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As the memory bottleneck problem continues to grow, so does the relevance of the techniques
that help improve program locality. A well-known technique in this category is tiling, which decom-
poses data sets to be used several times in a computation into a series of tiles that are reused before
proceeding to process the next tile. This way, capacity misses are avoided. Finding the optimal tile
size is a complex task. In this paper we present and compare a series of strategies to search the op-
timal tile size guided by an analytical model of the whole memory hierarchy and the CPU behavior.
Our experiments show that our strategies find better tile sizes than traditional heuristic approaches
proposed in the literature while requiring a small compile-time overhead. Iterative compilation can
yield better results, but at the expense of very large overheads.

1. Introduction

The success of memory hierarchies in bridging the gap between the processor and the main mem-
ory speeds depends on the locality of the data accesses. Such locality can be improved by a number
of software optimizations [2]. One of the most effective techniques is tiling [8,10,4,13,7], which
combines strip-mining and loop permutation to create small tiles of loop iterations that concentrate
the accesses to a given data set, thus maximizing access locality. The tile sizes are chosen so that
the associated data sets fit in the cache; which results in a reduction of the capacity misses. The
effect of tiling on multiple processors is even more significant, since it not only reduces average data
access latency, but also the required memory bandwidth. Still, the fact that caches have a limited
associativity and that normally during a portion of the execution of a program several data structures
need to be accessed implies that despite the application of this technique, many capacity and conflict
misses can take place. Besides, the number of misses may vary widely depending on the chosen
tile size, since cache behavior is unstable and very sensitive to small changes on a large number of
parameters [10,14].

Most of the approaches proposed so far to choose an optimal tile size are based on relatively
simple heuristics [10,4,13,7]. These algorithms have many restrictions. The most important ones are
that they adopt a very simplified view of the cache behavior, they do not consider the additional CPU
time required to manage the tiles, they are restricted to a single cache level, and they only consider
accesses to a single data structure. As a result, very often the tiles proposed by these techniques
are far from being optimal. Iterative compilation techniques [9] to explore the solution space yield
better results. Unfortunately these techniques are too costly to be applied repetitively and/or in big
applications except in very particular cases.

An optimal tile size search technique introduced in [5] lies in exploring the solution space guided
by a precise analytical model that considers both the CPU and the whole memory hierarchy cost of a
tile size. This paper compared the model predictions for a fixed set of tile sizes that were divisors (or
values nearby) of the sizes of the loops in the considered nests and chose the one with the lower cost.
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Later, [15] applied similar ideas with other models using a genetic search algorithm. Both works
lacked a study of which of the possible search strategies would yield the best results. In this paper
we compare both search techniques as well as a novel hybrid one we propose here which turns out
to yield the best results. We also compare the results of search guided by models with those of the
traditional heuristic approaches and iterative compilation.

The rest of the paper is organized as follows. An introduction to our model of the memory hier-
archy is provided in Sect. 2. Our approach to estimate the cost associated to a tile size is explained
in Sect. 3. Then, Sect. 4 presents the optimal tile size search strategies that we consider. The ex-
periments in Sect. 5 shows the relative advantages of the different tile size selection techniques.
Section 6 contains a review of related work. Finally, Sect. 7 is devoted to our conclusions.

2. The Probabilistic Miss Equations (PME) Model

The PME model [5] provides fast and accurate predictions of the memory behavior of codes with
regular access patterns in direct-mapped or set-associative caches with a LRU replacement policy.
The model is based on the idea that cache misses take place the first time a memory line is accessed
(compulsory miss) and each time a new access does not find the line in the cache because it has been
replaced since the previous time it was accessed (interference miss). This way, the model generates
a formula for each reference and loop that encloses it that classifies the accesses of the reference
within the loop according to their reuse distance, this is, the portion of code executed since the latest
access to each line accessed by the reference. The reuse distances are measured in terms of loop
iterations and they have an associated miss probability that corresponds to the impact on the cache
of the footprint of the data accessed during the execution of the code within the reuse distance. In
particular, ifK is the degree of associativity, the miss probability is given by the ratio of cache sets
that have receivedK or more lines during the execution of the code within the reuse distance. The
reason is that if each cache set holdsK lines, a line whose behavior is being observed will have
been replaced if and only ifK or more different lines mapped to its cache set have been accessed
since the previous access to the line. The formula estimates the number of misses generated by the
reference in the loop by adding the number of accesses with each given reuse distance weighted by
their associated miss probability.

The accesses that cannot exploit reuse in a loop are compulsory misses from the point of view of
that loop. Still, they may enjoy reuse in outer loops, so they must be carried outwards to estimate
their potential miss probability. This is why the PME model begins the construction of its prob-
abilistic formulas in the innermost loop that contains each reference and proceeds outwards. The
formulas are built recursively, with the formula for each loop level being built in terms of the for-
mula obtained for the immediately inner level. In each nesting level the set of accesses whose reuse
distances correspond to iterations of that loop are detected, and the associated miss probabilities are
estimated. Those accesses for which no reuse distance has been found when the outermost loop is
reached correspond to the absolute compulsory misses, whose miss probability is one.

The usage of miss probabilities, generated by estimators provided by the model of the impact
on the cache of the accesses to data regions during the reuse distances, gives place to the model’s
probabilistic nature, which distinguishes it from all the other cache models in the bibliography.

3. Computer Modeling

The PME model provides accurate estimations of the behavior of a cache, but current computers
have a memory hierarchy with several levels of caches, and the CPU plays of course an essential role
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in the system performance too. The first problem is solved by extending the PME model to consider
a hierarchy of cache levels. Each leveli is characterized by a total cache sizeCsi

, a line sizeLsi
, and

an associativityKi. Given these parameters and an arbitrary code, the model can predict the number
of misses generated in each level of memory hierarchy. The property of inclusion that multilevel
memory hierarchies fulfill allows the independent modeling of the different levels, as each access
that were a hit in a given cache level, should also be a hit in the lower levels as a consequence of
this property. Still, the caches in the different levels do not experience the same pattern of accesses,
since accesses are filtered by the successive levels as they proceed down the hierarchy. This fact can
generate some deviations with respect to this ideal behavior, but they are minimal and so they affect
little the accuracy of the estimations obtained following this approach.

Since we aim to predict the performance of the whole memory hierarchy, misses in the different
levels receive different weightsWi that are given by the miss penalty in cache leveli measured in
processor cycles. This way, the cost of the execution of loop nestL using the set of tile sizesT in a
system withN cache levels can be estimated as

MemCost(L, T, H) =
N∑

i=1

WiM(Csi
, Lsi

, Ki, L, T ) (1)

where functionM yields the number of misses estimated by the model for loop nestL for a given
cache level and set of tile sizes; andH stands for the memory hierarchy represented as a set of tuples
H = {(Cs1 , Ls1 , K1,W1), . . . , (CsN

, LsN
, KN ,WN)}.

We use the Delphi [3] CPU model in order to estimate the number of cycles CPUCost(L, T, C)
that codeL spends in the CPUC depending on the tile sizesT . This model simply counts the number
of operations of each type found within the code and it adds them weighting them according to their
respective latencies. Since current processors are superscalars, Delphi uses some simple heuristics
to take into account the overlapped execution of instructions so as not to overestimate the CPU time.

This way our final estimation of the cost of executing loop nestL with the set of tile sizesT in a
computer with a CPUC and a memory hierarchyH is given by

Cost(L, T, C, H) = MemCost(L, T, H) + CPUCost(L, T, C) (2)

The Delphi and the PME models, as well as our optimal tile size search module are implemented
in the Polaris platform [1], which we use to analyze the codes and generate the optimized versions
with the tile sizes chosen by our module.

4. Search Strategies

Our approach to find the tile sizes that minimize the execution time of a loop nestL lies in explor-
ing the solution space (the combinations of possible tile sizes) guided by our analytical model. Such
exploration can be performed using several strategies. In our experiments we have explored the via-
bility of two completely different strategies: the search on divisors, an ad-hoc algorithm specifically
designed for this problem that searches only in a set of predefined values, and a genetic algorithm,
which is a general search approach applicable to any solution space. Then, we have developed a
hybrid strategy that combines them.

4.1. Search on Divisors
In each loop nest in which tiling has been applied, this algorithm searches a well-defined subset

of all the combinations of possible tile sizes. Concretely, for each tiled loop it chooses the initial



4Table 1
Cache and TLB parameters in the architectures used (sizes in Bytes)

Architecture
L1 Parameters L2 Parameters L3 Parameters TLB Parameters

(Cs1 , Ls1 , K1, W1) (Cs2 , Ls2 , K2,W2) (Cs3 , Ls3 , K3,W3) (Cs4 , Ls4 , K4,W4)

Pentium 4 (8K,64,4,24) (512K,128,8,150) - (256K,4K,64,30)
Itanium 2 Irrelevant (256K,128,8,24) (6MB,128,24,120) (8MB,64K,128,25)

tile size specified by the program, if any, and the series of valuesTi = dN/ie, whereN is the total
loop size. The intention of choosing divisors of the loop sizes is to maximize the work made in each
iteration of the loops that traverse the tiles, and to simplify the control conditions of the loops. In
our experiments we used0 < i ≤ 128, and whenever two values ofTi differed in less than three
units, one of them was discarded. This algorithm, applied in [5], searches the best combination of
values chosen from these sets for the different tiles in a loop nest. This approach explores quickly
the solution space paying more attention to small tile sizes.

4.2. Genetic Algorithm
Genetic algorithms are stochastic methods applicable to problems for which no specific resolution

method is available. These algorithms simulate the genetic and natural selection processes. Namely,
an initial set orpopulationof candidate solutions is encoded as bit strings arbitrarily codified. These
strings are modified and recombined to produce new solutions. The solutions are evaluated by means
of afitness functionthat chooses the best ones and promotes them as the base for a newgenerationof
solutions. Crossover and mutation are applied on minimal units of information calledgenesin order
to recombine and alter the strings. The process of generation and selection of solutions is applied
repetitively for several generations till certain convergence criteria are met. The adaptability of these
algorithms, a good coverage of the solution space and their inherent parallelism make them suitable
for the search of the optimal tile size.

4.3. Hybrid Algorithm
Both the search on divisors and the genetic algorithm have interesting properties to solve our

problem. It is possible to combine their advantages following a hybrid strategy. The hybrid algorithm
we propose has two phases. In the first step, an approach to the solution is found using the search
on divisors. In the second phase, the result is refined using a genetic algorithm. Then best solutions
found in the first phase constitute the initial population for the second phase. This population is
completed using versions with noise of elements randomly chosen among then first ones.

5. Evaluation

For each search strategy we implemented two versions in our tool: one based on the exploration of
the solution space guided by the PME analytical model, and another one based on iterative compila-
tion [9]. We also implemented two of the most popular traditional techniques based on heuristics in
order to compare them with our strategies. The first one, which we calllrw [10], chooses the biggest
square block that does not collide with itself in the cache. The second technique, which we name
euc, was developed in [13] by extending the work in [4], based on the Euclidean GCD algorithm.

We run our experiments in two popular platforms: a Pentium 4 at 2 GHz with g77 3.3, which
is representative of the most widely extended architecture nowadays, and an Itanium 2 at 1.5 GHz
with a 6MB third level cache and the HP F90 2.7.3 compiler. TheO3 optimization level, and flags
to preclude the compiler for applying additional loop transformations that would distort the experi-
ments were used to compile the codes in both systems. Table 1 shows the configuration of the TLB



5Table 2
Description of the kernels and sizes used for the experiments, wherei = 0, 1, . . . , 19.

Kernel Description Pentium 4 sizes Itanium 2 sizes

MXM Matrix product (IJK) 300 + 50× i 1000 + 50× i
MV Matrix-vector product 300 + 50× i 2000 + 50× i
TRANSP Bidimensional matrix transposition 1700 + 50× i 4000 + 50× i
VPENTA Inversion of three pentadiagonals 800 + 50× i 2000 + 50× i
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Figure 1. Tiling speedup in the Pentium 4 as a
function of the strategy followed to choose the
tile sizes
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Figure 2. Tiling speedup in the Itanium 2 as a
function of the strategy followed to choose the
tile sizes

and the cache levels of both systems. The TLB acts as a level of the memory hierarchy from the
point of view of the execution time, and this is how it is regarded by the analytical model. In fact it
can be characterized with the same parameters as a cache, the page size being the line size, and the
product of the page size by the number of entries of the TLB being the total size of the level. Let us
notice that the Pentium 4 has only two level of caches, while the first level cache of the Itanium 2 is
irrelevant for our experiments, since it does not store floating point data; which is the kind of data
we use in our experiments. As for the CPU parameters, the most relevant one from the point of view
of the tile size selection is the penalty associated to misspredicted branches, which is 20 cycles in
the Pentium 4 architecture and 8 for the Itanium 2.

We used for our experiments four representative kernels taken from [15]. Table 2 describes them
briefly and shows the sizes considered for our experiments in both platforms. The sizes used in the
Itanium 2 are much larger than those used in the Pentium 4, since while the first level of cache to
consider in the Itanium 2 has 256 KBytes, the first level cache of the Pentium 4 has only 8 KBytes.
Something similar happens when we compare the size of their corresponding next level caches and
the TLBs.

Figures 1 and 2 show the speedups achieved by each tiled algorithm with respect to its non-tiled
version depending on the strategy followed to choose the tile size on the Pentium 4 and the Itanium
2 architectures, respectively. The last set of bars, labeled AVG, represents the arithmetic mean of
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the speedup achieved over the four kernels for each strategy. Columnslrw andeuccorrespond to
the traditional techniques described in [10] and [13] respectively, as explained before. Bars SD, GS,
HS and RAND correspond to the Search on Divisors (Sect. 4.1), the pure Genetic Algorithm Search
(Sect. 4.2), the Hybrid Search (Sect. 4.3) and a Random Search, respectively. The parameters used
for the genetic algorithms in GS and HS are very similar to those used in [15] and [9]. As for the
hybrid search, its genetic search started with a population formed by the 30 best tiles found by the
search on divisors. The random search tried 184 randomly generated tile sizes, which is a value
similar to the average number of tiles considered by the genetic algorithm search. In the Pentium 4
architecture we tested each search strategy by guiding it either by the PME analytical model static
predictions or by means of real executions (iterative compilation). Both columns are labeled PME
and EXE in Fig. 1 respectively. We could only run experiments using the static predictions in our
Itanium 2 because of its limited availability and the large amount of time that iterative compilation
requires.

We can see that while the tiles chosen by the genetic search (GS) and the random search (RAND)
sometimes performed worse than those of the traditional approaches, the search on divisors (SD)
and the hybrid search (HS) always generated results at least as good as those of the heuristics. As
expected, iterative compilation generates almost always better results than the static model, but in
general the difference is small: on average the tiles chosen by the iterative compilation are 8.3%
faster than those chosen by the static search, and just 5.7% if we exclude the blind random search.
Interestingly, HS PME chooses a much better tile than HS EXE in VPENTA. This may be due to
the random factor in any genetic algorithm. The average speedup of the static SD, GS, HS and
RAND PME searches over the best traditional approach (lrw) is 12%, 9.6%, 29.5% and 3.53% in
the Pentium 4, respectively; and 18.4%, 14.4%, 19.8% and 13.8% in the Itanium 2, respectively.
This way, the novel hybrid search we propose in this paper seems to be the best overall strategy,
followed by the search on divisors.

Tile selection guided by the PME analytical model is completely feasible for current compilers,
given that the average time to choose the tile sizes was about 0.82 seconds per code in the Pentium
4 and 2.15 seconds in the Itanium 2, with maximum times below 7 seconds in both architectures.
In contrast, iterative compilation times are usually in the order of the thousands of seconds in the
Pentium 4, with an average search time of 2709 seconds, and a maximum time of 20440 seconds.

6. Related Work

Traditional approaches to choose the optimal tile size [10,4,13,7] have many limitations: they
disregard the CPU time, they focus on a single level of the memory hierarchy and they rely on
simple heuristics that dismiss important cache parameters like the associativity, that only consider
the reuse in a single array, and that pay little or no attention to the interactions in the cache among
several data structures, which could include several tiles generated by the dimension partitioning
implied by tiling. For example, the fact that traditional approaches only consider a single tile while
our general analytical model considers arbitrary inter-tile interactions is one of the reasons why the
speedups achieved by our approach with respect to the traditional ones is much more noticeable in
VPENTA than in the other kernels: this code has two tiled loop nests in which tiling defines at least
three different tiles that interact in the cache.

The importance of taking into account the interactions in several levels of the memory hierarchy
and using global metrics rather than focusing on local cost functions when choosing tile sizes has
been proved in [11]. Still, this work does not propose any general framework for this purpose: it is
based on a specific model with many simplifications for a particular code. A framework for the op-
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timal multi-level orthogonal tiling problem for fully permutable, perfectly nested, rectangular loops
that are compute bound, i.e., in which the amount of computation is at least one order greater than
the amount of memory operations, is presented in [12]. This high-level model does not consider
may factors like cache associativity, caches hits/misses, etc., but the authors suggest applying simple
heuristics to include them in the model. Interestingly, the paper shows that the model tracks approx-
imately the execution time of simple loops, but there are no measurements on the quality of the tiles
the framework is supposed to choose. Multi-level semi-oblique tiling, which is more general than
the orthogonal tiling considered by our paper and most works, has been studied by [16] and [6] in
the context of multiprocessors. The applicability of [16] is restricted to a class of iterative stencil
calculations, and it does not address the problem of tile size optimization. The approach in [6] is
much more general, but it only handles perfectly nested loops and it does not provide any model for
the memory memory behavior; rather it focuses on improving parallelism via minimization of the
longest path of dependent tiles in the iteration space.

Iterative compilation [9] is based on the real execution on the machine, so it is the most reliable
strategy to choose optimal tile sizes. Still, it is only applicable when long times can be devoted to
the optimization process, and in our experiments the tiles it chooses are only fractionally better on
average than those chosen by an exploration of the solution space guided by a good analytical model.
In fact, the analytical model can even choose better tiles than the iterative compilation, since random
factors may affect the search, as we have seen in our validation. The hybrid search strategy proposed
in this paper has proved to be of interest for both static and iterative tile selection approaches.

Tile and pad factors selection guided by analytical models using a genetic algorithm search is
explored in [15]. The relative speedups overlrw they achieve on a Pentium 4 with the same char-
acteristics as the one used in our experiments (8%) are similar to those measured in our validation
when we use the same kind of search (9.6%), while the times they require to drive the optimization
process are several times longer than ours. A motivation for our work was to compare the genetic
algorithm search approach applied in [15] with our search on divisors [5]. The latter yields better re-
sults in our experiments, but the optimal search strategy turns out to be the mixture of both strategies
in the hybrid approach we present in Sect. 4.3.

7. Conclusions

In this paper we propose a new search strategy for the optimal tile size that combines the search
on divisors of the loop sizes with a pure genetic algorithm approach. We also compare the tra-
ditional heuristic-based approaches to choose tile sizes with different algorithms that search the
solution space guided by either estimations of an analytical model that predicts the performance of
the computer, or measurements of actual executions (iterative compilation). Our experiments show
that while iterative compilation requires three to five orders of magnitude more time than analytical
model based search, on average it only delivers relatively small performance improvements over
search guided by analytical models and in fact it can (seldom) deliver worse results. The search
based on the PME analytical model estimations is suitable to be used in production compilers, since
it typically requires one or two seconds; and never more than 7 seconds in our experiments. As for
the quality of the search, the algorithms based on the exploration of the solution space almost always
generate better results than the heuristical approaches, with our novel hybrid search being the best
strategy, followed by the search on divisors. Both approaches are always better than the traditional
heuristics.

Future work includes extending our tool to apply more optimizations guided by our analytical
model and generalizing the PME model to cope with codes with irregular access patterns.
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