments and to recover and log
the interesting data from the experiments in a result file. This script receives as input a YALM
file which describes which experiments will be executed, their parameters and the amount of
nodes dedicated for each role in this environment.
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Regarding the execution of the experiments, this python script was executed on a separate
node from the ones used on the set-up. This node runs the regular Grid5000 system image, not
the ones customized by us. After being launched, this script is the one in charge of reserving
the master and slave nodes for the experiments. As explained on section 3, the slave nodes
were used to run the CoMD MPI processes, the Flink’s Task Managers (workers) and HBase’s
Region Servers (workers). The master node is used to launch the MPI processes on the other
nodes, run Flink’s Job Manager and HBase’s Master process. Even though the master node
was assigned with several tasks, those task were not compute-intensive. In addition, it has not
showed any symptom of being overloaded during our experiments, staying with low memory
and CPU usages.

Table 4.2 – Software stack in the nodes

Operating System Ubuntu
Flink Version 1.3.3

Flink’s Garbage Collector G1GC
HBase Version 1.2.6
CoMD Version 1.1

ZeroMQ Version 4.1.4
Java Version 1.8

Hadoop Version 2.7.6

In the following sections, we detail the experiments we have made to asses our analytics
framework. We first try to measure the maximal throughput we can achieve when Flink is only
relaying the messages from CoMD to HBase. Next, we assess the impact of computing the
Histogram analysis while still storing the CoMD messages. Then, we do it for the Neighbor
identification analysis. Finally, we make a scalability test, by repeating the Histogram test in a
system 4 times bigger.

4.1 Raw Data Handling and Storage Capability
The purpose of this experiment is to check how the system handles the input pressure generated
by CoMD when Flink receives the data and forward them to the storage nodes.

In regular post-mortem approaches, this is done by storing the data directly in a parallel
file system, distributed throughout external nodes. Keeping in mind that, with this set-up two
additional components are used, Flink and HBase. This additional software stack can degrade
the raw performance. Therefore, the goal of this experiment is to study how capable these tools
are to handle this pipeline.

One major aspect for designing this experiment was avoiding the buffering effect. As MD
simulations might run for extensive periods and generate huge trajectories, we needed to make
sure that the system would reach a steady state, where it would not need more and more buffers
to be able to cope with the incoming data throughout the execution. In other words, we needed
to find the sweet spot where the input flux was equivalent the output one, and the throughput
was maximal. In case the flux is not balanced, the system would either drop data, crash or slow
the simulation down. Neither of those side effects would be tolerable.



As we had time limitations to use Grid5000’s resources, to measure the throughput while
obeying to the aforementioned constraint without letting the experiments run for an exhaustive
amount of hours, or even days, until the first symptoms appear, we started from the following
assumption: The overall latency of each package received and stored would have to be con-
tained within a bounded interval and not exhibit a growing trend. When the latencies increase,
it means that the system buffers are full and it needs more time to treat the data it already has,
therefore generating back-pressure. Given this hypothesis, monitoring the latencies for a long
enough period and generating a big enough trajectory would allow us to assume the system
achieved its steady-state.

All the nodes used in the experiments belonged to the same cluster, on one single location,
and their clocks were synchronized using Network Time Protocol (NTP). We assumed the
timing drift in this case was negligible, allowing us to directly compare timestamps of different
nodes. Given that, we measure the latencies through getting the timestamp in 3 different points
of the system. The first one is when the CoMD processes start sending a new message; the
second is as soon as Flink receives the messages and the third is the timestamp automatically
assigned by HBase to the put requests it handles.

The HBase timestamp does not refer to the time the information was actually persisted in
disk. Even though the tables are set to be stored in disk, HBase still uses in-memory caches
to process its Put requests. HBase also uses ‘memstore’ blocks to sort the rows before flush-
ing the data to the HFiles. Nonetheless, this timestamp was still chosen because, to the best
of our knowledge, HBase lacks a system of reporting when a Put operation was persisted in
disk. However, having this memory buffers in HBase does not mean it will not generate back-
pressure. When any memstore reaches a certain threshold, HBase blocks incoming requests
while it flushes the data. Thus, making Flink slow down and increasing the latency of Flink’s
packets. Therefore, by generating a big enough trajectory for long enough, HBase’s in-memory
buffers will either be unstable, eventually generating back-pressure, or be stable, not blocking
incoming put requests.

In the attempt to capture the HBase and Flink buffer usage, we also monitor the heap usage
of the Java Virtual Machines that run the Flink Task Managers and HBase Region Servers.

By classifying the behavior of the latencies as stable or not, measuring the highest through-
put was just a matter of running the experiments for different throughput values and keeping
the highest value that was stable (that the latencies did not grow). The measure of the through-
put itself was obtained by dividing the total amount of data the CoMD MPI processes sent to
Flink by the time it needed to compute the simulation. To be more precise, it refers to the time
interval between the sending CoMD’s very first message and sending the very last.

Since the throughput is not a direct parameter of CoMD, varying it was done through vary-
ing timestep interval with which the simulation outputs its frames (referred on this work as
output interval). The lower it is, the higher the throughput, since it will emit data more fre-
quently.

For following series of experiments, we had: 8 simulation nodes (8x16 physical cores); 1
Flink node (16 physical cores); 1 HBase node (16 physical cores). The simulation was big, it
had 32 million atoms, which represent half of the HIV virus molecular structure [7]. It was
parallelized in 125 MPI processes, due to the 3D-data-partitioning that CoMD requires. Each
CoMD MPI process emits messages of 6.83 MB, totalizing 853.75 MB per frame, which is
around 35 times the frame size used on [7] to benchmark their framework. Since we had limited
resources in Grid 5000 and the interconnection between the nodes is done with a fast 10 Gbps
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network, we assigned 16 MPI processes per CoMD node, i.e. one per core. The maximal
throughput that CoMD could generated with this configuration (when the output interval is set
to 1) is around 774 MB/s.

Flink was configured to use 4GB of memory for the Job Manager’s heap (in the master
node); 6GB for the Task Manager’s heap (Flink worker node, referred as Flink node) and use
G1 Garbage collector.

HBase was set to not replicate data and to not compress data. HBase also allows the users
to set a wide range of parameters, however they are very coupled to each other, meaning that
if not properly set, HBase can suffer from huge performance degradations. For this reason,
we decided to use the default values for the machines we were using. The Region Server’s
(HBase slave nodes, referred as HBase nodes) heap size was 30 GB. Other configurations
were: the memstore block multiplier set to 2. The lower and higher limit for the total size of
the memstores were the defaults,35% and 40%. These last 2 values mean that once 10GB is
used by memstores, it starts to get flushed, and when 12 GB is used, it blocks incoming update
requests.

For running the experiments, since we vary the throughput by changing the output interval,
we decided to fix the overall trajectory size and not the total number of computed timesteps, to
avoid not capturing important behaviors related to total amount of data stored, that, for instance,
might occur inside HBase. We fixed the trajectory size to 62.5 GB, which is 75 outputted
frames. This value is twice bigger than HBase’s region server’s heap (30GB). Therefore, we
are certain that HBase cannot cache it entirely in memory. With these parameters, CoMD runs
for about 15 to 20 minutes and all the results are already able to be read from the HBase around
2 minutes later.

Figure 4.1 shows the throughput obtained for the tested output intervals and how the points
were classified by its stability. The graph shows that we could achieve up to 71 MB/s without
presenting back-pressure issues during the run. Due to the time limitation we had on the usage
of the cluster and for this work’s deadline, we could not run enough experiments generating a
bigger trajectory. Each point was executed without repetition, except for the points in the edge
between stable and unstable, which were executed twice. In case any of the repetitions proved
to be unstable, the point was considered unstable.



Figure 4.1 – Throughput achieved with different output intervals and their stability

4.1.1 Characteristics of a Stable Point

Analyzing the measurements made for the stable point with output interval equals to 11, Figure
4.2 (a) shows that the latencies do not show an exponential growth trend. Figure 4.2 (b) shows
the number of messages processed throughout the time at each point of the system. In this
figure, 3 cumulation histograms are overlaid. The orange one counts the number of messages
created by CoMD; the blue one, the number of messages received by Flink and the green one,
the number of messages handled by HBase. By analyzing it, it is clear that the system is able to
cope with the production of the data in the same rate data are produce. That is why it is almost
not possible to see the orange (creation of the messages in CoMD) and blue (Flink ingestion)
histograms, which are placed behind the green curve.

In Figure 4.3, by analyzing HBase’s Region Server heap usage, it is possible to confirm the
predicted behavior for it: it works by caching the data in memory before flushing them to disk.
In addition, there is also a correlation between the spikes in the latencies ( Fig. 4.2 (a)) and the
flushing of the buffers (in Fig. 4.3).

Figure 4.3 also shows that throughout time the troughs (when HBase flushes its data) get
higher. We did not identify the actual reason for that memory increase. It may be due to some
internal data structure.
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(a)

(b)

Figure 4.2 – Plots for the stable point with store interval 11. (a) Latency (CoMD to HBase) of
packets. The timestamp considered for the x-axis is the HBase’s. The secondary axis, on top,
shows the amount of data that CoMD has already sent. (b) Cumulation of events through time.
In pink, the number of sent messages; in blue, the number of messages received by flink and in
green, the number of stored messages.



Figure 4.3 – Heap usage of Flink’s and HBase’s worker nodes for the stable point of output
interval 11. Flink’s heap size is 6 GB, while HBase’s is 30 GB

4.1.2 Characteristics of an Unstable Point

When investigating the latencies of an unstable point, the graphs depict very distinct behaviors
from the observed on the stable case. For instance, let us analyze the point of lowest throughput
one for this configuration (when the store interval is 10).

In Figure 4.4, the latencies are clearly growing. In addition, there is also an extra feature that
starts happening around 800 seconds, where the points start to be shifted up. This comes from
the fact that the system in this case needs more time after CoMD finishes to store all the data it
has sent, meaning that there were lots of messages in the system, waiting in buffers. Figure 4.5
shows the intermediate components of these latencies, CoMD to Flink (called ZeroMQ latency)
and Flink to HBase (called Flink latency). It is possible to see that the ZeroMQ latency has the
major influence over the CoMD-to-HBase latency.

Figure 4.6, shows the latencies from the perspective of the number of messages that were
treated throughout the time. It is possible to see that the growth of the latencies in Figure 4.4
correlates to the distance between the the orange and green lines, meaning that those packets
are inside the system, waiting somewhere in between.

From these 3 graphs analyzed for the unstable point, it is possible to conclude that the
messages wait in the buffers prior to Flink. Indeed, the ZeroMQ sockets were configured to
have huge buffers, able to hold up to 3000 messages on both sides of the communication.
Having these big buffers also means that ZeroMQ may physically transfer the data to Flink
regardless of the rate Flink is consuming the messages, until these ZeroMQ buffers on the
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Flink side are full. The choice of having big buffers at these point was made to reduce the
impact that the data transfer could have in the experiments.

In addition, it is important to mention that the nodes are interconnected with 10 Gbps net-
work connection and the size of the messages sent with ZeroMQ is 6 MB, which is already a big
enough size to mitigate the transfer latency, meaning that the total throughput used (80 MB/s)
is far below the theoretical limit for these connections; thus, not being the main candidate for
the bottleneck of the system.

Having a more thorough look at figure 4.6, it is possible to notice that the blue histogram is
now visible as a thin layer over the green curve, meaning that there are moments where Flink
has processed more data than HBase. If we analyze HBase’s heap usage ( Figure 4.7) together
with it, we can see a correlation between a reduction of the slope in the green curve and the
moments when HBase is flushing its buffers 1 . These facts lead us to hypothesize that HBase is
causing back-pressure on Flink, which, in turn, reacts very quickly to it, stopping the pipeline
before accumulating lots of data. These data, then, get accumulated in ZeroMQ’s buffers.

To check if our hypothesis was correct, we needed to reduce the pressure in HBase and see
if in this case we could achieve higher throughputs. For that we modified the HBase sink to
discard all the atoms IDs and positions and replacing them by two 32-bit value. By doing so,
we ended up reducing the amount of data HBase would receive, but keeping the same workload
on ZeroMQ and Flink. We have run the experiment for the point of output interval 5, which
previously was clearly unstable, and the results showed that it became a stable point, with a
throughput of 147 MB/s. Thus, this experiment corroborated our hypothesis that HBase was
the bottleneck in the framework.

Figure 4.4 – Latency (CoMD to HBase) of packets. The timestamp considered for the x-axis
is the HBase’s. The secondary axis, on top, shows the amount of data that CoMD has already
sent. The store interval is 10

1This correlation gets clearer when analyzing the graph without the query perturbation, in Appendix A.2.1.
The way we were confirming that all the data was already stored in HBase was perturbing HBase’s heap



Figure 4.5 – Composition of the latency of the packets. ZeroMQ_Latency stands for the time
between the creation of the message (in CoMD) and its ingestion by Flink. Flink_Latency
refers to interval between ingesting the packet and storing it in HBase

Figure 4.6 – Cumulation of events through time. In pink, the number of sent messages; in blue,
the number of messages received by Flink and in green, the number of stored messages.The
store interval is 10

Continuing our analysis of the unstable point we were previously detailing (output interval
10), Figure 4.7 shows an unexpected behavior. Here, after CoMD sends all its data, more
pressure is put on HBase heap, where it cannot reduce its memory usage neither by flushing
more frequently. Surprisingly, this pattern does not seem to correlate with the back-pressure,
which is detected in the latencies much earlier. We concluded that this perturbation on HBase’s
heap comes from the way our experiment script was implemented. In the script, as soon as
CoMD finished, it starts querying HBase for all the stored row-key values, in order to know
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when everything is processed by HBase. Therefore, during this phase HBase needs to keep
processing the put requests while it handles the queries, thus applying more pressure on it.

To confirm this hypothesis, we have re-run these 2 experiments, the stable and the unstable,
but making the script sleep for 7 minutes after CoMD finished, to guarantee that everything
was already stored when it starts making the queries. The results confirmed our supposition,
but also showed that this perturbation on the heap had no impact on the other measurements
(the latencies). Thus, we did not have to re-run all the other experiments showed in this report.
The graphs from those two points re-tested are on Appendix A.2.

Figure 4.7 – Heap usage of Flink’s and HBase’s worker nodes for the unstable point of output
interval 11. Flink’s heap size is 6 GB, while HBase’s is 30 GB

4.1.3 Histogram Analytics

For this series of experiments, we wanted to discover the impact of running the Histogram
analytics together with storing the CoMD raw data in HBase.

Regarding the analytics code, we decided to store its results in HBase as well, to keep
the experiment closer to a realistic scenario, even though storing these results increases the
pressure on the storage system. Another separate table was used to store these data, called
"flink_analytics". The row-key for this entries was of the form ‘ZIndex_Timestep’, thus spread-
ing the workload throughout the regions.

We have fixed the total number of bins to 512, by using only 9 bits for the Z-Index (3 bits
per coordinate). This choice was a compromise between exploring more parallelism and not
impacting so much HBase.



All the other parameters for the experiments continued to be the same as used on section
4.1, allowing us to directly compare the results. Figure 4.8, depicts the throughputs achieved
for the tested output intervals. In this case, we were able to achieve 78 MB/s, with output
interval of 10, which is slightly more than what we have seen in the previous section, with just
the raw trajectories storing and no analytics at all.

This unexpected better performance might come from the intrinsic inaccuracy of these ex-
periments. As we were limited on time, we had to make these experiments shorter, with smaller
trajectories which limits our ability to know how the system would behave in these cases if they
continued running for hours. What might happen is that a point that seems to be stable during
the first 20 minutes, becomes unstable at some point. Therefore, a false positive result would
be obtained.

Figure 4.8 – Throughput by output interval and their stability

Let us analyze the stable point of store interval equals to 10. In Figure 4.9, we have the la-
tency of the packets containing raw CoMD data to be stored in HBase ( the same measurement
from the previous experiment). It is possible to see the stable behavior and also that, in com-
parison to the previous experiments, the latencies have increased, varying now in the interval
(0, 3s] instead of (0, 1.5 s], for the vast majority of messages.

For this experiment, we also measured the latencies of the analytics results. As in this case
we did not have a 1-to-1 correspondence from the message sent by CoMD and the results,
we measured the latency per timestep. More precisely, the considered latency for a given
simulation timestep is the time between the creation of the last CoMD message of that timestep
and the last result entry on HBase for the same timestep.

34



Figure 4.9 – Latency of messages

Figure 4.10 – Latency of the analytics results



In Figure 4.10, it is possible to see that they not only correlate to the latency of the messages
stored in HBase (Figure 4.9), but also have similar latency values (around 2.5s and 3s). This
behavior was expected, since storing the CoMD messages and computing the analytics happen
in parallel, at a similar pace.

4.1.4 Neighbors Analytics

Assessing the performance of the Neighbors analytics is not as straight forward as is the His-
togram. Due to the huge difference in their complexity, O(N2) and O(N), respectively, com-
puting the Neighbors analytics over same input data becomes impractical memory-wise, for
this set-up. Therefore, some parameters needed to be changed, not allowing us to compare the
results directly anymore.

It is worth mentioning that, as for the other experiments, Flink’s Task manager was set to
use only 6GB of memory and even with our attempt to reduce the total amount of operations
for this algorithm, by splitting the domain in a grid of cells, an enormous amount of tuples is
still generated because all the computation inside the neighbor cells still O(N2).

Since, computing this algorithm for 32M atoms would require more memory than what we
were using in Flink, the number of the atoms in the simulation was reduced to 256 K, which
is still bigger than the value they have used on [17] to compute the Leaflet Finder algorithm.
By changing the simulation size, the frame size was reduced to 6.83 MB and time required
to compute one timestep also reduced. We fixed the trajectory size to 130 outputted frames
(888.16 MB), which would still end up taking from 15 to 20 minutes of execution.

Regarding the results, only one result tuple is generated per timestep, a tuple that contains
the timestep and the number of neighbor relationships found. This tuple is stored in the second
HBase table, called ’flink_analytics’, similar to the one used with the histogram. The differ-
ence, in this case, is that salting the row-key is not necessary since the data pressure in this
table is very low (one tuple per outputted timestep).

Figure 4.11 depicts the throughputs obtained. We were able to reach only 1.10 MB/s with
this set of parameters and analytics.

Figure 4.11 – Throughput obtained for the Neighbors Analytics
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Figure 4.12 shows the latencies and their composition, for the stable point of output interval
405. Differently from the other stable point found for the other experiments, here, there are
much more outliers for the Flink latency, but their overall trend continues to be the same.

Figure 4.12 – Throughput obtained for the Neighbors Analytics

4.1.5 Scalability
All the previous experiments had 125 CoMD MPI processes (in 8 nodes), 16 cores for Flink
(1 node) and 16 cores for HBase (1 node). With this experiment we wanted to assess the
scalability of the analytics framework we proposed, by doing a weak scalability experiment,
where the workload also scales with the system. We tested on a configuration 4 times bigger:
512 CoMD processes (32 nodes) and 64 cores for Flink and HBase (4 nodes each). The number
of atoms in the simulation was multiplied by 4, generating a trajectory of 256 GB. All the other
parameters stayed the same as the ones used on the small scale Histogram experiment, which
allows us to compare the results directly.

Due to the short time limit we had at our disposal for performing this experiment, we had
to crop the variations of the experiments executed. Therefore, we have only experimented with
the Histogram analytics, and we could only run it for some few points, as shown in Figure 4.13.
Unfortunately, we could not find any stable point. However, we can infer that no throughput
higher than 100 MB/s will be stable.

For comparison purposes, the experiment in small scale showed that the system was able
to handle up to 78 MB/s. If the scalability of this system was linear, we would expect reach-
ing a throughput of 312 MB/s for this configuration. By using the smallest unstable throughput
obtained in the scalability test, 100 MB/s, as a rough higher-bound for the actual stable through-
put, we can claim that the system has a scalability efficiency lower than 32%.



Figure 4.13 – Throughput obtained for the Histogram experiment in scale 4x
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5
Conclusion

We have proposed a new framework for performing parallel in-transit molecular dynamics ana-
lytics based on Apache Flink, a stream processing engine made mainly for processing analytics
over business data. The main advantage of this framework, compared to the state-of-the-art, is
the easiness of its programming model, which does not require the scientist to think about data
partitioning and communication for their parallel code, while offering more flexibility, than
Map-Reduce, and expressibility for the code.

We have built a system that implements this framework, by connecting Flink to HBase
(storage) and to CoMD (the MD mini-app). Next, we have implemented two common analytics
for the field, a position histogram and the identification of neighbor atoms. These analytics have
very distinct complexities and communication patterns, but thanks to Flink’s programming
model both ended up being quite similar, since all the complex communication patterns were
hidden from the user.

We have experiment on the system built to find the highest stable throughput it can achieve
when relaying the CoMD data to HBase and when doing so while computing each of the ana-
lytics implemented. We have also experimented the Histogram analytics in a scale 4 bigger, in
order to see how the system would scale.

Results showed that for a set-up with 8 CoMD nodes:1 Flink node:1 HBase node and a
simulation of 32M atoms, we have achieved up to 71 MB/s when computing no analytics and
78 MB/s computing the Histogram. These throughput values seem to be very reasonable for
this application and system. For instance in [7], the authors benchmark their framework using
simulations that generates 2 MB/s per node. In our case, CoMD generated around 9 MB/s.

It is important mentioning that these results we have obtained refer to 20 minute-long sim-
ulations, that generates a 62GB trajectory (and 888.16 MB trajectory for the neighbor analyt-
ics). As we were short in time for performing the experiments with this set of parameters,
we needed to reduce the time taken for each run. Nonetheless, prior to those experiments, we
had experimented with longer periods and other combination of parameters. On those attempts
we verified that the same behavior of being stable and at some point becoming unstable could
happen anytime. Therefore, if we run the same simulations presented here for longer periods,
it could happen that the actual maximal stable throughput gets lower.

The evidence that we acquired from the measurements of the latencies, the heap usages and
the additional experiments we have made during this research let us concluded that the bot-
tleneck of this system is HBase. The main indicators that supports this conclusion conclusion
come from the following facts:

In stable points, HBase is able to cope with all its input pressure, making the cumulation



of events graph entirely green; in unstable points, the same does not happens, letting the blue
and orange histogram visible; the correlation between the reductions in the slope of the green
curve (HBase) and moments HBase was flushing its data; the quick reaction Flink has to back
pressure, making the pipeline stop as soon as it detects it and, of course, the experiment that
showed we could get higher throughput if we reduced the pressure in HBase.

On the other hand, with very distinct parameters (256K atoms), not allowing us to compare
the results directly, we have achieved only 1.10 MB/s on the neighbors identification analytics.
Further experiments made showed that in this case HBase was being saturated with lot of small
put requests.

Regarding the scalability, in our experiments we could not achieve a decent scalability
efficiency, however this could still be an effect of HBase. More experiments in this regards are
necessary to confirm it.

Since HBase is the component holding the system down, for future works, other distributed
data storage systems could be investigated as replacement for it. From more classical ap-
proaches as Apache Cassandra or even going for in-memory storage system over the new Non-
volatile RAM (NVRAM)
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A
Appendix

A.1 Histogram Analytics Code

Listing A.1 – Code of the Histogram Analytics with output on the standard output
1 p u b l i c c l a s s His togram {
2
3 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws E x c e p t i o n {
4
5 / / s e t up t h e e x e c u t i o n e n v i r o n m e n t
6 f i n a l S t r e a m E x e c u t i o n E n v i r o n m e n t env = S t r e a m E x e c u t i o n E n v i r o n m e n t
7 . g e t E x e c u t i o n E n v i r o n m e n t ( ) ;
8
9 / / S e t t h e Stream Env i ronemnt t o work w i t h Even t Time

10 env . s e t S t r e a m T i m e C h a r a c t e r i s t i c ( T i m e C h a r a c t e r i s t i c . EventTime ) ;
11
12 / / Get t h e Message s t r e am from ZeroMQ
13 DataStream <Tuple6 < I n t e g e r , I n t e g e r , Long , Long , byte [ ] , byte [] > > t e x t =

env
14 . addSource ( new ZeroMQBinarySt reamFunct ion (hwm, p o r t , n p o r t s , −1,

c o n f i g F i l e P a t h , nComdCl ien ts ) )
15 . name ( " Queue " )
16 ;
17
18 / * Compute His togram * /
19
20 / / Messages are s p l i t i n t o Atoms ( Tuple3 <Times tep , ZIndex , Count >)
21 DataStream < Tuple3 < I n t e g e r , Long , I n t e g e r > > atoms = t e x t
22 . f l a t M a p ( new M e s s a g e P a r s e r ( ) )
23 . name ( " S p l i t a toms " ) ;
24 i n t t i m e s t e p = 0 ;
25 i n t z In de x = 1 ;
26 i n t c o u n t = 2 ;
27 long windowSize = 1 ;
28 DataStream <Tuple3 < I n t e g e r , Long , I n t e g e r >> a n a l y t i c s R e s u l t s = atoms
29 . keyBy ( z I nd e x )
30 . window ( TumblingEventTimeWindows . o f ( Time . m i l l i s e c o n d s ( windowSize ) ) )
31 . sum ( c o u n t ) . name ( " Count atoms " )
32 . p r o j e c t ( t i m e s t e p , z Index , c o u n t )
33 ;
34



35 / / P r i n t t h e r e s u l t s i n t h e s t a n d a r d IO
36 a n a l y t i c s R e s u l t s . p r i n t ( ) ;
37
38 / / e x e c u t e program
39 env . e x e c u t e ( "CoMD wi th A n a l y s i s and DB Example " ) ;
40
41 }
42
43 p r i v a t e s t a t i c c l a s s M e s s a g e P a r s e r implements Fla tMapFunc t ion < Tuple6 <

I n t e g e r , I n t e g e r , Long , Long , byte [ ] , byte [ ] > ,
44 Tuple3 <

I n t e g e r
, Long ,
I n t e g e r
> > {

45
46 @Override
47 p u b l i c vo id f l a t M a p ( Tuple6 < I n t e g e r , I n t e g e r , Long , Long , byte [ ] , byte

[ ] > i n , C o l l e c t o r < Tuple3 < I n t e g e r , Long , I n t e g e r > > o u t ) {
48
49 B y t e B u f f e r b u f f e r = B y t e B u f f e r . wrap ( i n . f5 ) . o r d e r ( By teOrder . n a t i v e O r d e r

( ) ) ;
50 b u f f e r . p o s i t i o n ( 0 ) ;
51
52 whi le ( b u f f e r . r e m a i n i n g ( ) >0)
53 {
54 Double [ ] p o s i t i o n = {new Double ( b u f f e r . ge tDoub le ( ) ) , new Double (

b u f f e r . ge tDoub le ( ) ) , new Double ( b u f f e r . ge tDoub le ( ) ) } ;
55 Long z I nd e x = ZIndex . compute ( p o s i t i o n ) ;
56 o u t . c o l l e c t ( new Tuple3 < I n t e g e r , Long , I n t e g e r >( i n . f1 , / / T i m e s t e p
57 zIndex ,
58 new I n t e g e r ( 1 )
59 ) ) ;
60 }
61 }
62 }
63
64 p u b l i c s t a t i c c l a s s ZIndex {
65
66 p u b l i c s t a t i c Long compute ( Double [ ] p o s i t i o n )
67 {
68 / / f i n a l i n t numberOfB i t s = 21;
69 f i n a l i n t numberOfBi t s = 4 ;
70 i n t [ ] t r u n c a t e d = new i n t [ 3 ] ;
71 / / Mask i s t h e l e a s t s i g n i f i c a n t numberOfB i t s b i t s s e t t o 1
72 i n t mask = ( 1 << numberOfBi t s ) − 1 ;
73
74 f o r ( i n t i =0 ; i <3 ; i ++)
75 {
76 t r u n c a t e d [ i ] = ( i n t ) ( Math . round ( ( p o s i t i o n [ i ] . doub l eVa lue ( ) ) ) ) & mask ;
77 }
78
79 re turn mor tonEncodeMagicBi t s ( t r u n c a t e d [ 0 ] , t r u n c a t e d [ 1 ] , t r u n c a t e d [ 2 ] ) ;
80
81 }
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82
83 p r i v a t e s t a t i c long s p l i t B y 3 ( i n t a ) {
84 long x = a & 0 x 1 f f f f f ; / / we o n l y l o o k a t t h e f i r s t 21 b i t s
85 x = ( x | x << 32) & 0 x 1 f 0 0 0 0 0 0 0 0 f f f f L ; / / s h i f t l e f t 32 b i t s , OR

w i t h s e l f , and
00011111000000000000000000000000000000001111111111111111

86 x = ( x | x << 16) & 0 x 1 f 0 0 0 0 f f 0 0 0 0 f f L ; / / s h i f t l e f t 32 b i t s , OR
w i t h s e l f , and
00011111000000000000000011111111000000000000000011111111

87 x = ( x | x << 8) & 0 x 1 0 0 f 0 0 f 0 0 f 0 0 f 0 0 f L ; / / s h i f t l e f t 32 b i t s , OR
w i t h s e l f , and
0001000000001111000000001111000000001111000000001111000000000000

88 x = ( x | x << 4) & 0 x10c30c30c30c30c3L ; / / s h i f t l e f t 32 b i t s , OR
w i t h s e l f , and
0001000011000011000011000011000011000011000011000011000100000000

89 x = ( x | x << 2) & 0 x1249249249249249L ;
90 re turn x ;
91 }
92
93 p r i v a t e s t a t i c Long mor tonEncodeMagicBi t s ( i n t x , i n t y , i n t z ) {
94 long answer = 0 ;
95 answer | = s p l i t B y 3 ( x ) | s p l i t B y 3 ( y ) << 1 | s p l i t B y 3 ( z ) << 2 ;
96 re turn new Long ( answer ) ;
97 }
98 }
99 }



A.2 Raw CoMD data experiment without the queries
perturbation

A.2.1 Unstable point (output interval of 10 )

(a)

(b)

Figure A.1 – (a) Latency (CoMD to HBase) of packets. (b) Cumulation of events through time.
In pink, the number of sent messages; in blue, the number of messages received by flink and in
green, the number of stored messages.
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Figure A.2 – Heap usage of Flink’s and HBase’s worker nodes for the unstable point of output
interval 10. Flink’s heap size is 6 GB, while HBase’s is 30 GB



A.2.2 Stable point (output interval of 11 )

(a)

(b)

Figure A.3 – (a) Latency (CoMD to HBase) of packets. (b) Cumulation of events through time.
In orange, the number of sent messages; in blue, the number of messages received by flink and
in green, the number of stored messages.
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Figure A.4 – Heap usage of Flink’s and HBase’s worker nodes for the stable point of output
interval 11. Flink’s heap size is 6 GB, while HBase’s is 30 GB
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