
Hierarchically Tiled Arrays Vs. Intel Threading
Building Blocks for Programming Multicore

Systems ?

Diego Andrade1, James Brodman2, Basilio B. Fraguela1, and David Padua2

1 Universidade da Coruña, Spain
{dcanosa,basilio}@udc.es

2 University of Illinois at Urbana-Champaign
{brodman2,padua}@uiuc.edu

Abstract. Multicore systems are now the norm. Programmers can no
longer rely on faster clock rates to speed up their applications. Thus,
software developers are increasingly forced to face the complexities of
parallel programming. The Intel Threading Building Blocks (TBBs) li-
brary was designed to facilitate parallel programming. The key notion
is to separate logical task patterns, which are easy to understand, from
physical threads, and delegate the scheduling of the tasks to the sys-
tem. On the other hand, Hierarchically Tiled Arrays (HTAs) are data
structures that facilitate locality and parallelism of array intensive com-
putations with a block-recursive nature. The model underlying HTAs
provides programmers with a data parallel, single-threaded view of the
execution. The HTA implementation in C++ has been recently extended
to support multicore machines. In this work we implement several algo-
rithms using both libraries in order to compare ease of programming and
performance.

1 Introduction

Processor manufacturers are building systems with an increasing number of
cores. These cores usually share the higher levels of the memory hierarchy. Many
language extensions and libraries have been developed to ease the programming
of this kind of system. Some approach the problem from the point of view of task
parallelism. The key notion is that the programmer has to divide the work into
several tasks which are mapped automatically onto physical threads that are
scheduled by the system. The Intel Thread Building Blocks (TBBs) library [1]
enables the writing of programs that make use of this form of parallelism.

Task-parallelism can be implemented alternatively using libraries such as
POSIX Threads [2] which provide minimal functionality and for this reason some
consider this approach the assembly language of parallelism. A third task-parallel
API is OpenMP [3] which, however, is not as powerful as TBB.

? This material is based upon work supported by the National Science Foundation un-
der Awards CCF 0702260 and CNS 0509432. Diego Andrade and Basilio B. Fraguela
were partially supported by the Ministry of Education and Science of Spain, FEDER
funds of the European Union (Projects TIN2004-07797-C02-02 and TIN2007-67537-
C03-02).

Fig. 1. Creation of a HTA example Fig. 2. Overlapped tiling example

On the other hand, the Hierarchically Tiled Array (HTA) library [4, 5] fa-
cilitates the implementation of data parallel programs. An HTA is a recursive
array data type where elements are either HTAs or standard arrays. HTAs adopt
tiling as a first class construct for array-based computations and empower pro-
grammers to control data distribution and the granularity of computation explic-
itly through the specification of tiling. In contrast to the approaches mentioned
above, HTAs are good for shared, distributed and hybrid memory systems. The
HTA library implementation for shared memory is implemented on top of the
TBB library.

In this work, we compare the implementation of some algorithms using both
the TBB and HTA libraries. Sections 2 and 3 summarize the main features of
the HTA and TBB libraries, respectively. In Section 4 a high-level description of
some implemented algorithms is presented and its implementation in both TBBs
and HTAs is discussed briefly. Section 5 describes the main differences between
the TBBs and HTAs libraries. We will illustrate how data and task parallelism
face the same problems using different approaches. Section 6 discusses some
validations results, and Section 7 presents the conclusions.

2 The HTA library

The Hierarchically Tiled Array (HTA) is an array data type which can be par-
titioned into tiles. Each tile can be either a conventional array or a lower level
HTA. HTAs facilitate parallel programming by providing numerous methods
that operate in parallel across tiles.

Figure 1 shows the operations needed to create an HTA with 3 tiles of 4
elements each. The variable tiling, defined in line 1, specifies the number of
elements or tiles for each dimension and level of the HTA, from the bottom to
the top of its hierarchy of tiles. The alloc operation in the second line creates
the HTA. The number of levels of tiling is passed as the first parameter to
alloc. The tiling structure is specified by the second parameter, and the third
parameter selects the data layout (ROW major in this case). The data type and
the number of dimensions of the HTA are template parameters of the HTA class.

Tiles or scalars of HTAs can be selected using lists of integers and Ranges
of the form low:step:high. The list of integers and ranges can be enclosed by
the () operator, which selects tiles, or by the [] operator, which selects scalar
elements of the HTA. For example h(1)[2] yields element [2] within tile (1).

There are three main constructs in data-parallel computations:

– Element-by-element operation: A function is applied to each element of an
array or corresponding elements of two or more conformable arrays.

– Reductions: These apply operations on an array to produce an array of lesser
rank. For example, computing the sum of the elements of a one-dimensional
array produces a scalar.

– Scan: It computes a prefix operation across all the elements of an array.

These operations take the form of three methods in the HTA library: hmap (which
implements the element-by-element operation), reduce and scan.

The three constructs receive at least one argument, a function object whose
operator() encapsulates the operation to be performed. In the case of hmap, the
function may accept additional HTAs as parameters that must be comformable,
that is, have the same tiling structure as the HTA instance on which the hmap is
invoked. Hmap handles each tile separately so that the indexing of the elements
inside the operation is relative to the first position of a tile. Hmap may be executed
concurrently across the tiles of the HTAs to which it is applied.

2.1 Overlapped tiling

Stencil codes compute new values based on their neighbors as in the case of
a(i) = a(i-1) + a(i+1). When this type of operation is applied to tiled arrays,
elements of the neighboring tiles must be accessed during the processing of each
tile. This can be done more easily and efficiently using shadow or ghost regions
containing a copy of the elements of the neighboring tiles that are needed for
the computation. The HTA library allows the automatic creation and update of
these regions. This feature is called overlapped tiling.

Figure 2 shows the creation of an HTA similar to the one created in Fig-
ure 1 but with highlighted overlapped regions. Each of the shaded elements will
be replicated to create the ghost region of the adjacent tile. The shape of the
overlapping is determined by the optional Overlap object used in the creation
of the HTA. Its constructor specifies, in this order, the overlap in the negative
(decreasing index value) and positive (increasing index value) directions. In this
example, a shadow region of size one is created both in the positive and negative
directions and the boundary is periodic. Since we specified periodic boundaries,
the last and first elements are replicated to create the ghost region of the first
and last tiles, respectively.

2.2 Dynamic partitioning

The tiling structure of an HTA is specified at creation time. The dynamic par-
titioning feature enables the modification of the structure of an HTA after its
creation by adding or removing partition lines, the abstract lines that separate
the tiles in an HTA. This generates new tiles or merges existing ones, respec-
tively.

Figure 3 shows an example of the use of dynamic partitioning. First, we add
a new partition to the HTA created in Figure 1 using the part method which

Fig. 3. Dynamic partitioning example

accepts two tuple parameters: the source partition and the offset. part inserts
a new partition line along the ith dimension, offseti elements to the right of the
location of source partitioni. In the example, a new partition is created with an
offset of (2) from partition line (1).

In the second step, a partition is deleted using method rmPart. It receives as
an argument the Tuple which specifies the partition to be deleted. In the case
of the example of Figure 3, partition line (1) is removed.

3 The Intel TBB library

The Intel Threading Building Blocks (TBB) library enables the implementation
of multithreaded task-parallel programs.

3.1 TBB operations

The element-by-element operation, reduction, and scan constructs are imple-
mented in the TBB library using the parallel for, reduce and scan algo-
rithm templates respectively. The TBB library also includes the algorithm tem-
plates: parallel while, which is used when loop limits are not pre-defined, and
pipeline which is used when there is a sequence of stages that can operate in
parallel on a data stream.

The parallel for, reduce and scan algorithm templates accept two param-
eters: a range defining loop limits, and a function object representing the body
of the parallel loop.

The range is split recursively into subranges by the task scheduler and mapped
onto physical threads. The TBB library provides standard ranges, such as blocked range,
which expresses a linear range of values in terms of a lower bound, an upper
bound, and optionally, a grain size. The grain size is a guide for the workload
size per task. The value of granularity affects the performance and load balance
of the parallel operation.

The TBB library can create ad-hoc ranges. That is, the user can define new
range classes implementing specific policies to decide when and how to split, how
to represent the range, etc. An example of usage of ad-hoc range will be shown
in Section 4.3.

4 Implementation of Some Algorithms

The codes used in this comparison were taken from the chapter 11 of [1], which
contains examples of parallel implementations of algorithms using TBBs3. This
section describes some of them and it highlights the key differences between the
TBB and HTA implementations using some snippets of code.

4.1 Average

This algorithm calculates, for each element in a vector, the average of the pre-
vious element, the next element and itself. It can be parallelized by the TBB
library using the parallel for construct. The TBB code that implements this
algorithm is shown in Figure 4. In this code, the first and the last element of
the array are special cases, since they don’t have previous and next elements,
respectively. This is solved by adding elements at the beginning and the end of
the array which are filled with zeros as shown in lines 22-25 of the code. In line
27, the task scheduler object is created and initialized with 4 threads. The task
scheduler is the engine in charge of the automatic mapping from tasks to physi-
cal threads and of the thread scheduling. It must be initialized before executing
any TBB parallel constructs.

The first argument of the parallel for in line 30 is a range which includes
the whole vector. A grain size of 1000 is advised in this case. The second argument
is an object of the class Average which encapsulates the operation to be executed
by the parallel for. This class is defined in lines 7 thru 16. The operator()
method in this class defines the operation that will be applied on each subrange.
The low and high values of the indexes for each subrange are directly extracted
from the range parameter using the begin() and end() methods (see line 12).

The HTA implementation of this algorithm is shown in Figure 5. The data
structures are created in lines 18-21. The padding values are automatically gen-
erated and filled in HTA input thanks to overlapped tiling. Line 19 defines an
object that describes the overlapping of tiles in input. Shadows have size one in
both the positive and negative direction and those in the boundaries are filled
with zeros. In line 20 this overlapping specification is used to create an HTA
with N values distributed in nTiles. Line 21 allocates the HTA where the result
will be stored, which has the same topology as the one used as input but with
no overlapped regions.

The hmap method is invoked in line 24. Its first argument is the operation
to perform on each tile of the HTAs. This operation, Average, is defined as a
struct in lines 5-10. Hmap calls this operation for each tile of the HTA. The for
loop of line 7 iterates on the indexes of the elements in each tile.

3 These codes are in public domain and the can be downloaded from
http://softwarecommunity.intel.com/articles/eng/1359.htm

1 #include ”tbb/parallel for.h”
2 #include ”tbb/blocked range.h”
3 #include ”tbb/task scheduler init.h”
4
5 using namespace tbb;
6
7 class Average {
8 public:
9 float∗ input;

10 float∗ output;
11 void operator()(const blocked range<int>& range) const {
12 for(int i=range.begin(); i!=range.end(); ++i)
13 output[i] = (input[i−1]+input[i]+input[i+1])∗(1/3.0f);
14 }
15 ...
16 };
17
18 const int N = 100000;
19 static int nThreads = 4;
20
21 int main(int argc, char∗ argv[]) {
22 float raw input[N+2], output[N];
23 raw input[0] = 0;
24 raw input[N+1] = 0;
25 float∗ padded input = raw input+1;
26 ... /∗ Initialization not shown ∗/
27 task scheduler init init (nThreads);
28
29 Average avg(padded input,output);
30 parallel for (blocked range<int>(0, N, 1000), avg);
31
32 return 0;
33 }

Fig. 4. TBB implementation of the Average algorithm

4.2 Seismic

This code performs a simple seismic wave simulation (wave propagation), using
a few arrays.

The initialization of the data structures involved in the code is sequential both
in the TBB and the HTA versions, but in the HTA version it has been rewritten
using array notation, which allows to remove some loops and conditional state-
ments. Figure 6(a) shows this initialization in the TBB version. Arrays Material
and M contain the characteristics and composition of each band of the terrain.
This code fills one band of the terrain with WATER, two with SANDSTONE and
another one with SHALE. The HTA implementation is shown in Figure 6(b).

4.3 Parallel Merge

This code merges two sorted sequences into an output sorted sequence. The
algorithm operates recursively as follows:

1. If the sequences are shorter than a given threshold, they are merged sequen-
tially. Otherwise, Steps 2-5 are performed.

2. The sequences are swapped if necessary so that the first sequence, [begin1, end1)
(notation [) indicates that the first value of the interval is included but not
the last one), must be at least as long as the second sequence [begin2, end2).

3. m1 is set to the middle point in the first sequence. The item at that location
is called key.

4. m2 is set to the point where key would fall in the second sequence.

1 #include ”htalib serial .h”
2 typedef HTA<float,1> HTA 1;
3 #define T1(i) Tuple<1>(i);
4
5 struct Average {
6 void operator()(HTA 1 input , HTA 1 output) const {
7 for(int i=0; i!=input .shape().size () [0]; ++i)
8 output [i] = (input [i−1]+input [i]+input [i+1])∗(1/3.0f);
9 }

10 };
11
12 const int N = 100000;
13 static int nTiles = 4;
14
15 int main(int argc, char∗ argv[]) {
16 Traits::Default::init (argc,argv);
17
18 Seq< Tuple<1> > tiling(T1(N/nTiles),T1(nTiles));
19 Overlap ol(T1(1),T1(1));
20 HTA 1 input=HTA 1::alloc(1,tiling,ol,NULL,ROW);
21 HTA 1 output=HTA 1::alloc(1,tiling,NULL,ROW);
22 ... /∗ Initialization not shown ∗/
23
24 input.hmap(Average(),output);
25
26 return 0;
27 }

Fig. 5. HTA implementation of the Average algorithm

1 for(int i=1; i<UH−1; ++i) {
2 value t = (value)i/UH;
3 Material Type m = SANDSTONE;
4 M[i] = 1.0/8;
5 if (t<0.3f) {
6 m = WATER;
7 M[i] = 1.0/32;
8 } else if (0.5<=t && t<=0.7) {
9 m = SHALE;

10 M[i] = 1.0/2;
11 }
12 Material[i] = m;
13 }

(a) TBB version

1 M[1:0.3∗UH] = 1.0/32;
2 Material[1: 0.3∗UH] = WATER;
3 M[0.3∗UH+1: 0.5∗UH] = 1.0/8;
4 Material[0.3∗UH+1: 0.5∗UH] = SANDSTONE;
5 M[0.5∗UH+1: 0.7∗UH] = 1.0/2;
6 Material[0.5∗UH+1:0.7∗UH] = SHALE;
7 M[0.7∗UH+1:UH−1] = 1.0/8;
8 Material[0.7∗UH+1:UH−1] = SANDSTONE;

(b) HTA version

Fig. 6. Terrain initialization

5. Subsequences [begin1,m1) and [begin2, m2) are merged to create the first
part of the merged sequence and subsequences [m1, end1) and [m2, end2)
are merged to create the second part. Both operations take place in parallel.

The TBB implementation of this algorithm is based on a parallel for. The
subdivision of the sequences is implemented using an object of the ad-hoc range
class ParallelMergeRange whose definition is shown in Figure 7(a). The predi-
cate is divisible performs the test in step 1. The ParallelMergeRange class
has two constructors. The first one, shown in lines 7-21, contains the dummy
variable split. This argument is used by the TBB library to flag a Range con-
structor that is used to split an input Range in two. The constructor builds a
new range that stores one of the halves of the original Range and modifies the
original Range, received as first parameter, to hold the other half. This con-
structor performs the steps described in steps 2-5 of the algorithm. The other
constructor is a conventional constructor. The basic operation simply performs
the merge sequentially by means of a std :: merge.

1 template<typename Iterator> struct ParallelMergeRange {
2 ...
3 bool empty() const {return (end1−begin1)+(end2−begin2)==0;}
4 bool is divisible () const {
5 return std::min(end1−begin1, end2−begin2) > grainsize;
6 }
7 ParallelMergeRange(ParallelMergeRange& r, split) {
8 if (r .end1−r.begin1 < r.end2−r.begin2) {
9 std::swap(r.begin1,r.begin2);

10 std::swap(r.end1,r.end2);
11 }
12 Iterator m1 = r.begin1 + (r.end1−r.begin1)/2;
13 Iterator m2 = std::lower bound(r.begin2, r.end2, ∗m1);
14 begin1 = m1;
15 begin2 = m2;
16 end1 = r.end1;
17 end2 = r.end2;
18 out = r.out + (m1−r.begin1) + (m2−r.begin2);
19 r.end1 = m1;
20 r.end2 = m2;
21 }
22 ...
23 };
24 ...

(a) TBB version

1 ...
2 if (input1 size>GRAINSIZE) {
3 size1=input1 .shape().size() [0];
4 size2=input2 .shape().size() [0];
5
6 if (input1 size < input2 size) {
7 h2=input1 ;h1=input2 ;
8 std::swap(size1 , size2);
9 } else {

10 h1=input1 ;h2=input2 ;
11 }
12
13 begin2 ptr=h2.raw();
14 end2 ptr=begin2 ptr+size2;
15
16 float ∗m2 = std::lower bound(begin2 ptr, end2 ptr, h1[(size1−1)/2]);
17 int pos=m2−begin2 ptr;
18
19 h1.part(Tuple<1>(0),Tuple<1>((size1−1)/2));
20 h2.part(Tuple<1>(0),Tuple<1>(pos));
21 output .part(Tuple<1>(0),Tuple<1>(pos+((size1−1)/2)));
22
23 output .hmap(Merging(),h1,h2,0);
24 ...
25 } else {
26 ...

(b) HTA version

Fig. 7. Parallel Merge

The HTA version is based on hmap. In the function applied by hmap, if the
sequences are bigger than a given threshold, steps 2-5 are implemented. This
part of the algorithm, shown in Figure 7(b), is implemented using the dynamic
partitioning feature. Lines 19-21 add new partitions to the two input HTAs and,
the output HTA in the points selected as described in step 3 of the algorithm.
Line 23 calls hmap recursively with the repartitioned structures. In this call,
hmap applies its functor argument on each chunk in parallel. After this call these
partitions are removed using rmPart. The recursion finishes when the sequences
to merge are smaller than a given threshold, then step 1 is performed.

5 Qualitative Comparison

Both Hierarchically Tiled Arrays (HTAs) and Threading Building Blocks (TBBs)
are libraries devoted to facilitating the expression of parallelism. HTAs are ar-
rays which may be organized into one or more levels of tiles. When an operation
is applied to an HTA its tiles can be processed concurrently. An interesting char-
acteristic of the HTA library is that its programming model is useful both in
serial or parallel scenarios. In the serial case, the array notation usually improves
readability and the tiling structure can be used for locality enhancement. More
importantly, HTAs can be used in both shared and distributed memory envi-
ronments, although some operations such as dynamic partitioning can be more
costly in the distributed memory environment.

The approach of TBBs, which are restricted to shared memory environments,
is to parallelize loops by specifying tasks using ranges which will be recursively
subdivided. Since TBB does not have the notion of tiling like HTA, it must rely
on loop structure to improve locality. The distribution of the work is performed
automatically by the task scheduler.

Much parallelism found in programs is data parallel and can be expressed
as an element-by-element operation, a reduction, or a scan, as described in Sec-
tion 2. The TBB library implements these operations using a parallel for, a
reduce, and a scan operation respectively. The HTA library uses alternatively
an hmap, a reduce, and a scan operation.

The manipulation of HTAs benefits from array-oriented notation, which al-
lows expressing some computations in a more readable form than using nested
loops (see Figure 6). This tends to reduce the number of lines of code as dis-
cussed in the next section. However, the advantage of array notation goes beyond
the lines of code. Array notation is intrinsically deterministic and should for all
practical purposes completely avoid the possibility of race conditions.

One important feature of the TBB library is the ability to create ad-hoc
ranges which divide the iteration space using special rules. This feature is sup-
ported in the HTA library by means of dynamic partitioning.

The HTA library can define overlapped regions during the creation of an
HTA. However, programs based on the TBB library have to resort to the use
of padding regions managed by the programmer, or to implement special treat-
ment for the edge regions of the array, which complicates the programming. An
example of this can be seen in Section 4.1

Some TBB library primitives are not implemented by any HTA construct.
Examples of such primitives include software pipeline, some STL-like concurrent
containers, mutual exclusion structures for explicit thread synchronization, sup-
port for atomic operations on primitive data types, and thread-aware timing
utilities. When such primitives are needed, they can be used in codes which use
the HTA library, since both libraries can be used in the same program. Nothing
special is needed to make any of them aware of the usage of the other one.

One interesting property of the TBBs which is not available in today’s imple-
mented HTA library is the ability to subdivide the range to process depending
on the number of available processors. If one of the processors finishes very soon,

Code Lines (HTA) Lines (TBB) HTA reduction

Average 28 39 +28%

Seismic 304 295 -3%

Parallel merge 70 74 +5.4%

Game of life 97 309 +69%

Substring finder 49 49 0%

Table 1. Number of lines for the five codes parallelized in the HTA and TBB version

Code
HTA TBB

1 2 3 4 8 1 2 3 4 8

Average 490 403 381 260 253 536 193 189 190 196

Seismic 1993 1060 1010 778 503 1500 802 832 670 483

Parallel merge 8783 4704 4591 3885 3365 11823 5543 5144 3968 3793

Game of Life 21472 115731 8568 6802 5182 19788 11685 8976 7593 5520

Substring finder 6180 3130 2350 1570 810 6413 3200 2130 1605 810

Table 2. Times, measured in milliseconds, for both the TBB and HTA versions using
1,2,3,4 and 8 processors respectively

the amount of remaining work in another processor can be recursively divided
to generate a new subrange assigned to the idle processor. This feature can be
implemented of the HTA library.

6 Evaluation

The measurement of the impact of a library on the ease of programming is
quite subjective. There is no formula to calculate exactly the readability of a
program although experienced programmers can usually easily determine which
implementation and notation is easier for development and maintenance. We
have chosen the source lines of code as an objective method to compare the
implementation of the algorithms using the TBB and HTA libraries. This metric
counts all the source lines in the code ignoring the comments and empty lines.
This metric has been measured in Table 1 for both the TBB and HTA version of
the codes introduced in Section 4 and two other ones implemented also using the
features covered in that section: The Game of Life and the Substring Finder. All
these codes are also included in Chapter 11 of [1]. The fourth column stands for
the reduction of the source number of lines of code obtained in the HTA version
with respect to the TBB one expressed as a percentage of the source number of
lines of code of the TBB version. As can be seen from the table, the HTA codes
are either virtually on par or shorter than their TBB equivalents. The Game of
Life sees significant improvements that can be attributed to overlapped tiling.

Table 2 shows the times in milliseconds for the execution of both the HTA
and TBB versions of the codes. The machine used for the tests had two Quad

Tiles 4 8 16 20 40 50 80 100 200 250 400 500

Times 6953 5182 4341 4274 4130 4219 4399 4929 5585 6240 9254 12135

Table 3. Times, measured in milliseconds, for different number of tiles per dimension
for the HTA version of the Game of Life on a 2000x2000 grid on 8 processors

core 2.66 Ghz Xeon processors and used version 4.2.1 of the GCC compiler with
optimization level three. Several measurements were taken using 1,2,3,4 and
8 of the processors available in this machine. The results show that the times
obtained using the HTA versions are approximately on par with those of the TBB
versions. In these experiments, one tile per processor was created in each tiled
HTA, except in the cases of Parallel Merge, where the HTA was tiled recursively
using dynamic partitioning until the threshold tile size was reached, and the
Game of Life, where one tile per processor per dimension was used. This does
not imply a dependence on the number of processors as HTAs are objects created
at runtime whose tiling structure is computed dynamically. Thus the number of
processors can be obtained dynamically and used in a general computation of
the desired tiling structure.

In Table 3, one can see the results of experiments where we used signifi-
cantly more tiles than threads for the HTA Game of Life. We observed that
the performance of the HTA version can improve almost 25% on what is shown
in Table 2 by increasing the number of tiles. The top performance can be seen
when the tiles under computation fit into L1 cache. Additional benefit comes
from the dynamic distribution of work on the available threads as the parallel
computations in our implementation inherit from TBBs. This is possible due to
the overdecomposition of the problem.

Parallel computations in the HTA library are implemented using TBB paral-
lels construct and consequently make use of TBB’s scheduler. The HTA library
allows these algorithms to be expressed differently and often more clearly as
well as possibly changing the number and order of operations. If an HTA and
a TBB program performed the same operations in the same order, one would
expect no difference in performance as the programs would essentially be syn-
tactically as well as semantically identical. This is evidenced by the Substring
Finder example.

7 Conclusions

We have compared Intel TBBs and HTAs, two libraries devoted to facilitating
the programming of multicore machines. For this purpose several algorithms
were implemented using both libraries. The evaluation shows that the HTAs
codes are shorter or on par with the length of the TBB ones. However, array
notation of some computations simplifies the HTA implementation of the TBB
codes with loops and conditional statements, dynamic partitioning is easier to

use than ad-hoc TBB Ranges, and overlapped regions hide the details of man-
agement of shadow and padding regions from the programmer. The performance
results show that the times obtained for the HTA versions are comparable to
those obtained with the TBB ones. Dynamic partitioning seems to be more ef-
ficient than ad-hoc TBB Ranges and sometimes both coding and performance
improvements can be observed due to features like overlapped tiling, as in the
case of the Game of Life code.

These two libraries can coexist in the same program. The HTA library seems
a more natural way to express data-parallelism, which arises frequently in real
programs, while the TBB offers more flexibility and can be used to solve other
situations for which HTAs may not be suitable.

An interesting property of TBBs not yet implemented in the HTA is the abil-
ity to repartition the work in an automatic way according to the number of idle
processors. Thus our future work involves enabling the automatic repartitioning
of HTAs dynamically according to the number of idle processors in a similar way
to the behavior of ranges in the TBB library.

References

1. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. 1 edn. O’Reilly (July 2007)

2. Butenhof, D.R.: Programming with POSIX Threads. Addison Wesley (1997)
3. Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel

programming in OpenMP. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (2001)

4. Bikshandi, G., Guo, J., Hoeflinger, D., Almasi, G., Fraguela, B.B., Garzarán, M.J.,
Padua, D., von Praun, C.: Programming for parallelism and locality with hierarchi-
cally tiled arrays. In: Proc. of the ACM SIGPLAN Symp. on Principles and Practice
of Parallel Programming (PPoPP’06). (March 2006) 48–57

5. Bikshandi, G., Guo, J., von Praun, C., Tanase, G., Fraguela, B.B., Garzarán, M.J.,
Padua, D., Rauchwerger, L.: Design and Use of htalib - a Library for Hierarchically
Tiled Arrays. In: Proc. of LCPC 2006. Volume 4382 of LCNS., Springer-Verlag (Nov
2006)

