
An efficient parallel set container for
multicore architectures

Álvaro DE VEGAa, Diego ANDRADE a,1 and Basilio B. FRAGUELAa
a University of A Coruña

Abstract.
Multicores are now the norm and new generations of software must take advan-

tage of the presence of several cores in a given architecture. Parallel programming
requires specific skills beyond from those required for the development of tradi-
tional sequential programs. The usage of parallel libraries is one of the best ways
to facilitate parallel programming, as they does not require new compilers and they
allow to parallelize sequential codes without big efforts by the programmer. This
paper presents an efficient and portable parallel set container. This container has
been used to program parallel versions of several algorithms. The experimental re-
sults show that the container facilitates the programmability and achieves a good
performance on multicore systems.

Keywords.Multicore architectures, parallel library, data containers, data parallelism

1. Motivation

Parallel libraries are a good method to facilitate the expression of parallelism to pro-
grammers. Libraries have several advantages with respect to the usage of parallel lan-
guages [4] or compiler directives [3], as they provide a moreportable solution that short-
ens the development time and do not require new compilers or the learning of new lan-
guages.

Data container types are widely used in modern programming,as they are a nor-
malized method to store the data managed by a program. Object-oriented languages are
the natural implementation vehicle for these containers, since we are defining new data
types. Besides they facilitate the construction of containers of complex data types (e.g.
objects with runtime polymorphism). Features such as polymorphism and operator over-
loading are very useful in this context, as they provide a more convenient notation for
the representation of operations.

Data parallelism is preferably exploited in the parallelization of data containers (in-
stead of task parallelism), as the methods that manage thesecontainers may be paral-
lelized by dividing the container into different parts, on which these operations are ap-
plied concurrently. This paper presents a parallel data setcontainer type for C++ which
uses efficiently the resources available in multicore architectures. The data type supports
the API of the Standard Template Library (STL) [12] and additional methods which can

1Corresponding Author: Office 0.03, Facultade de Informática, Campus de Elviña s/n, A Coruña, Spain
E-mail: diego.andrade@udc.es.

be used to explicitly or implicitly express parallelism. The underlying parallelization of
the data type and its operations is done using the Intel Threading Building Blocks (TBB)
library [9].

The rest of this document is organized as follows. Section 2 outlines the main op-
erations implemented by our library. Section 3 describes the test programs implemented
using the library and the performance numbers obtained. Section 4 discusses the related
work and Section 5 summarizes the conclusions.

2. The concurrent_set data type

Theconcurrent_set data type supports the API of thestd::set type of the STL
library. This facilitates code reuse as well as the gradual adaptation of existing codes,
which can first replace the standard STL sets byconcurrent_set with no effort and
later useconcurrent_set additional methods when and wherever desired. The pro-
grammer sees a single flow of execution, being the operationson concurrent_sets im-
plicitly parallel. The container is polymorphic, as sets containing elements of any data
type may be defined. In addition, it offers methods for all theoperations that are usu-
ally applied on sets. The meaning of some of these operationsis defined as described
in the standard set theory: Is_a_member_of, Is_subset_of,Union, Intersection, Comple-
ment and Symmetric difference. Other operations provided that are not specified in the
standard set theory are:

SelectionWhen it is a applied on a setA of elements of typeT , given a predicated
Pred : T → {true, false} it generates a subsetB = {a ∈ A/Pred(a) =
true}

Application Given a setA of elements of typeT , and a functionf : T → T , this
operation applies this function on each member ofA.

Reduction Given a setA of elements of typeT and a reduction functionr : (T, T) →
T , the reduction function is applied on all the members ofA until it returns a single
element.

Map Given a setA of elements of typeT and a functionf : T → S, this operation
applies this functions on each member ofA and it returns a setB = {f(a)/a ∈ A}

Relationship Given two setsA andB, and defined the cartesian product of these data
setsA × B as the set{(a, b)/a ∈ A, b ∈ B}, this operation builds a set that
contains all the pairs ofA×B that fulfill a predicatep that defines the relationship.

The library also provides more complex operators such as an efficient parallel
MapReduce which are not detailed here due to space reasons.

The library is publicly available in https://forxa.mancomun.org/projects/ctl/
Figure 1 shows an easy example of usage of theconcurrent_set data type

which illustrates its simplicity. Line 1 shows the only header that must be included to
enable the use of the library. The instruction in line 5 creates aconcurrent_set of
elements of typechar. Let us notice that it uses one of the standard constructors of the
stl::set data type and thatconcurrent_set is defined in thectl namespace.
This set is filled with thechar’s of the string initialized in line 4. Line 6 executes a
map operation on the set using the implicit parallelism provided by the library. Thismap
operation applies the function declared on line 2 on all the elements of the set. This
function substitutes each char by the next char in the alphabet.

1 # i n c l u d e " c o n c u r r e n t _ s e t . h "
2 i n l i n e char sum1 (c o n s t char c) { r e t u r n c +1; }
3 vo id main () {
4 char s t r [] = " abcd " ;
5 c t l : : c o n c u r r e n t _ s e t <char > s e t (s t r , &s t r [s i z e o f (s t r)−1]) ;
6 s e t . map (sum1 , s e t) ;
7 }

Figure 1. Example of map operation implemented using theconcurrent_set data type

2.1. Implementation details

Figure 2.: Grid layout used in the map opera-

tions. Rows S1 to S4 represent the source subsets and

columns D1 to D4 represent the destination subsets.

!" !# !$!%

!# !$!% !"

!$!% !" !#

!% !" !# !$

&"

&#

&$

&%

'()*

Figure 3.:Order in which each task, which processes

one subset ofA, starts the processing of the subsets of

B. Rows S1 to S4 represent the subsets ofA and D1 to

D4 represent the subsets ofB.

Theconcurrent_set data type is defined as a C++ template which allows to
define sets containing elements of any type. The parallelization of all the operations is
achieved by dividing internally the set in a number of subsets. The structure is organized
as astd::vector of std:set’s. The concurrency is implemented using the Intel
Threading Building Blocks library which allows to define dynamically the tasks that
process concurrently each subset and provides automatic load balancing among the cores
available. We developed an alternate implementation of thelibrary using OpenMP but
it was up to twice slower for some operations. The number of subsets defaults to the
amount of hardware threads available in the system, but it can be selected by the user for
eachconcurrent_set. The mapping of objets to subsets is done according to a hash
function which tries to balance the number of elements amongthe subsets. Again, while
a default one is provided, a user-defined one can be supplied.

The implementation of the operations with reduced parallelism, like for example a
insertion of one isolate element in the set, is done simply byapplying the sequential ver-
sion of the operation on the corresponding subset. This is the case of several operations
already present in the API of thestd::set type of the STL library. The remaining op-
erations are implemented using efficient strategies which take advantage of the presence
of several cores. The parallelism is limited in these operations mainly by two factors.
(1) The impossibility of different tasks to operate concurrently on the same inner set or
subset. (2) The mapping of theconcurrent_set elements to subsets is determined
by a hash function of the contents of each element. Therefore, if the operation modifies
one element, it may change its location. Thus, the operations performed by each task

!
"#

$

Figure 4. Scheme to process a all-to-all operation when the two operand set are the same setA. S1 to S8

represent the subsets ofA.

may potentially affect any subset, which limits largely theperformance as factor (1) es-
tablished. These operations are classified in four categories for which a separate strategy
has been designed to perform the operation efficiently. Theyare now explained in turn.

• Map operations.This category includes the operations where the same function is ap-
plied on all the elements of the set.Application andMap are examples of this cat-
egory. If the function applied on each element of the set doesnot modify its contents,
there is not risk that the element has to be relocated in a different subset after the function
is applied. In that case, it is safe to apply the operation concurrently on the elements of
different subsets. If the function may modify the contents of the element and conversely
the subset where it is located, it is not safe to apply the function concurrently, as the
same subset could be affected by different tasks. The solution is to create an auxiliary
grid layout, like that one represented in Figure 2, which hasone row per source subset
(those where the elements are before they are modified) and one column per destination
subset (where the elements are placed once modified). Each task applies the function on
the elements of its associated source subset and stores themin the appropriate columns
of its associated row. As the elements already exist and theyare simply modified, the grid
stores only the pointers to the original elements (once modified). Finally, the elements
(the pointers) are moved from this grid to the correspondingsubsets of a new set. In this
movement, the processing of each column of this grid can be performed concurrently by
a different task, as it is guaranteed that the elements of different columns are inserted in
different subsets of the destination structure.

• Comparison operations.Given two setsA andB, this kind of operations searches for
occurrences of each element inA in set B and viceversa. Symmetric difference and
intersection are examples of this kind of operations. The search of the elements of setA
in setB has a complexity ofO(N · log(M)), N andM being the cardinalities ofA and
B respectively. This complexity can be reduced because the elements in a set are always
ordered according to their hash function, thus, the search of the first element ofA starts

at the first element ofB and continues until the same element, or an element with a hash
function greater than the searched element, is found. The search of the second element
of A starts where the search of the first element finished. The process continues until
the end of setB is reached, or all the elements ofA have been searched. This strategy
allows to reduce the complexity of this search toO(log(N + M)). If both sets have the
same number of subsets and they use the same policy to distribute their elements among
them (same hash function and comparator), the search of the elements on each subset of
A is limited to the corresponding subset ofB. When this is not the case, a copy of set
B is created with the same number of subsets and using the same policy to distribute its
elements as in setA.

• All-to-all operations.In this kind of operations, every element of setA is combined with
each one of the elements of setB.Relationship is an example. The processing of the
elements of each subset ofA can be performed concurrently if the elements ofB are not
modified. If they are modified, then it is necessary to lock theaccess to each subset ofB.
If each task accesses the subsets ofB in the same order, there is a big contention and the
locks and waits are systematic. The interference among tasks is minimized if each task
starts the processing ofB at a different subset, as it is represented in Figure 3. When sets
A andB are the same, establishing locks on the access to this set is more problematic. We
solve this problem by splitting the set into two halves. Figure 4 represents the process.
In a first stage, the elements in the subsets of the first half are combined with those in the
second half. The processing of each subset in the first half isconducted concurrently by
different tasks and the the subsets in the second half must belocked to avoid concurrent
accesses by different tasks. Reciprocally, the elements inthe second half are combined
with those in the first one. The process is repeated recursively on each half until each one
contains only one element, which is finally combined with itself.

• Reduce operations.The reduction on each subset is performed concurrently. Then, these
partial results are combined. Some reductions finish when a given element is found. In
our parallel implementation, the tasks are synchronized using a flag which is activated
when one of the tasks finds the value. All the tasks are terminated when they find this
flag activated.

3. Evaluation

The library has been validated with a set of codes parallelized using intensively the
concurrent_set data type and its associated operations. These programs are:

• Air control This program implements a simple air control simulator. Theair
space is represented by a square space, where planes are represented by points
which move according to a velocity in a given direction. In each simulation time,
the program checks if the distance between two of the planes is too short. In that
case, it reports a danger of collision.

• Shortest pathThis program implements the search of the shortest path between
two points in a graph.

• Barnes-Hut algorithm This program performs the simulation of the evolution
of a dynamic system where a number of particles interact according to a force
whose effects diminish with the distance following the Barnes-Hut algorithm [1].

Table 1. Comparison of the programmability provided by Intel TBBs and concurrent_set using three
quantitative metrics

Code
concurrent_set Intel TBBs

SLOC PE V SLOC PE V

Air control 85 338037 11 120 524608 15

Shortest path 120 1062305 25 172 1967884 30

Barnes-Hut 369 2126524 44 390 2350400 46

Delaunay 166 374757 23 206 721169 25

Table 2. Times (in milliseconds) of the sequential and parallel versions of the test programs and speedup (in
parenthesis) calculated against sequential versions

Code Seq. 1 thread 2 threads 4 thread 8 threads 16 threads 24 threads

Air control 28966 33418(0.87) 16316(1.78) 7863(3.68) 3987(7.27) 2812(10.3) 1393(20.79)

Shortest path 5566 5685 (0.98) 2852(1.95) 1487(3.74) 752(7.40) 494(11.27) 378(14.72)

Barnes-Hut 21098 21324(0.99) 11686(1.81) 6333(3.33) 3425(6.16) 2226(9.48) 1467(14.38)

Delaunay 1952 1899(1.02) 1323(1.47) 953(2.04) 789(2.47) 732(2.6) 765(2.55)

The system is simulated through a series of discrete simulation times where the
interaction of each particle in the systems with all the other particles is calculated.

• Delaunay refinementThis program refines an unstructured mesh of triangles so
that it fulfills the Delaunay property [10], i.e., no angle inthe mesh is less than 30
degrees.

The library has been tested from two points of view: expressivity and performance.
We have evaluated the expressivity of the library followingthe methodology proposed
in [5], which relies on three quantitative metrics: the number of source lines of code [14],
the programming effort (PE) [6], and the cyclomatic number (V) [8]. The SLOC met-
ric is influenced by the user programming style, while the twoother metrics attenuate
the influence of this factor. The programming effort (PE) is afunction of the number
of unique and total, operands and operators found in a program. The operands stand
for the constants and identifiers, while the operators are the symbols or combinations of
symbols that affect the value or ordering of operands. This programming effort metric
is approximately proportional to the programming effort required to implement an algo-
rithm. Finally, the cyclomatic number V is equal to P +1, P being the number of deci-
sion points or predicates in a program. The smaller V, the less complex the program is.
These metrics are used in Table 1 to compare two implementations of the algorithms,
one using Intel TBB library and the other one using our library. The PE and V metrics
were collected using the C3MS tool used in [5]. The usage of our library implies, on
average, a 20% reduction in the total size of the code with respect to the TBB version,
despite the fact our library is used only in small pieces of the code. Our library also im-
proves clearly the programmability of these benchmarks with respect to the Intel TBBs
in terms of programming effort and cyclomatic number. Additionally, let us recall that
our library implements the API of thestd::set and this API is widely used by the
programmers. Thus, these programmers can use easily our library, and the large amount
of existing codes which already use this interface have an almost immediate translation
to our library. Regarding the highly parallel operations not present in the STL API, the
proposed API offers a quite natural method to express this parallelism (see Fig. 1).

The performance of the implementations that useconcurrent_set has been
compared with the performance of a sequential version of theprograms. Table 2 shows
the times in milliseconds of the sequential version of the program, and the parallel ver-
sion implemented with our library for different numbers of threads. The speedup of the
parallel version with respect to the sequential one is included between parentheses. The
times where taken in a Intel Xeon hexa-core E7450 to 2.40 Ghz with 4 processor to-
taling 24 cores using the compiler gcc 4.1.2. The results show that theperformance of
the parallel version scales quite well with the number of cores. Delaunay presents low
scalability because it has important non-parallel sections, and its parallelization intro-
duces additional processes which are not present in the sequential version due to its high
irregularity. For example, it performs speculative computations which are discarded if
conflicts among threads are found.

4. Related work

Several works have tackled the improvement of the programmability of multicore sys-
tems using libraries. This section is focused in those whichimplement generic parallel
data structures. The STAPL framework [13] definespContainers, which are generic
data structures that can be used in shared and distributed memory environments, and
which can be composed hierarchically to achieve arbitrary degrees of nested parallelism.
These two characteristics are shared with the Hierarchically Tiled Arrays (HTAs) [2],
data structures which facilitate locality and parallelismof array intensive computations
on both shared and distributed memory environments. The Intel Threading Building
Blocks library [9] also provides several containers which can be used in shared memory
systems, but they do not make use of the semantics of the containers to exploit data par-
allelism. The main advantage of our approach with respect tothose ones is its confor-
mance to the STL API. This facilitates its usage by programmers already familiar with
that API and increases the migration and reuse of existing code.

Other works have also used the STL as a reference. For exampleHPC++ [7] is a
library and language extension framework for portable parallel C++ programming. This
library includes the Parallel Standard Template Library (PSTL) framework, which im-
plements several containers (included aset), based in the STL API, and selected par-
allel versions of several algorithms which can be used in a distributed memory environ-
ment. Unlike our work, this one is focused on distributed memory environments and the
number of parallel algorithms implemented is more limited,although it provides parallel
versions of several containers (seven).

The Multi-Core Standard Template Library (MCSTL) [11] provides efficient parallel
implementations of the algorithms in the STL API in shared memory environments. The
main difference with our work is that it does not provide implementations of algorithms
out of those in the STL API. The reason is that its main target is to provide parallelism
simply by recompiling existing codes already written usingthe containers in the STL
API.

5. Conclusions

This work presents a simple, portable and efficient parallelset container. The experimen-
tal results show that this parallel data type improves much the programmability in com-
parison to other alternatives for parallel programming such as Intel Threading Building
Blocks. The usage of a STL-like interface softens the learning curve and facilitates the
gradual adaption of existing codes. The codes implemented with this parallel container
achieve a good performance taking advantage of the presenceof an increasing number
of cores and providing automatic load balancing.

Acknowledgements

This work has been supported by the Xunta de Galicia under project INCITE08PXIB105161PR
and the Ministry of Education and Science of Spain, FEDER funds of the European
Union (Project project TIN2010- 16735).

References

[1] J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm.Nature, 324(6096):446–
449, 1986.

[2] G. Bikshandi, J. Guo, C. von Praun, G. Tanase, B. Fraguela, M. Garzarán, D. Padua, and L. Rauch-
werger. Design and use of htalib–a library for hierarchically tiled arrays. Procs. 19th Intl. Workshop
on Languages and Compilers for Parallel Computing. LectureNotes in Computer Science, 4382:17–32,
2007.

[3] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, andR. Menon. Parallel programming in
OpenMP. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[4] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.
X10: an object-oriented approach to non-uniform cluster computing. InProcs. of the 20th annual ACM
SIGPLAN conference on Object oriented programming, systems, languages, and applications, pages
519–538, 2005.

[5] C.H. González and B.B. Fraguela. A generic algorithm template for divide-and-conquer in multicore
systems. InProcs. of the 2010 IEEE 12th International Conference on High Performance Computing
and Communications, pages 79–88, 2010.

[6] M.H. Halstead.Elements of software science. Elsevier New York, 1977.
[7] E. Johnson and D. Gannon. Hpc++: experiments with the parallel standard template library. InProcs.

of the 11th international conference on Supercomputing, pages 124–131, 1997.
[8] T.J. McCabe. A complexity measure.IEEE Transactions on software Engineering, pages 308–320,

1976.
[9] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism.

O’Reilly, 1 edition, July 2007.
[10] J.R. Shewchuk. Delaunay refinement algorithms for triangular mesh generation.Computational Geom-

etry, 22(1-3):21 – 74, 2002.
[11] J. Singler, P. Sanders, and F. Putze. Mcstl: The multi-core standard template library.Euro-Par 2007

Parallel Processing, pages 682–694, 2007.
[12] A. Stepanov and M. Lee. The standard template library. Technical report, HP Laboratories Technical

Report 95-11(R.1), 1995.
[13] G. Tanase, A. Buss, A. Fidel, H. Harshvardhan, I. Papadopoulos, O. Pearce, T. Smith, N. Thomas, X. Xu,

N. Mourad, et al. The stapl parallel container framework. InProcs. of the 16th ACM symposium on
Principles and practice of parallel programming, pages 235–246, 2011.

[14] D.A. Wheeler. Sloccount, a set of tools for counting physical source lines of code (sloc).URL
http://www. dwheeler. com/sloccount.

