
Automatic Analytical Modeling for the Estimation of Cache Misses∗

Basilio B. Fraguela, Ramón Doallo
Universidade da Coruña

Dept. de Electrónica e Sistemas
Facultade de Informática

Campus de Elviña, 15071 A Coruña, Spain
{basilio,doallo}@udc.es

Emilio L. Zapata
Universidad de Málaga

Dept. de Arquitectura de Computadores
Complejo Politécnico, C. Teatinos,

Apdo. 4114, E-29080 Málaga, Spain
ezapata@ac.uma.es

Abstract

Caches play a very important role in the performance of
modern computer systems due to the gap between the mem-
ory and the processor speed. Among the methods for study-
ing their behavior, the most widely used by now has been
trace-driven simulation. Nevertheless, analytical modeling
gives more information and requires smaller computation
times that allow it to be used in the compilation step to drive
automatic optimizations on the code. The traditional draw-
back of analytical modeling has been its limited precision
and the lack of techniques to apply it systematically without
user intervention. In this work we present a methodology
to build analytical models for codes with regular access
patterns. These models can be applied to caches with an
arbitrary size, line size and associativity. Their validation
through simulations using typical scientific code fragments
has proved a good degree of accuracy.

1 Introduction

Nowadays the performance gap between processors and
main memory makes an efficient usage of the memory hi-
erarchy necessary for good program performance. Tech-
niques for analyzing cache performance are required in or-
der to propose improvements to the cache configuration
or the code structure. The traditional approach, simula-
tion [14], gives little information on the place where misses
happen or the reasons of a certain cache behavior, besides
requiring computation times which are typically far greater
than the execution time of the program to study. An alterna-
tive method is the use of the hardware built-in counters that
some microprocessor architectures implement [4], [15]. Al-
though this approach requires less computer resources, it is

∗This work was supported by the Ministry of Education and Science
(CICYT) of Spain under project TIC96-1125-C03

obviously limited to the study of the architectures where
these devices exist, and it still gives little information on the
cache behavior.

On the other hand, there are analytical models that ex-
tract their input parameters from address traces [2], [10],
which requires execution or simulation of the program each
time any of its parameters changes, just as the two previous
approaches. There are very few analytical models based di-
rectly on the code [8], [13], and most of them are oriented
to direct mapped caches. Besides very little efforts have
been made in order to systematize their construction, which
is essential to get a real advantage in time in comparison
to the use of simulations or built-in counters. The develop-
ment of this kind of techniques would allow the integration
of the analytical modeling in program optimization envi-
ronments that would be able to improve automatically the
memory hierarchy performance. A work in this direction
is [9], based on the construction ofCache Miss Equations
(CMEs), which are a system of linear Diophantine equa-
tions where each solution corresponds to a potential cache
miss. The type of modeling developed by the authors is suit-
able for regular access patterns in isolated perfectly nested
loops on set associative caches and presents a good degree
of accuracy. Nevertheless, it seems to have heavy comput-
ing requirements and it does not take into account the prob-
ability of hit in the reuse of data structures referenced in
previous loops.

In this work we present a new strategy to develop proba-
bilistic analytical models of the cache behavior. This ap-
proach makes feasible the automatic generation of equa-
tions that estimate the number of misses a given code gen-
erates. Our method can be applied to set-associative caches
with an LRU replacement policy. It applies to perfectly
nested loops, allowing several references per data struc-
ture and loops controlled by other loops. Non perfectly
nested loops can also be analyzed, although their model-
ing requires the fulfillment of certain conditions in order to
provide good estimations. The model is able to take into ac-

count the probability of hit in the reuses of data which have
been accessed in loops belonging to different nests using a
conservative approach. The automatically developed mod-
els have been validated using simulations of typical code
loops found in scientific and engineering applications, and
have proved to be very accurate in most of the cases. Any-
way, they can be applied to any kind of codes where such
kind of loops appear.

The basic ideas of our modeling approach will be in-
troduced in the next section. Then the most common con-
structions in dense codes will be analyzed, and later more
complex variants will be considered. First, the modeling
of perfectly nested loops with one reference per data struc-
ture is explained in Section 3. The model is extended to
consider several references per data structure in the follow-
ing section. Imperfectly nested loops will be considered in
Section 5. The validation of our strategy is performed in
Section 6. The final section is devoted to conclusions and
future work.

2 Modeling concepts

In a K-way associative cache, a miss when accessing a
certain line can be obtained in two situations. The first time
a given line is referenced, the access results in an intrinsic
miss. The remaining accesses will result in misses if and
only if K or more lines mapped to the cache set associated
with the line have been referenced since the previous access.
We call these misses interference misses. In this way, the
probability of getting an interference miss is the likelihood
of having placed at leastK lines in the set of the studied
line since its last access. This probability is computed and
represented in our model through area vectors. Given a data
structureV, we callSV = SV0

, SV1
, . . . , SVK

the area vec-
tor associated with the accesses toV during a given period
of the program execution. The element in thei-th position
of the vector stands for the ratio of sets that have received
K− i lines of this structure. OnlySV0 has a different mean-
ing, as it is the ratio of sets that have receivedK or more
lines. In [7] and [6] we show different expressions that can
be used to calculate the vectors associated with typical ac-
cess patterns.

Two kinds of interference area vectors are considered,
depending on the source of the interference. When the in-
terference is generated by the accesses to the data structure
whose cache behavior is being modeled, we call them self
interferences. On the other hand, cross interferences are
those generated by the accesses to the other structures. The
calculation of the area vector associated with a given access
pattern is different for cross and self interferences, although
they have many similarities.

2.1 Common access patterns

As we shall see in Section 3, we devote our analysis to
regular loops in which the subscript expressions of array
references are affine combinations of the enclosing loop in-
dices. These are by far the most common loops and ref-
erences in scientific codes, for example about 72% of the
loops in SPECfp verify these conditions [8]. This affine in-
dexing scheme gives place to two main regular access pat-
terns: the sequential and the one associated with a number
of regions of consecutive elements which have a constant
distance between the start of two such regions.

The sequential access ton consecutive words generates
a cross interference area vectorSs(n):

Ss(K−blc)
(n) = 1 − (l − blc)

Ss(K−blc−1)
(n) = l − blc

Ssi
(n) = 0 0 ≤ i < K − blc − 1, K − blc < i ≤ K

(1)

wherel = max{K, (n+Ls−1)/(LsNK)} is the maximum
of K and the average number of lines placed in each set. In
this expression,Ls stands for the line size andNK for the
number of cache sets. The termLs − 1 added ton stands
for the average extra words brought to the cache in the first
and last accessed lines.

As for the second pattern, the estimation of its area vec-
tor is performed through a mixed method that involves the
calculation of the starting and ending points of each re-
gion on the cache. From these data, an average of the
number of lines mapped to each cache set is calculated.
The corresponding cross interference area vector is ob-
tained from these averages and is represented by expression
Sr(NR, TR, LR), whereNR is the number of regions,TR is
the size of each region andLR is the constant stride between
two consecutive regions (see [6] for more details).

2.2 Adding area vectors

In general, several data structures may be referenced be-
tween two consecutive accesses to a line of the structure
we are studying. This implies the need for a mechanism to
add the area vectors associated with the references to each
of these structures to get the global interference area vec-
tor. Given two area vectorsSU = (SU0 , SU1 , . . . , SUK

) and
SV = (SV0

, SV1
, . . . , SVK

), the union area vectorSU ∪ SV

that comprises the accesses corresponding to both area vec-
tors is defined as

(SU ∪ SV)0 =
∑K

j=0

(

SUj

∑K−j
i=0 SVi

)

(SU ∪ SV)i =
∑K

j=i SUj
SV(K+i−j)

0 < i ≤ K
(2)

This method is based on the addition as independent proba-
bilities of the area ratios, which means that it does not take

into account the relative positions of the program data struc-
tures in memory. In order to improve the model precision,
this fact is taken into account by modifying the original in-
terference area vector of a given structure using the over-
lapping coefficient of this structure with the one whose be-
havior is being modeled. Given two structuresA andB with
sizesTA andTB the overlapping coefficient between them,
Over(A, B), is defined as follows:

Over(A, B) =
NKCom(A, B)

min{NK , TA/Ls}min{NK , TB/Ls}
(3)

where Com(A, B) is the number of cache sets that may
contain lines belonging to both structures. The value of
Com(A, B) depends both on the sizes and the relative po-
sitions of these structures. When adding an area vectorSB

to the global area vector that stands for the interferences
with structureA, the following scaling is performed:

S′
Bj

= Over(A, B)SBj
, 0 ≤ j < K

S′
BK

= 1 −
∑K−1

j=0 S′
Bj

(4)

When both the interfering reference and the reference
whose behavior is being modeled have a sequential access,
a completely different method may be applied. It consists
in using a simple algorithm that gives the average number
of interference lines. The algorithm takes into account the
relative position of the data structures, so it does not require
the calculation of the overlapping coefficient. Both this al-
gorithm and the calculation of Com(A, B) are not included
here due to space limitations (see [6]).

In the following sections a strategy to apply systemati-
cally these concepts to codes with regular access patterns is
presented.

3 Perfectly nested loops

We shall consider accesses to matrices of arbitrary di-
mensions where each dimension is indexed by an affine
function of the enclosing loop variables. We shall not allow
the use of any variable in more than one dimension in order
to get regular accesses of one of the two kinds we have men-
tioned in the previous section. As for the loops, they will
have a predetermined number of iterations that will be the
same for each execution of the loop. Besides, we consider
initially that there is only one reference per data structure.
Certain kinds of loops depending on other loops, such as
the ones that appear when blocking is applied, can also be
modeled using our technique with very few changes.

In order to explain the modeling automation, we begin
considering a generic set of perfectly nested FORTRAN
DO loops, as those in Figure 1, that have been enumer-
ated from 0, beginning from the inner one. We know that
a reference to an element of a matrixA which presents the

DO IZ=1, NZ, LZ
...
DO I1=1, N1, L1
DO I0=1, N0, L0
A(fA1(IA1), ..., fAdA(IAdA))
...
B(fB1(IB1), ..., fBdB(IBdB))
...

END DO
...
C(fC1(IC1), ..., fCdC(ICdC))
...

END DO
...

END DO

Figure 1. General perfectly nested DO loops
in a dense code.

form A(fA1(IA1), ..., fAdA(IAdA)) accesses a
memory position that is calculated as:

PosA +

dA
∑

x=1

fAx(IAx)

x−1
∏

j=1

dAj

 (5)

where PosA is the base address of matrixA, dA is its number
of dimensions and dAj is the size of dimensionj.

The functions of the indices consist of a constant multi-
plying one of the variables of the loops enclosing the ref-
erence, plus another constant. This means they are of the
form:

fAx(IAx) = ∆AxIAx + KAx, x = 0, 1, . . . , dA (6)

which is by far the most common indexing scheme. Any-
way, we obviate the∆Ax constants in the following, as their
handling would be analogous to that of the stepsLi of the
loops (their consideration would just require taking into ac-
count that the distance between two consecutive points ac-
cessed in dimensionx is ∆AxSAx instead ofSAx).

3.1 Miss equations

Let Fi(R, p) be the number of misses on referenceR at
nesting leveli considering a miss probabilityp in the first
access to a line of the referenced matrix. To calculate the
number of misses on a matrixA generated by this reference,
the loops are examined from the inner one containing the
reference to the outer one, applying the following rules in
each level:

1. If the loop variable is one of the used in the indices
of the reference, but not the corresponding to the first
dimension, the function that provides the number of
misses during the complete execution of the loop of
level i as a function of probabilityp is:

Fi(R, p) =
Ni

Li

Fi−1(R, p) (7)

This approach is based on the hypothesis that the first
dimension of any matrix is greater or equal to the cache
line size. This could not hold for caches with large
line sizes and matrices with small dimensions, but the
conjunction of both factors gives place to very small
miss rates in which the error introduced is small and
little advantage can be obtained from the application
of the automated model.

2. If the loop variable is not any of those used in the in-
dices of the reference, this is a reuse loop for the refer-
ence we are studying. In this case the number of misses
in this level is estimated as:

Fi(R, p) =Fi−1(R, p) +
(

Ni

Li

− 1

)

Fi−1(R, S0(A, i, 1))
(8)

whereS(Matrix, i, n) is the interference area vector
that stands for the lines that may cause interferences
with any of the lines of matrixMatrix aftern itera-
tions of the loop in leveli. Function (8) expresses the
fact that the first iteration of the loop does not influence
the number of misses on matrixA, being this value de-
termined by the probabilityp, which is calculated ex-
ternally. Nevertheless, in the following iterations the
same regions of the matrix are accessed, which means
that the interference area vector in the first accesses to
each line in this region is composed by the whole set
of elements accessed during one iteration of the reuse
loop.

3. If the loop variable is the one used in the indexing
of the first dimension andLi ≥ Ls we proceed as in
case 1, as each reference will take place on a different
line. Otherwise, we have:

Fi(R, p) =
Ni

Ls
Fi−1(R, p) +

(

Ni

Li

−
Ni

Ls

)

Fi−1(R, S0(A, i, 1))

(9)

The miss probability in the first access to each refer-
enced line is given by the probabilityp, externally cal-
culated. The remaining accesses take place on lines
referenced in the previous iteration of the loop of level
i, so the interference area vector is the corresponding
to one iteration of this loop.

Ri1

Ri2 Ri2

DO I=1, 19, 1

DO J=1, 24, 6

DONE

DONE

. . .

. . .

. . .

. . .

DONE

DO K=1, 100

A(J,I)=I+J

REAL A(24,19)
. . .

L =1N =19

N =4
Ri1

L =6

Figure 2. Areas accessed with stride 3 for the
columns in a bidimensional matrix A during
one iteration of the K loop.

In the first level containing the referenceFi−1(R, p), the
number of misses caused by this reference in the closer
lower level, is considered to bep. Once calculated the for-
mula for the outer loop, the number of misses is calculated
asFz(R, 1) (see Figure 1), which assumes that there are no
portions of the matrix in the cache when the code execution
begins.

3.2 Interference area vectors calculation

The calculation of the interference area vectors
S(Matrix, i, n) is performed in an automated way by an-
alyzing the references in such a way that:

• The variable used in the indexing of one dimensionIh,
is such thath < i, then we assign to this dimension a
set of Nh/Lh points with a constant distance ofLh

points between each two of them.

• On the other hand, ifh > i, only one point in this
dimension is assigned.

• Finally, if h = i, n points with a distanceLi are as-
signed to the dimension.

There is one exception to this rule. It takes place when
the variable associated with the considered dimensionIh

belongs to a loop that is a reuse loop for the reference
whose number of misses is to be estimated, and there are
no non reuse loops for that reference between levelsi (not
included) andh. In that case only one point of this dimen-
sion is considered.

After this analysis, the area of matrixA affected by ref-
erenceR during an iteration of loopi would consist ofNRi1

regions of one word in the first dimension, with a constant

DO I=1, 19, 3

Ri2 Ri2

DO J=1, 24, 6

DONE

DONE

. . .

. . .

. . .

. . .

DONE

DO K=1, 100

A(J,I)=I+J

REAL A(24,19)
. . .

L =3N =7

N =4
Ri1

L =6
Ri1

Figure 3. Area accessed with stride 1 for the
columns in a bidimensional matrix A during
one iteration of the K loop.

stride between each two regions ofLRi1 words. In the sec-
ond dimension,NRi2 elements would have been accessed,
with a constant stride between each two consecutive ones of
LRi2 groups of dA1 words (size of the first dimension), and
so on. This area could be represented as:

RRi = ((NRi1, LRi1), (NRi2, LRi2), . . . , (NRidA , LRidA))
(10)

Figures 2 and 3 depict this idea for a bidimensional ma-
trix. This area will typically have the shape of a sequen-
tial access or an access to groups of consecutive elements
separated by a constant stride, which is what happens in
Figure 3 (the stride in Figure 2 is not constant). Both ac-
cesses have already been modeled for the calculation of
their corresponding cross or self interference area vectors,
as explained in Section 2. As an example, the area shown
in Figure 3 would be modeled by interference area vector
Sr(NR = 76, TR = 1, LR = 6). In this expression we find
that:

• The valueNR, the number of regions, is obtained as
the product of theNRij for j = 1, 2, . . . , dA .

• The sizeTR of each region is one word, as we are con-
sidering only one reference.

• The stride between regionsLR is given by the value of
LRij for the smallerj such thatNRij 6= 1 multiplied
by the size of the dimensions lower toj.

If LR = 1 the completely analytical modeling associated
with the sequential access toNR words would be applied,
which is given bySs(NR) (see Section 2.1). On the other
hand, in the case that the area does not correspond to a regu-
lar region as the ones we have studied, the area vector would
be calculated through a simulation of the access.

4 Multiple references to one data structure

When there are several references to a given vector or
matrix, they usually differ only in one constant added in
one of the dimensions of the references. We first consider
this case, this is, references of the typeA(..., Ii+Ki1,
...), A(..., Ii+Ki2, ...) keeping the expres-
sions for the remaining dimensions equal. An approach for
modeling the case that there are differences in several di-
mensions will be introduced later.

4.1 Miss equations for multiple references

In this case the< references are sorted in descending or-
der of the value of the constantKij (Ki1 > Ki2 > · · · >
Ki<). The first one is modeled in the way explained in Sec-
tion 3. For each of the following references, all the loops
are modeled in the same way but the one associated with
Ii. In this case a procedure that depends on the value of
δ = Ki(j−1) − Kij is applied. This procedure is explained
in the subsections below.

The references differ in the indexing of the first dimen-
sion Let ε = mcd(Ls, Li), then the access performed in
this loop can be considered asG = (Niε)/(LiLs) groups of
Li/ε lines in which each reference accessesLs/ε different
positions. These positions can be classified in the following
way:

• Nsame = max{0, Ls−δ−q+ε−1
ε

} positions that are ac-
cessed in the same iteration both by the present refer-
ence and the one analyzed in the previous step. In this
expressionq stands for the address of the first access
modulusε. For these accesses the miss probability de-
pends on the accesses between both references in the
same iteration.

In the notation used so far only complete iterations of
the loops had been considered for the area vectors cal-
culation. Here two referencesR1 andR2 located in
a loop at leveli are considered, and the area vector
S̆(R1, R2) associated with the accesses between them
is to be estimated.

• Nself = max{0, Ls−Li−p−max{Nsame−1,0}ε+ε−1
ε

} posi-
tions in which the analyzed reference accesses a line
that has been brought to the cache in the previous iter-
ation, but which has not been accessed in the present it-
eration by the preceding reference, this is, the one cor-
responding to the immediately greater value of the con-
stant. The area vector corresponding to the accesses to
these positions is estimated as the one associated with
one iteration of loopi.

• In the remainingLs/ε − Nsame− Nself positions the
line has been accessed by the preceding reference
δ/ max{Li, Ls} iterations ago of the loop.

On the other hand, there areδ/ max{Li, Ls} positions
that are never accessed by the preceding reference. As a
result, the number of misses on them can be estimated as
Fi−1(Rj , p).

Putting it all together, the number of misses generated by
referenceRj in loop i is:

Fi(Rj , p) =NsamĕS(Rj−1, Rj) + NselfS0(A, i, 1) +
(

Ls

ε
− Nsame− Nself

)

S0

(

A, i,
δ

max{Li, Ls}

)

+

δ

max{Li, Ls}
Fi−1(Rj , p)

(11)

The references differ in the indexing of any other dimen-
sion In this case there are two possibilities:

• If δ mod Li = 0, the reference accesses the same line
as the preceding reference exactlyδ/Li iterations ago.
This means the formula of the number of misses is:

Fi(Rj , p) =
Ni − δ

Li

Fi−1(Rj , S0(A, i, δ/Li)) +

δ

Li

Fi−1(Rj , p)

(12)

• Otherwise these two references never access the same
line, so the formula is:

Fi(Rj , p) =
Ni

Li

Fi−1(Rj , p) (13)

The error rate can be reduced when dA1, the first dimen-
sion of the matrix, is smaller than the line sizeLs, and so
is δdA1 (the stride between positions accessed by the refer-
ences). The miss equation for the loopk controlling the first
dimension is modified as follows:

Fk(Rj , p) =
Nj

Ls
Fk−1(Rj , p) +

(

Nj

Lj

−
Nj

Ls

)

δdA1

Ls
Fk−1(Rj , S0(A, j, 1))

(14)

4.2 References that differ in several dimensions

If there are several dimensions with differences in the
constants added in the functions that index them, the ref-
erences are sorted in descending order of the position they

L =6

Ri2 Ri2

DO I=1, 16, 3

. . .

. . .
DO K=1, 100

DONE

. . .
DONE

DONE

. . .

A(J,I+1)=J-I

A(J,I)=I+J

A(J+1,I)=I*PI

DO J=1, 24, 6

. . .
REAL A(24,19)

N =7

N =4
Ri1

Ri1

L =3

Figure 4. Portions of a bidimensional matrix
A with multiple references that have been ac-
cessed during one iteration of the K loop.

access, as in Section 4.1. In the same way, the first refer-
ence is processed as if it were the only one. The remaining
references are processed applying the formulae explained
in the previous sections and only the last one of the dimen-
sions that change with respect to the preceding reference
is considered. This strategy simplifies the treatment of the
problem allowing good estimations when the variations in-
troduced by the differences in the smaller dimensions are
much smaller than those produced by the greater dimension
with differences, which is the most usual.

Area vectors calculation The existence of multiple ref-
erences to a given data structure makes more complex the
representation of the area they can access, as the pattern is
much less regular, as Figure 4 shows. Fortunately, patterns
as the one in the figure are not the most common, and a
simple extension to the notation introduced in Section 3.2
allows to represent areas generated by accesses belonging
to multiple references. It consists in adding a new param-
eter: the numberTRi of consecutive words accessed in the
first dimension of the region associated with the pattern gen-
erated by referenceR in nesting leveli. We do not consider
here the possibility of accessing consecutive points in other
dimensions that are separated by other sets of non accessed
points, which would give place to a parameter of this kind
for each dimension. The reason is that this access would not
correspond to any of the ones modeled in this work. Any-
way, this possibility could be considered in more general
implementations.

On the other hand, when calculating the area vectors, the
automatic analyzer must take into account the possible over-
lapping of the regions accessed by several references to a
given data structure. For this reason, once these regions
have been calculated the analyzer compares them trying to

merge them. Lines that are accessed by different references
should not be taken into account several times as source of
interferences. If the conditions we have imposed on the ref-
erences hold, which are the most common, the analyzer is
able to merge them in a regular region, this is, one that can
be modeled by the algorithms we have developed. In order
to perform this merging, one more parameter is used to de-
scribe the region affected by a given referenceR: the posi-
tion QR of the first word it contains. The merging algorithm
is not shown here due to space limitations.

5 Imperfectly nested loops and data reuse

Real applications do not consist of an unique set of per-
fectly nested loops, but of many sets of loops which may
have in each level several other loops. On the other hand,
matrices are accessed in different loops, there being a prob-
ability of hit in the reuse of previously accessed lines.

Our model obtains the miss equation for each reference
in a given level of a nest and calculates the miss probability
in the access to a line of the considered matrix in that loop.
It considers that there can be references to a given matrix in
only one of the loops in a set of perfectly nested loops. In
general, when this does not hold for a given code, there is
only a real access in the greater of the levels that reference
it, taking place the references in the lower levels through
accesses to a register. In this way, our hypothesis is true
from the point of view of the cache accesses.

The existence of imperfectly nested loops in the level
where the reference is located or the lower levels only influ-
ences the calculation of the interference area vector. The
references inside those loops are analyzed to derive the
shape of the regions accessed in the corresponding matri-
ces. Then, an attempt is made to merge regions associated
with the same matrix, in a way similar to the one mentioned
in the preceding section for different references to the same
matrix.

5.1 Modeling references in loops in sequence

When considering upper levels, the studied matrix could
be referenced in several of the loops they contain. This sit-
uation is depicted in general through the code in Figure 5.

In this case, taking into account that the analysis is per-
formed beginning with the inner loop containing the refer-
ences, the approach described so far is applied to calculate
the number of misses on matrixA in the loopsjk with k =
0, 1, . . . , n. As explained in Section 3.1, the miss equation
for referenceR in nesting leveli, Fi(R, p), depends on the
parameters for that loop (Ni andLi), the expression of the
number of misses in the lower level,Fi−1(R, p), and the in-
terference area vector for the data structure associated with
one iteration of loopi, S(A, i, 1). In this case, as levelj +1

DO Ij+1=1, Nj+1, Sj+1
DO Ij0=1, Nj0, Sj0
...
A(fA01(IA01), ..., fA0dA(IA0dA))
...

END DO
...
DO Ij1=1, Nj1, Sj1
...
A(fA11(IA11), ..., fA1dA(IA1dA))
...

END DO
...
DO Ijn=1, Njn, Sjn
...
A(fAn1(IAn1), ..., fAndA(IAndA))
...

END DO
END DO

Figure 5. Code with references to a given ma-
trix in a set of imperfectly nested loops.

does not contain only one loop of levelj, butn, the calcula-
tion of Fj+1 requires different considerations depending on
the loop each reference belongs to.

For the referencesR inside loopsjk wherek > 0, the
following constant is chosen as value for the number of
misses they generate during a complete iteration of the loop
of level j:

Fj(R, p) = Fjk(R, (S(A, Nr(A, j(k − 1)),

It(Nr(A, j(k − 1)))) ∪

Ṡ(j(k − 1), jk))0)

(15)

where It(u) = Nu/Lu is the number of iterations of loopu
and Nr(A, u) is the loop of the outer level inside loopu (or
loopu) that is not a reuse loop for the accesses to matrixA.

The number of misses is given by the expression associ-
ated with the corresponding loop estimating the miss prob-
ability in the access to a line of the data structure when the
loop starts.

The simplest estimation is the addition of the interfer-
ence generated during the execution of the preceding loop,
given by expressionS(A, Nr(A, j(k − 1)), It(Nr(A, j(k −
1)))), and the one for the loops there may be between
j(k − 1) and jk loops in which this data structure is not
referenced. The notatioṅS(j(k − 1), jk) is introduced to
stand for the cross interference area vector generated by the

1 DO J2=1, N, BJ
2 DO K2=1, N, BK
3 DO J=J2, J2+BJ-1
4 DO K=K2, K2+BK-1
5 WB(J-J2+1,K-K2+1)=B(K,J)
6 ENDDO
7 ENDDO
8 DO I=1, N
9 DO K=K2, K2+BK-1

10 RA=A(I,K)
11 DO J=J2, J2+BJ-1
12 D(I,J)=D(I,J)+
13 WB(J-J2+1,K-K2+1)*RA
14 ENDDO
15 ENDDO
16 ENDDO
17 ENDDO
18 ENDDO

Figure 6. Dense matrix-dense matrix product
with blocking and a copy with transposition
of the block.

accesses there may be between the end of the execution of
loopj(k − 1) and the beginning of loopjk.

This approach is good if loopjk contains at least one
reuse loop for the references to matrixA or the structures
referenced and the order in which these references are per-
formed (mainly those ofA) is similar in loopsj(k − 1) and
jk. Otherwise precision can be seriously affected, requir-
ing an analysis similar to the one presented in [7] for the
sparse matrix transposition. In this work the hit probability
in the reuse is calculated for each line of one vector, study-
ing the accesses that take place between its last access in the
preceding loop and its first access in the analyzed loop.

For the references inside loopj0, Fj(R, p) cannot
be given by a constant, as in being the first loop in-
side loopj + 1, it depends on the probabilities of outer
or preceding loops. In this case it is justFj0(R, p).
Anyway, when calculating the hit probability in the
reuses inside loopj + 1, S(A, j + 1, 1) is estimated as
S(A, Nr(A, jn), It(Nr(A, jn))) ∪ Ṡ(jn, j0). The reason is
that only the interferences generated since the last loop in
this level in which data structureA is referenced need to
be taken into account. Remarks about the validity of this
approach are analogous to the previous case.

As an example, let us take the references to ma-
trix WB in the code in Figure 6. In order to simplify
the explanation, we will refer to the references and the
loops as WBi and DOi, respectively, wherei is the line
number where they appear in this code. The number

DO I=1, N-1
DO J=1, N-1
A(J,I)=A(J,I+1)

+B(J,I)+B(J+1,I)
+C(I,J)+C(I+1,J)

ENDDO
ENDDO

Figure 7. Stencil code.

of misses on WB13 at loop DO8 is given by the con-
stantFDO8

(WB13, S0(WB, DO3, BJ)). On the other hand,
FDO3

(WB5, p) is calculated following the standard rules.
Nevertheless, modeling differs for the outer loops (those of
lines 1 and 2), as the area vector corresponding to the inter-
ferences generated onWB on a complete execution of loop
DO3 is estimated asS(WB, DO9, BK).

6 Validation of automatic modeling

An automatic analyzer based in this model has been
implemented which receives the description of the code
through function calls. It accepts vectors and bidimensional
matrices accessed in perfectly nested loops, and provides
functions to allow the modeling of imperfectly nested loops.
This is done through the combination of the miss equations
and the area vectors corresponding to the perfectly nested
loops they may contain, which can be calculated without
the user intervention.

This analyzer has been applied to several codes in order
to perform its validation. Here we include three of them:

• a dense matrix-dense matrix product code with block-
ing and imperfectly nested loops. The code performs a
copy and transposition of the block to multiply in order
to generate more sequential accesses (Figure 6).

• a Stencil code (Figure 7).

• an equation solver kernel extracted from the Ocean
program that uses the Gauss-Seidel method (Figure 8).

In order to simplify the validation, we have always used
square matrices of orderN . For the first code about one
thousand combinations of the input parameters were tried,
using values ofN ranging from 25 to 400. The second code
was validated trying 2400 combinations of the input param-
eters using matrices of sizes 200 and 400. For these two
codes twenty simulations were performed for each combi-
nation of the input parameters changing the value of the data
structure base addresses using a random generator. We mea-
sure the error∆ of the model for each combination as the
average of the absolute error in the estimation of the number

E=0
WHILE (E.EQ.0)
D=0
DO I=2, N-1
DO J=2, N-1
T = A(I,J)
A(I,J)=0.2*(T+A(I,J-1)+A(I-1,J)

+A(I,J+1)+A(I+1,J))
D=D+ABS(A(I,J)-T)

ENDDO
ENDDO
IF (D/(N*N)<TOL) E=1

ENDWHILE

Figure 8. Equation solver kernel using Gauss-
Seidel method.

of misses generated in each of the twenty simulations. This
value is expressed as the percentage of the difference be-
tween the number of misses predicted by the model and the
number of misses measured in the simulations with respect
to the latter.

The average errors have turned out to be 2.68% for the
Stencil code and 5.96% for the dense matrix-dense matrix
optimized product. The typical deviationσ of the number of
measured misses in the simulations expressed as a percent-
age of the average number of measured misses is 2.22%
and 11.25%, respectively. This means our average errors
are similar or noticeably smaller than the typical deviation
of the real number of misses.

As for the last code, it only uses one matrix, which makes
it independent on its base address. As a result, only one
simulation has been needed for each combination of the in-
put parameters. On the other hand, theDO loop modeled
by the algorithm is inside aWHILE loop whose number of
iterations is unknown in advance, so we have modeled the
behavior of this code in one iteration of this loop using 7500
combination of the input parameters, getting an average er-
ror of 2.8%. Later 2400 simulations were performed using
2, 3, 5, 10 and 25 iterations of the loop, achieving an aver-
age error of 3.7%.

This degree of precision has proved to be good enough to
drive an optimization process successfully [5]. Tables 1–3
show the validation data of these algorithms for some com-
binations of the input parameters. ColumnCs stands for the
cache size in Kwords.

Large errors can be observed in some cases of Table 2.
They are exceptional, as we must recall that the average er-
ror for this code is under 6%. They are due to the sim-
plification made for the estimation of the overlapping coef-
ficient of the blocked matrices as the average of the over-

Table 1. Validation data for the automated
model for some combinations of the input pa-
rameters of the Stencil code.

N Cs Ls K σ ∆

50 2 8 2 1.06 4.55
100 16 4 1 1.09 1.31
175 32 4 1 6.51 1.38
200 16 4 1 6.02 0.57
200 8 8 1 0.73 11.34
250 4 8 2 10.87 4.23
250 32 16 2 1.81 2.47
300 1 4 1 2.68 2.48
300 16 4 4 0.00 0.44
375 32 4 4 0.00 0.62
400 8 8 2 1.34 2.13
400 32 8 2 0.67 0.16

Table 2. Validation data for the automated
model for some combinations of the input
parameters of the dense matrix-dense matrix
product with blocking and copy with transpo-
sition of the block.

N BJ BK Cs Ls K σ ∆

200 100 100 16 8 2 8.16 6.23
200 100 100 256 16 2 4.80 2.73
200 200 100 32 8 1 8.81 6.88
200 200 100 128 8 2 3.60 2.86
200 200 100 128 32 2 93.42 44.25
200 50 200 16 4 1 5.05 4.62
200 100 200 32 8 2 16.24 12.51
200 100 200 64 16 1 33.54 3.31
400 100 100 16 8 2 6.18 4.48
400 100 100 256 16 2 4.01 4.26
400 200 100 32 8 1 1.50 2.65
400 200 100 128 8 2 15.04 5.82
400 200 100 128 32 2 57.06 44.68
400 50 200 16 4 1 1.52 2.02
400 100 200 32 8 2 7.86 5.55
400 100 200 64 16 1 7.40 7.12

Table 3. Validation data for the automated
model for some combinations of the input
parameters of the equation solver using the
Gauss-Seidel method.

N Iterations Cs Ls K ∆

100 25 16 4 1 3.96
175 1 32 4 1 2.27
200 1 16 4 1 1.99
200 5 16 4 1 1.99
250 1 128 8 2 1.60
300 1 16 4 4 1.33
300 10 16 4 4 1.33
400 1 8 8 2 1.24
400 10 8 8 2 1.24
400 1 32 8 2 1.00
400 25 32 8 2 1.00
400 1 256 32 4 1.00
400 25 256 32 4 1.00

lapping coefficients obtained for each block. The right ap-
proach would be the calculation of the number of misses for
each block in the matrices using its own overlapping coef-
ficient, and finally add these values. We have not done this
because the modeling time would grow noticeably and be-
cause the errors, although important, are still inferior tothe
typical deviation of the number of measured misses. The
probabilistic nature of our modeling strategy must be taken
into account too: small problems do not favor the conver-
gence of this kind of approaches. In fact we see that the
large errors appear in situations with a small number of
misses. A 2-way associative cache with 128 Kw is large
in relation to the 200x200 or 400x400 matrix product using
a block of 200x100 elements. In fact, the average num-
ber of misses measured in the simulations is respectively
9264 and 53522. This means that the possible errors intro-
duced by the model when driving compiler optimizations
on this code would have a negligible influence on the pro-
gram execution time. Our explanation is backed up by the
fact that using the same cache and block configuration with
2000x2000 matrices gives place to an error of only 1.5%
for the model estimations. In this case the average num-
ber of misses measured increased to about6.3 × 106. We
have not used large data sets in the validation process, for
which cache optimization is much more important, due to
the heavy computing requirements of their simulation (see
last row of Table 4 for this example).

7 Conclusions and future work

A systematic approach that allows the automated gen-
eration of cache analytic models has been presented. The
resulting equations provide the number of misses for each
reference and loop in a given code. The models have proved
a good degree of accuracy besides taking into account all
the possible sources of misses. Our models are fully param-
eterizable and are applicable toK-way associative caches
with a LRU replacement policy, besides supporting a wider
range of codes than previous automated models. For exam-
ple, they take into account that portions of data structures
accessed in previous loops may be in the cache when they
are accessed by another set of nested loops.

Although we have only used the total number of misses
to validate model, we have seen from its construction that it
can provide much more information. Formulae for the num-
ber of misses for each reference and loop are build. The
interference area vectors give us an idea of the degree of
interference generated by each data structure on the refer-
ences of any other one or itself in each nesting level. All
these data give us a much more detailed picture of the cache
behavior and its reasons.

As an added benefit, the computation time required by
the models is much shorter than the required by simulations.
As an example, the times required by the simulation and
the modeling of the dense matrix-dense matrix optimized
code on an SGI Origin 200 server with R10000 processors
at 180MHz are shown in Table 4. We see there is a dif-
ference from two to five orders of magnitude, even when
we have used a very simplified simulator locally developed.
The validity of our simple simulator has been checked using
dineroIII, belonging to the WARTS toolset [12].

We are currently working in the integration of our tech-
nique in code analysis environments that support it and al-
low its effective and fast application to real programs. An
analyzer based on Polaris [1] that requires no user interven-
tion is being built. It has already been validated with simple
codes, obtaining results similar to those in this work. The
feasibility and usefulness of the application of our models
to drive compiler optimizations has already been proved [5].
In the experiments we have developed they have always
helped the compiler to choose optimal or near optimal code
transformations.

At the same time, we plan to extend the automatic mod-
eling to indexing schemes other than the affine one (indi-
rections, multiple index affine, etc.). We have already de-
veloped a series of algorithms and formulae to calculate in-
terference area vectors associated to several typical irregu-
lar access patterns [7]. One possible approach would be the
application of pattern matching techniques in a way simi-
lar to the one used in [11], [3] to identify the structure of
the accesses generated by the references, both in terms of

Table 4. User time in seconds for the simu-
lation and the execution of the automatically
generated model for the dense matrix-dense
matrix optimized code.

N BJ BK Cs Ls K
Siml.
time

Modl.
time

300 100 100 32 4 2 14.72 0.009
300 150 150 32 4 2 15.30 0.009
300 100 100 32 4 4 13.81 0.005
300 100 100 32 16 2 13.32 0.007
300 100 100 128 4 1 14.61 0.058
300 100 100 256 8 2 13.22 0.046
500 100 100 32 4 2 68.00 0.009
500 250 250 32 4 2 80.74 0.009
500 250 500 1024 16 2 67.16 0.165

2000 200 100 128 32 2 3900 0.029

general shape and quantitative parameters. With these data
we could choose the right formulae between those avail-
able and apply them to derive the corresponding interfer-
ence area vector and misses equations.

References

[1] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger,
T. Lawrence, J. Lee, D. Padua, Y. Paek, B. Pottenger, R. L.,
and P. Tu. Parallel programming with polaris.IEEE Com-
puter, 29(12):78–82, 1996.

[2] D. Buck and M. Singhal. An analytic study of caching in
computer systems.J. of Parallel and Distributed Computing,
32(2):205–214, Feb. 1996.

[3] D. R. Chakrabarti, N. Shenoy, A. Choudhary, and P. Baner-
jee. An efficient uniform runtime scheme for mixed regular-
irregular applications. InProc. 12th ACM Int’l. Conf. on
Supercomputing (ICS’98), pages 61–68, July 1998.

[4] Digital Equipment Corporation.pfm - The 21064 Perfor-
mance Counter Pseudo-Device, 1995. DEC OSF/1 Manual
pages.

[5] R. Doallo, B. B. Fraguela, and E. L. Zapata. Set associa-
tive cache behavior optimization. InProc. EuroPar’99, Sept.
1999. to be published.

[6] B. B. Fraguela.Analytical Modeling of the Cache Memories
Behavior. PhD thesis, Dept. Electrónica e Sistemas, Univ.
da Coruña, March 1999. (in Spanish).

[7] B. B. Fraguela, R. Doallo, and E. L. Zapata. Mod-
eling set associative caches behavior for irregular com-
putations. ACM Performance Evaluation Review (Proc.
SIGMETRICS/PERFORMANCE’98), 26(1):192–201, June
1998.

[8] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equa-
tions: An analytical representation of cache misses. InProc.
11th ACM Int’l. Conf. on Supercomputing (ICS’97), pages
317–324. ACM Press, July 1997.

[9] S. Ghosh, M. Martonosi, and S. Malik. Precise miss anal-
ysis for program transformations with caches of arbitrary
associativity. InProc. 8th ACM Int’l. Conf. on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS-VIII), Oct. 1998.

[10] B. L. Jacob, P. M. Chen, S. R. Silverman, and T. N.
Mudge. An analytical model for designing memory hier-
archies. IEEE Transactions on Computers, 45(10):1180–
1194, Oct. 1996.

[11] A. Lain. Compiler and Runtime Support for Irregular Com-
putation. PhD thesis, University of Illinois at Urbana-
Champaign, 1995.

[12] A. Lebeck and D. Wood. Cache profiling and the SPEC
benchmarks: A case study.IEEE Computer, 27(10):15–26,
Oct. 1994.

[13] O. Temam, C. Fricker, and W. Jalby. Cache interference
phenomena. InProc. Sigmetrics Conference on Measure-
ment and Modeling of Computer Systems, pages 261–271.
ACM Press, May 1994.

[14] R. Uhlig and T. Mudge. Trace-driven memory simulation:
A survey. ACM Computing Surveys, 29(2):128–170, June
1997.

[15] M. Zagha, B. Larson, S. Turner, and M. Itzkowitz. Perfor-
mance analysis using the MIPS R10000 performance coun-
ters. In ACM, editor,Proc. Supercomputing ’96 Conference,
pages 17–22. ACM Press and IEEE Computer Society Press,
Nov. 1996.

