Learning Crop Management by Reinforcement: gym-DSSAT Philippe Preux ⁴ Julien Bigot ⁵ Odalric-Ambrym Maillard ⁴ Gerrit Hoogenboom ⁶ Emilio J. Padrón ³ ²CGIAR Platform for Big Data in Agriculture, Colombia ⁴Scool: Inria, Université de Lille, CNRS, France ⁵Université Paris-Saclay, UVSQ, CNRS, CEA, Maison de la Simulation, France A use case: learning an efficient maize fertilization An episode spans one growing season, i.e. a finite number of time steps. The 100^{-1} objective function is defined as: $\sum_{t=0}^{\text{harvest}} r(t)$. -*-- null - ppo Table 3 provides the observation space. We consider three policies: expert E 60 • The *null* policy never fertilizes. As there is always nitrogen in soil before

Romain Gautron ^{1,2}

¹AIDA, Université de Montpellier, CIRAD, France

gym-DSSAT

A gym environment for realistic crop management tasks, that is easy to use for training Reinforcement Learning (RL) agent with the **Decision Support System for Agrotechnology Transfer** (DSSAT) crop simulator coupled with the WGEN stochastic weather generator.

DSSAT: **state-of-the-art** *Fortran* mechanistic crop growth simulator.

- gym: standardized Python API to connect a RL agent with a simulator of its environment.
- \Rightarrow gym-DSSAT is backed by the PDI library which allows loose coupling interaction between Fortran and Python code.

- gym-DSSAT is an on-going effort: 1st version end of 2021.
 - DSSAT offers a vast amount of possible simulations. gym-DSSAT currently handles some of them.
 - Beyond DSSAT, our approach may be used to turn other C/C++/Fortran monolithic mechanistic models into RL envs

Crop management problems in gym-DSSAT

Fertilization problem: the agent can apply every day a certain quantity of nitrogen (Table 1). Crops are rainfed, and no irrigation is applied during the growing season. We crafted the default fertilization return function as:

> $r(t) = \texttt{trnu}(t, t+1) - \underbrace{0.5}_{} \times$ anfer(t)penalty fertilizer factor quantity (kg/ha)

- 2. Irrigation problem: the agent can provide every day a certain amount of water to irrigate, as indicated in Table 1.
- 3. Mixed **fertilization and irrigation problem**: combines both the aforementioned decision problems, i.e. the agent can fertilize and/or irrigate every day.

A	— • • •	-	DayAfterPlanting	Quantity (kg l
Action	Description	Range	40	27
fertilization	nitrogen amount (kg/ha)	[0,200]	45	35
irrigation	water amount (L/m 2)	[0,50]	80	54

Table 1. Daily actions available in gym-DSSAT

Table 2. Expert fertilization policy

Custom scenario definition

- The **observation space** can be easily modified by editing a YAML config. file.
- The **return functions** can also be easily modified by editing a standalone Python file.

Features:

- \rightarrow Soil conditions and weather (simulated or measured) are available off-the-shelf based on hundreds of example of real-world measures.
- \rightarrow gym-DSSAT allows built-in climate change (e.g. for atmospheric CO₂, temperature) for **non-stationary** crop management problems.

- cultivation [3], the reference experiment, or *control*, is the null policy. • The *expert* policy is the one published in the original maize field experiment [1]
- and defined in Table 2. • The **PPO** policy learned by the Proximal Policy Optimization [4] RL algorithm, as implemented in Stable-Baselines3 1.4.0 [2] with default hyperparameters as baseline. We trained PPO for 10^6 iterations.

	Variable	Definition
	istage	DSSAT maize growing stage (categorical)
	vstage	vegetative growth stage (number of leaves)
	topwt	above the ground crop biomass (kg/ha)
	grnwt	grain weight dry matter (kg/ha)
	swfac	index of plant water stress (unitless)
	nstres	index of plant nitrogen stress (unitless)
	xlai	leaf area index (m^2 leaf/ m^2 soil)
	dtt	growing degree days (°C.day)
	dap	days after planting (day)
	–	cumulative nitrogen fertilization (kg N/ha)
λ	rain	rainfall for the current day $(L/m^2/day)$
_)	ер	actual plant transpiration rate (L/ m^2 /day)

Table 3. Default observation space for the fertilization task

Conclusions from experimental results

N/ha)

• An **untuned** PPO was able to learn sustainable fertilization and irrigation policies. \Rightarrow RL has a great potential to learn sustainable crop management practic

using gym-DSSAT.

gym-DSSAT allows exploration of many other agricultural decision problem multi-year crop management with crop rotations.

If you want to collaborate for developing gym-DSSAT, contact

gym-dssat@inria.fr

References

- [1] JM Bennett, LSM Mutti, PSC Rao, and JW Jones. Interactive effects of nitrogen and water stresses on accumulation, nitrogen uptake, and seed yield of maize. Field Crops Research, 19(4):297-311, 1989
- [2] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene Traore, Prafulla [Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schulman, Szymon Si Yuhuai Wu. Stable baselines. https://github.com/hill-a/stable-baselines, 2018.
- [3] Thomas F Morris, T Scott Murrell, Douglas B Beegle, James J Camberato, Richard B Ferguson, John Grove, Ketterings, Peter M Kyveryga, Carrie AM Laboski, Joshua M McGrath, et al. Strengths and limitations of rate recommendations for corn and opportunities for improvement. Agronomy Journal, 110(1):1, 2018.
- [4] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms, 2017.

Julien Teigny⁴

³Universidade da Coruña–Computer Architecture Group & CITIC, Spain

⁶University of Florida Gainesville, USA

Experimental results Policy returns (1000 episodes) tetui 40 mulated -4060 40 20 0 day of simulation

80 100 120 140 160 Figure 1. Mean cumulated return of each of the 3 policies against the day of simulation. Shaded area displays the [0.05, 0.95] quantile range for each policy. Nitrogen fertilizer applications (1000 episodes)

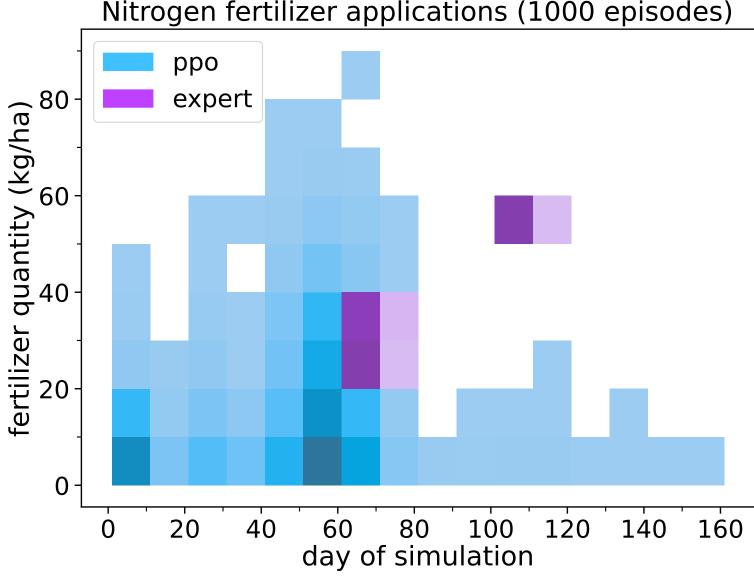


Figure 2. 2D histogram of fertilizer applications (the darker the more frequent).

ices				
ILES		null	expert	PPC
	grain yield	1141.1 (344.0)	3686.5 (1841.0)	3463.1 (1
ms, e.g.	massic nitrogen in grains	1.1 (O.1)	1.7 (0.2)	1.5 (0
	total fertilization	O (O)	115.8 (5.2)	82.8 (1
: us at:	application number	O (O)	3.0 (0.1)	5.7 (1
	nitrogen use efficiency	n.a.	22.0 (14.1)	28.3 (1
	nitrate leaching	15.9 (7.7)	18.0 (12.0)	18.3 (1

Table 4. Mean (st. dev.) of performances computed over 1000 episodes. **Bold** numbers indicate the best performing policy. See Table 5 for interpretation.

	Variable	Definition	Comment
n biomass	grnwt pcngrn	grain yield (kg/ha) nitrogen content in grains (%)	quantitative objective to be qualitative objective to be r
Dhariwal,	cumsumfert	total fertilization (kg/ha)	cost to be minimized
Sidor, and	-	application number	cost to be minimized
e, Quirine f nitrogen	_	nitrogen use efficiency (kg/kg)	agronomic criteria to be ma
	cleach	nitrate leaching (kg/ha)	loss/pollution to be minimiz

Table 5. Performance indicators for fertilization policies. '-' means the variable is not provided by default but it can be derived.

Ized

naximized

be maximized maximized

1628.4) (0.3)(15.2) (1.6)(16.7) (11.6)