
Noname manuscript No.
(will be inserted by the editor)

Developing adaptive multi-device applications with the
Heterogeneous Programming Library
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Abstract The usage of heterogeneous devices presents two main problems. One is
their complex programming, a problem that grows when multiple devices are used.
The second issue is that even if the codes for these devices can be portable on top
of OpenCL, they lack performance portability, effectively requiring specialized im-
plementations for each device to get good performance. In this paper we extend the
Heterogeneous Programming Library (HPL), which improves the usability of hetero-
geneous systems on top of OpenCL, to better handle both issues. First, we provide
HPL with mechanisms to support the implementation of any multi-device applica-
tion that requires arbitrary patterns of communication between several devices and a
host memory. In a second stage HPL is improved with an adaptive scheme to opti-
mize communications between devices depending on the execution environment. An
evaluation using benchmarks with very different nature shows that HPL reduces the
SLOCs and programming effort of OpenCL applications by 27% and 43%, respec-
tively, while improving the performance of applications that exchange data between
devices by 28% on average.

Keywords programmability, heterogeneity, parallelism, portability, libraries,
OpenCL

1 Introduction

The usage of heterogeneous devices has enormously grown during the past few years.
Unfortunately, the codes for these devices lack portability unless they are developed
in OpenCL [12], as most frameworks are vendor or device-specific [18]. Also, the
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programming of these systems is much more complex than that of traditional CPUs,
as they require dealing with much more issues such as explicit memory management,
transfers and synchronizations between different devices, among others. This com-
plexity grows with the number of devices involved in the application. To make things
worse, even if the codes are written in OpenCL to achieve portability, the large diver-
sity of heterogeneous systems makes it impossible to reach good performance across
different devices by applying uniform programming and optimization strategies. As
a result, OpenCL applications usually need to be tuned for different kinds of devices.

There have been many proposals to simplify the programming of heterogeneous
systems. A recent one is the Heterogeneous Programming Library (HPL) [23], whose
unique feature is a language embedded in C++ in which the computations to run in
the devices should be written. The library translates this language to OpenCL, so
that it enjoys the portability of this standard together with run-time code generation
capability. Furthermore, HPL avoids the high programming cost of OpenCL [17]
thanks to the automation of all the tasks it requires, making them totally oblivious to
the user. The result is a portable high productivity programming tool.

An important limitation of HPL was that it lacked critical mechanisms to enable
the general effective use of multiple accelerators. This way, our initial experience
using several GPUs on HPL [24] relied on the mechanisms available in [23], which
restricted it to algorithms in which different devices could only work on different
arrays, as there was no support for coherency or data movements between devices.
Relatedly, no mechanism was provided to copy data between arrays. In this paper
we extend this tool to manage multiple devices while keeping its characteristics of
minimum user effort and maximum performance. This extension consists of a totally
general data coherency scheme for the data structures managed by HPL as well as a
mechanism to make assignments between these structures so that they can be easily
copied. The implementation is efficient, as it not only requires the minimum number
of transfers, but it also applies the most efficient mechanisms to perform these trans-
fers. This latter characteristic implies a dynamic adaption capability of our library, as
different transfer mechanisms suit better different systems. Finally, this paper evalu-
ates for the first time HPL on the new Intel Xeon Phi systems.

The rest of this paper is organized as follows. The next Section briefly describes
HPL. Section 3 describes the new extensions and Section 4 is devoted to the eval-
uation. The paper finishes with a review of the related work in Section 5 and our
conclusions and future work plans in Section 6.

2 The Heterogeneous Programming Library

Our library, which is publicly available at http://hpl.des.udc.es, provides a
programming model similar to that of CUDA [18] or OpenCL [12], in which a main
application running in a host CPU can execute computational kernels in the form of
functions in heterogeneous devices attached to it. Each one of these devices has its
own separate memory, and the communication with the host takes place by means of
the arguments to the kernel functions. The devices have a number of processors that
can run in parallel the kernels in a SPMD fashion, i.e, using a number of threads that
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are identified by a unique identifier. When the user submits a kernel for execution to a
device, she must specify the number of threads to use by means of a space of natural
numbers of between one and three dimensions called global domain. A local domain
with the same number of dimensions as the global domain and whose dimensions
divide those of the global domain in each dimension can be specified. This domain
divides the threads of the global domain in groups that can be synchronized by means
of barriers and share data using a fast scratchpad. Threads that do not belong to the
same local domain cannot cooperate, however.

The library API is explained in detail in [23]. Here we provide a brief description
of its three components so that the reader can understand the examples along the pa-
per. The first component is the data type Array<type, nd [, memoryFlag]>, which rep-
resents a nd-dimensional array of elements of type type. The optional memoryFlag
indicates where is the array located, as HPL supports global, local, constant and pri-
vate memory in the devices, following the naming and characteristics of the kinds of
memory supported by OpenCL [12]. When nd is 0, the data type represents a scalar,
although the library provides a convenient naming based on an initial uppercase letter
(Int, Float, etc.) to define scalars. Vector types are supported with a similar syntax
(Int4, Float8, etc.). The constructor of a non-scalar Array receives the sizes of its
dimensions. If the variable is defined in host code, it also allows as optional argument
a pointer to the array data in the host memory. If that pointer is not provided, HPL
automatically manages the host memory required to support the array.

The second component are a series of macros, predefined variables and functions
that constitute together with Array a language embedded in C++ in which the HPL
kernels must be written. For example, the control structs are those of C finished with
an underscore, and the arguments to a for loop must be separated by commas in-
stead of semicolons. The predefined variables allow to obtain critical data for the
kernels, such as their unique identifiers or the size of each dimension of the global
and the local domain of the execution of the current kernel.

The last component is the host API, whose main purpose is to find the devices
available and their properties and request the execution of kernels in them. This way,
the execution of a kernel f, which is a regular C++ function written using the embed-
ded language provided by HPL, on the arguments arg1 and arg2 is requested using
the syntax eval(f)(arg1, arg2). By default, the global domain of the execution
is given by the dimensions and size of the first argument, while the local domain
is automatically chosen by the library. However, these and other parameters can be
detailed by inserting specifications, in the form of methods, between eval and the
argument list.

Example 1 The matrix product code c=a⇥ b in Fig. 1 illustrates the usage of HPL.
Lines 1 to 7 contain the kernel definition, which implements the work performed by
each thread using the embedded language provided by HPL. The idx and idy vari-
ables identify the thread in the two dimensions of the global domain. Each thread
calculates one position of the solution by multiplying a row of matrix a and a column
of matrix b. In the main code, three two-dimensional arrays, a, b and c are defined in
line 10. These three arrays correspond to the three matrices involved in the computa-
tion. The eval method is invoked on this kernel in line 12. As the global space is not
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1 void mxProduct(Array<float,2> c, Array<float,2> a, Array<float,2> b, Int P)
2 {
3 Size t k;
4 c[idy][idx] = 0.f;
5 for (k =0, k < P, k++)
6 c[idy][idx] += a[idy][k] ⇤ b[k][idx];
7 }
8
9 ...

10 Array<float,2> c(M,N),a(M,P),b(P,N);
11 ...
12 eval(mxProduct)(c, a, b, P);

Fig. 1 Matrix product on a single device using HPL

specified, the sizes of the two dimensions of matrix c are used as the sizes of a two-
dimensional global domain. The size of the local domain is set automatically by HPL.
The device where the kernel is executed is not specified, thus, the computation will
take place in the first OpenCL capable accelerator found. The kernel receives as pa-
rameters the three Arrays and the size of the loop whose iterations are not distributed
among the threads of the global domain ⌅

3 Multi-device support in HPL

The exploitation of multiple devices requires several features of the HPL library: sup-
port in its API for multiple devices, the improvement of its coherency and synchro-
nization scheme, and an easy syntax to copy data between Arrays. These features are
first presented in turn, while implementation details are discussed in Section 3.1.

Multi-device support in the HPL API: The HPL API allows to identify the devices
that can be used and their characteristics, which is necessary to enable multi-device
support. HPL currently classifies the devices as either CPUs, GPUs or generic accel-
erators (this is for example the case of the Xeon Phi). The user can obtain the num-
ber of devices of each kind (e.g. getDeviceNumber(GPU) provides the number of
GPUs) and refer to a specific device using an object of type Device that can be built
providing a device type and a number of device. For example, Device(ACCELERATOR,
2) would be the third accelerator in the system, as the numbering is zero-based. An
object d of this type can be used to specify where to run a kernel using the syntax
eval(f).device(d), that is followed optionally by other execution modifiers, and
finally, the kernel arguments. The method getProperties of this class fills a struc-
ture of type DeviceProperties that has a field for each property of the associated
device, thus allowing their inspection.

Advanced coherency and synchronization scheme: When an HPL kernel execution
is requested, the host copies to the memory of the selected device the kernel inputs
that were not available in it, then launches the kernel, and it continues executing
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the main program without waiting for the kernel to finish. This allows parallelizing
computations in the host and the devices as well as requesting parallel executions of
kernels in different devices.

The synchronization mechanism that allowed to wait for a kernel execution to
finish and retrieve its results in [23] was only based on the host accesses to the Arrays
used as arguments to the kernel executions. This way, when the host code tried to read
an array that was written by a previously launched kernel, the HPL runtime waited for
the kernel to finish and copied the resulting array to the host memory, after which the
execution of the main thread in the host would be allowed to continue. Subsequent
host accesses to the array would be immediately satisfied from the host-side copy
until new kernel executions that wrote to the array were requested. Similarly, an array
used as input in a kernel execution would be copied to the device only in the first
usage of the array in the device or if the host had written to the array in its memory
after the most recent usage of the array in the device. These mechanisms sufficed for
efficient single-device executions as the evaluation in [23] shows.

However, in order to successfully exploit with a reasonable performance and con-
sistent semantics several accelerators, HPL had to be extended in several ways. First,
since the user can request to use the same array in multiple devices, and they do
not share memory, the HPL runtime was improved to support multiple simultane-
ous copies of the same array, one per device where it is used, in addition to the
host-side copy. The copies of each Array are hidden from the user, who only sees
its current logical value. The underlying copies are managed following a multiple-
readers/single-writer policy (MRSW) policy [21] with an invalidation protocol on
writes [15] in order to keep a single coherent image. Let us notice that a general im-
plementation of the data replications implied by the MRSW strategy requires the copy
of data between devices, which is automatically performed by our runtime. Finally,
since the host code considers in its turn each one of the kernel execution requests as
well as the host accesses to the arrays, the main thread of the application provides
sequential consistency [14] to all these accesses to the Arrays, which is the simplest
and most convenient model to reason about parallel programs.

Since the Array is the unit of consistency, the usage of the same Array in several
kernel executions serializes them, even if each kernel operates on disjoint parts of its
data, unless of course if the Array is only a read-only input to all these kernels. This
way, in order to successfully parallelize executions of kernels that update different
portions of the same array in several devices, a different HPL Array, associated to
the specific portion updated in the device, must be defined for each device. This
policy also makes sense for read-only arrays when each device only needs to read a
portion of the array. The reason in this case is not to avoid the serialization of the
tasks, but to minimize the data transferred, as the Array is also the unit or allocation
and transfer. The construction of HPL Arrays associated to different portions of the
same host array is facilitated by the fact that their constructor supports an optional
argument to specify the location in host memory of the data managed by the Array,
as commented in Section 2. This way, different Arrays can start in different positions
within the same C array.
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1 float cx[M][N], ax[M][P], bx[P][N];
2 Array<float,2> ⇤⇤c, ⇤⇤a, b(P, N, bx);
3
4 const int ndevices = getDeviceNumber(GPU);
5 c = new Array<float, 2> ⇤ [ndevices];
6 a = new Array<float, 2> ⇤ [ndevices];
7
8 for(i = 0; i < ndevices; i++) {
9 c[i] = new Array<float, 2>(M/ndevices, N, cx+i⇤(M/ndevices⇤N));

10 a[i] = new Array<float, 2>(M/ndevices, P, cx+i⇤(M/ndevices⇤P));
11 }
12 ...
13 for(i=0; i< ndevices; i++)
14 eval(mxProduct).device(Device(GPU,i))(⇤c[i], ⇤a[i], b, P);

Fig. 2 Matrix product on multiple GPUs using HPL

Example 2 Fig. 2 shows a multi-device implementation of the same matrix product
as Example 1 where the work is splitted among the available GPUs by rows. This
example uses the features provided by the multi-device support in the HPL API and
takes advantage of the extended coherency and synchronization algorithm by working
with Arrays associated to different parts of the original underlying matrices. For
simplicity the code assumes that the number of rows M is a multiple of the number
ndevices of GPUs, obtained in line 4. The underlying matrices are declared in line 1
as regular arrays. Since the whole matrix bx is used in each one of the parallel kernel
executions, a single HPL Array b is declared in line 2 that contains it.

As explained before, the kernel executions in different devices will only take place
in parallel if separate Arrays for cx are used in each one of them, thus an array of
ndevices pointers to Arrays is built in line 5. Then each Array of the appropriate
size is created, associating its storage to the corresponding portion of matrix cx in
line 9. The same approach is followed with respect to matrix ax, as this minimizes the
amount of data transferred to each device. Finally, the kernel executions in lines 13-
14 use the i-th Arrays of c and a for the run in the i-th GPU. After the kernels
are launched, the host continues executing the code after line 14. It will only stop
and wait for a kernel execution to finish when either the host code tries to read the
associated output Array c[i] or a kernel execution in a different device requires
c[i] as input. In the latter case, the host will wait for c[i] to be computed, and then
it will transfer it to the other device ⌅

The totally general coherency support implemented in HPL together with its auto-
mated movement of data enables to program algorithms that require transfers between
devices in a very natural way. For example, stencil codes are usually parallelized by
means of ghost regions [9] that replicate a portion of an array that is updated by an-
other processor or accelerator. These structures need to be refreshed with the most
recent version of the data they replicate after each update and before the next round
of computations begins. When accelerators are used, this gives place to a data ex-
change between them [25]. Another example are pipelines, in which data proceeds
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1 bool f1 was run = false;
2 while(read(input0)) {
3 eval(f0).device(d0)(input0, output0);
4 if(f1 was run) write(output1);
5 eval(f1).device(d1)(output0, output1);
6 f1 was run = true;
7 }
8
9 if(f1 was run) write(output1);

Fig. 3 Data exchange to implement a pipeline between devices

through a series of tasks that transform them and handle the results to the next task in
the sequence. The parallelism comes from the fact that different tasks work in parallel
in different processors or devices on different sets of data.

Example 3 Fig. 3 shows an multi-device pipeline implemented with HPL. In this
code we assume that the first argument of each task is only read, and the second one
is only written. The pipeline iterates while there are new inputs to read in the initial
Array input0 (line 2). Device d0 runs task f0 on this input to generate the inter-
mediate result output0. If this is not the first iteration of the pipeline, the boolean
f1 was run is true, so in line 4 we write to a file the final result of the pipeline,
contained in Array output1. When the host accesses output1 in function write

through its API, HPL checks this Array status, so that if there are pending writes to
it (from the execution of f1 in line 5 in the previous iteration), HPL waits for them,
updates the host copy with the current value, and finally provides the data to the user
code. When line 5 requests to run f1 on device d1 taking as input output0, the
HPL coherency system waits for the most recent execution of f0 to finish in order
to generate the most up-to-date value, which is then transferred to d1. Both opera-
tions are blocking for the host, so lines 5 and 6 are only executed once output0 has
been safely copied to a buffer in d1. Line 9 ensures that the last result generated is
written. Notice that since f1 only reads the copy of output0 in the device d1, its
execution does not delay the next execution of f0, which just writes to its local copy
of output0 in device d0, located thus in a separate buffer, as HPL knows there is no
dependency between both tasks ⌅

Copy data between arrays: A final programmability improvement has been the im-
plementation of an intelligent assignment operator (see Section 3.1) that allows to
easily copy data between Arrays using the natural notation a=b in the host code.

3.1 Implementation details

HPL Arrays were extended to support multiple simultaneous copies of the same
Array, one per device where it is used, each copy being supported by an underly-
ing OpenCL buffer, in addition to the host-side copy, which is located in plain host
memory. HPL builds the buffer images of Arrays on demand, so that an Array is
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Fig. 4 Bandwidth of copies between devices. T stands for two transfers in sequence and C for clEnqueue-
CopyBuffer usage

only allocated in a device if it is used in a kernel execution in the device. The poten-
tial existence of copies in several devices implied the need for a coherency strategy,
which is the multiple-readers/single-writer policy (MRSW) policy [21] with copy in-
validations on writes [15]. Our implementation takes into account the new situation
that an array in a device could become outdated not only by host-side modifications
as in [23], but also by executions of kernels in other devices that wrote to the array.
This required in turn a new update mechanism that implied device-to-device transfers
of Arrays, in addition to the transfers between host and device considered in [23].

A very important issue that we have not seen discussed in the bibliography, is
how to transfer data between OpenCL buffers in different devices, which corresponds
to the copies of Arrays between devices. There are two possibilities to perform
this transfer in OpenCL, which is our backend. One is to use the OpenCL func-
tion clEnqueueCopyBuffer, which performs a copy between two buffers. The other
possibility is to first transfer the data from the source device to a host location, and
once it has finished, transfer the data from the host to the destination buffer. Common
sense suggests that the first option should be the best one, since it uses a specific
runtime function defined for this purpose, which enables it to exploit better possi-
bilities when they are available, and fall back on the second option when that is not
possible. In fact, the families of OpenCL benchmarks that support multiple devices
that we know of, such as the SNU NPB suite [19], use this approach to exchange
data between devices. Also, the benchmarks to characterize OpenCL [22] have never
compared these two possibilities as far as we know. We have found however that
clEnqueueCopyBuffer can be in fact much slower than the two sequenced trans-
fers possibility in some systems. Figure 4 shows the bandwidth observed in transfers
between two devices of the same type in the S2050, K20 and Xeon Phi systems
that will be described in Section 4 using the two copy mechanisms described, two
transfers (T) and clEnqueueCopyBuffer (C). We can see that there is a substantial
difference between both approaches, and while the Xeon Phi systematically favors
clEnqueueCopyBuffer, the situation is the opposite in the Nvidia GPUs.

In order to cope with this variability, HPL follows an adaptive approach. The li-
brary runs tests making a few transfers using both copy mechanisms to choose the
best one for each kind of device when it is installed in a system. The chosen copy
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strategy is stored in a configuration file that is read whenever a HPL application be-
gins its execution. The HPL runtime then uses the best copy mechanism as a function
of the device involved in the communication.

The assignment operator a=b to copy data between arrays enjoys many optimiza-
tions. Its data transfer is performed in a smart way, so that the data from b is copied
to the image of a that holds its most recent version (no matter it is in a device or
in the host), as it is expected that subsequent uses of a will take place in the same
place. If there are multiple updated copies of a, the host copy is updated, and it is
later transferred to the devices under demand when needed. Also, the copy is auto-
matically performed by means of a kernel when the source and the destination are in
the same device.

The synchronization mechanism was also updated, as if a kernel execution B in
a device requires an array written by another kernel execution A in another device,
B must be delayed until A finishes to gather the correct results. This is in contrast
with [23], which never had to delay a kernel execution, as they were all run sequen-
tially in the only device available.

Finally, we must stress that the complexity of the extended environment is totally
hidden by our runtime, so that users are not concerned by the existence of the multiple
copies and they do not even need to specify when to perform any transfers or updates,
all the analysis of dependencies and other details being automatically managed by
HPL. This way programmers are just given the simple and intuitive semantics that
an Array data are (sequentially) consistent across all their usages in the host and the
multiple devices available.

4 Evaluation

This section evaluates the programmability and performance of our proposal. Since
HPL seeks to provide wide portability, using OpenCL as backend for this purpose,
this is the standard tool with which it is fairer to compare our library. We have chosen
the C++ OpenCL API for the comparisons, as this is the language in which HPL and
the benchmarks using it have been developed, and this way both approaches enjoy
the same base language.

The evaluation is based on six benchmarks described in Table 1 in terms of the
number of source lines of code excluding comments and empty lines (SLOCs) of
their OpenCL C++ implementation, the number of kernels involved in unique (only
once) invocations and in repetitive invocations (i.e. inside a loop, so that each kernel
is invoked several times), and finally the pattern of communication between sub-
tasks when they are split among several devices. These baselines do not contain the
cumbersome initialization of OpenCL (device selection, creation of context and com-
mand queue, loading and compilation of kernels, etc.), which we have encapsulated
in routines that are invoked from the baselines. This way these baselines contain the
minimum amount of code that users need to write using the OpenCL host C++ API.

The EP and FT benchmarks come from the SNU NPB suite [19], an optimized
implementation of the NAS Parallel Benchmarks in OpenCL. EP is an embarrass-
ingly parallel application that is easy to distribute among several devices. FT is a
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Benchmark SLOCs Unique Repetitive Data
OpenCL invocation invocation exchanges

EP 440 1 kernel
FT 2450 3 kernels 7 kernels all to all
MatmulRow 243 1 kernel
Summa 320 1 kernel
ShaWa 961 3 kernels stencil
N-body 209 1 kernel all to all

Table 1 Benchmarks characteristics.

more complex benchmark that uses three kernels for its initialization before entering
an iterative process that invokes 7 kernels in each iteration, all of them parallelizable
among all the devices available. This benchmark computes the Fourier Transform of
a 3-D array along its three dimensions. Since the array is partitioned along one of its
dimensions in order to split the work among the devices, when the Fourier Transform
is to be computed along that dimension, the array has to be permuted or rotated so
that the array becomes partitioned by other of its dimensions, and the originally dis-
tributed dimension fits locally in each device, enabling the local computation. This
leads to an all-to-all pattern of communication between the devices.

MatmulRow is the matrix multiplication distributed by rows used as example in
Fig. 2. Summa implements the Summa algorithm for matrix multiplication [6], which
divides the three matrices in tiles and interleaves stages of local multiplication in each
device with stages of communications consisting of broadcasts across columns and
across rows of tiles of the two input arrays. The efficient implementation of these
broadcasts in our case does not involve copies between devices, but transfers of dif-
ferent portions of the input arrays from the host to each device in each step. This way
this benchmark stresses the communications between the host and each device.

Benchmark ShaWa is a shallow water simulator with transport of contaminants
developed in [16]. This application divides a surface into square volumes that interact
with their neighbor volumes through their four edges, having a pattern of computa-
tion in stencil. This way, its kernels are parallelized using the well-known approach
of ghost or shadow regions [9] that replicate a portion of the data in another proces-
sor. These regions need to be refreshed in each new time step as the original data is
modified. Our baseline exchanges the data between devices by means of device to
host, and then host to device, transfers, as they were the best method for our GPUs
in Sect. 3.1. Finally, N-body is a simulation of a dynamical system of particles that
presents an all-to-all communication pattern because in each time step of the algo-
rithm each particle influences the behavior of all the other particles. Its data exchanges
are implemented using clEnqueueCopyBuffer, as it is the natural way to make data
copies in OpenCL programs.

Figure 5 measures the programmability improvement provided by HPL with re-
spect to the OpenCL C++ baseline in terms of the reduction of programming effort
metrics measured in the code of the host side of the application. The kernels have not
been included in the measurement because their code is very similar both between
OpenCL and HPL and between single-device and multi-device versions of the ap-
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Fig. 5 Reduction in the number of SLOCs and programming effort of the host side of the application when
using HPL with respect to the OpenCL C++ baseline

System#0 System#1 System#2
Processor Intel Xeon X5650 2x Intel E5-2660 2 x Intel E5-2660

Frequency(GHz) 2.67 2.20 2.20
CPU #cores 6 (12 HT) 8 (16 HT) 8 (16 HT)

Memory Capacity (GB) 12 64 64
Peak Memory Bandwidth(GB/s) 32 51.2 51.2

Processor Nvidia S2050 Nvidia Intel Xeon
(2x Nvidia M2050) K20m PHI 5110P

Frequency(GHz) 1.55 0.705 1.053
GPU #cores 448 2496 60 (240 HT)

Memory Capacity (GB) 3 5 8
Peak Memory Bandwidth(GB/s) 148 208 320

Table 2 The Hardware Platform Details

plications, thus the extensions described in this paper play a small role in them. The
first metric is the well-known SLOC. The second one is the programming effort [10],
which considers also the complexity of these lines taking into account in a reasoned
formula the number of unique operands, unique operators, total operands and total
operators found in the code. We can see that the effort is consistently much smaller in
HPL, particularly if we take into account the relative complexity of each line of code.
On average, HPL reduces the SLOCs and the programming effort of the baseline by
27.1% and 43.1%, respectively, even when the baseline is a streamlined version with
minimal code for the initialization, as we have explained.

The performance evaluation relies on three systems that are described in Table 2:
a system with a NVIDIA Tesla Fermi S2050, another one with 3 Nvidia Tesla Kepler
K20m, and one with two Intel Xeon Phi 5110P. The compiler was g++ 4.7.2 with
optimization level O3.

Figures 6 to 8 show the speedup of our baseline and HPL versions when using all
the devices with respect to an OpenCL single-device implementation using a single
device in each one of the systems just described. This implies using 2 GPUs and 2
Xeon Phis in Figures 6 and 8, respectively. The SNU NPB, just as the original NPB,
requires a number of devices that is a power of two, thus EP and FT only use two K20
in Figure 7, while the other benchmarks use three. EP and FT were run for classes
D and B, respectively. The matrix products used matrices of 6000⇥ 6000 double-
precision floating point elements. Finally, ShaWa was run with a 1000⇥ 1000 mesh
representing an actual stuary and N-body worked on 192K particles.
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Fig. 6 Speedups with S2050
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Fig. 7 Speedups with K20
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Fig. 8 Speedups with Xeon Phi
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OpenCL for different problem
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Fig. 11 Speedup of HPL over
OpenCL for different problem
sizes of N-Body

As we can see, HPL matches or outperforms OpenCL in most applications, some-
times experiencing some degradation introduced by its runtime. In ShaWa there is an
additional overhead derived from the unavailability of mechanisms in the current
version of HPL to select a portion of an array for a copy or as argument for a kernel
execution. For this reason, HPL ShaWa must make more work to copy the rows that
must be exchanged between the devices to and from separate buffers that are used
for the exchanges and it is the benchmark with the largest overhead, reaching a max-
imum of 9% in the Xeon Phi. In FT, however, HPL is noticeably faster than OpenCL
in all the systems (up to 59% in the K20 system) for two reasons. One is that in the
transfers between GPUs the HPL runtime uses the two-transfer mechanism described
in Section 3.1, instead of the slower clEnqueueCopyBuffer found in the SNU NPB.
The second reason is that some of the FT array copies take place between arrays that
are actually located in the same device. While the SNU NPB implementation always
uses the same clEnqueueCopyBuffer mechanism, the HPL runtime detects this sit-
uation and avoids any transfer, just making a copy inside the device by means of a
kernel. The impact of these optimizations is large because FT requires many array
transfers, making HPL the winner in terms of average speedup in every device for
this benchmark. Something similar happens with N-body, whose data exchanges are
an important part of its runtime, and are much faster under the policy applied by the
adaptive HPL in the GPUs. As a result, HPL is on average 21.4%, 25.7% and 2.1%
faster than the OpenCL baseline across the applications tested in the S2050, K20 and
Xeon Phi systems, respectively.

Figures 9 to 11 show the speedup of HPL with respect to OpenCL for differ-
ent problem sizes of FT, ShaWa and N-Body, respectively, as they are the three al-
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gorithms that exchange data between devices. Since FT and N-body are based on
clEnqueueCopyBuffer, which offers bad performance in GPUs but is the best op-
tion in the Phi, HPL clearly outperforms OpenCL in the GPUs for all the sizes. It
also outperforms OpenCL FT in the Xeon Phi because of the second advantage men-
tioned in the previous paragraph: HPL detects that some copies that the SNU NPB
FT code always blindly performs by means of clEnqueueCopyBuffer have their
source and destionation in the same device, so HPL performs them by a faster copy
inside a kernel. The N-body baseline only copies between devices the data that is
strictly needed, so HPL and OpenCL get exactly the same performance on the Xeon
Phi. Finally, the baseline OpenCL ShaWa is optimal in the GPUs because it uses the
two transfers mechanism, so HPL performs worse due to the library overheads and
the additional copies that its restriction to operate on whole arrays imply in this al-
gorithm that only exchanges one row between neighboring devices. In fact, since the
amount of data exchanged is small, the adaptive nature of HPL, which allows it to
use in the Xeon Phi the faster clEnqueueCopyBuffer alternative (see Section 3.1),
does not help it to reach the baseline performance in this accelerator. We see however
that as the problem size grows, these overheads become a smaller and smaller portion
of the runtime, thus reducing the overhead of HPL. In FT and N-body, however, HPL
advantage remains basically constant across problem sizes because the whole arrays
used in the problem are exchanged. The only exception is FT in the K20, where when
the problem size grows from W to A we get a HPL relative speed bump, probably
because W is a small problem size with many kernels and the K20 is a powerful ac-
celerator, so the overheads of HPL do not allow it to reach its maximum advantage
for a small size. Overall, HPL was 28% faster than OpenCL across this set of ex-
periments, clearly showing its advantage in applications that exchange data between
devices.

5 Related work

Many works have focused on the exploitation of clusters of heterogeneous nodes.
They allow a thread of execution running in a host to allocate buffers and submit
tasks to all the devices in the cluster, avoiding the use of communication APIs such
as MPI. While some of these approaches [3] are based on CUDA, many [2,8,11,
13] have been built closely following the OpenCL API and concepts, thus requiring a
much lower level management than HPL. Only [2,8] abstract away some low level de-
tails of OpenCL. However, the API layer of [2], which supports unmodified OpenCL
applications, involves compiler directives that must indicate the inputs and outputs of
each task and synchronize them, or an object-oriented API that in addition to these
specifications also explicitly uses contexts and buffers. Similarly, libWater [8] still
relies on explicit kernel creation processes, buffers associated to devices that are ex-
plicitly read and written, and synchronizations based on OpenCL-like events. HPL is
currently restricted to the exploitation of the devices found in a single node, but it of-
fers programmers a much higher level view based on n-dimensional arrays rather than
buffers in a given memory or device. Also, it automates all the kernel compilation,
task synchronizations, buffer allocations, data transfers and coherency management.
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The fact that HPL tasks synchronizations and scheduling are defined by their
data dependencies expressed through their arguments relates it to the task superscalar
paradigm, which has been proposed to manage heterogeneous computations through
the OmpSs programming model [4]. This requires a compiler and the user must ex-
plicitly annotate the tasks inputs and outputs, contrary to the library-based and fully
automated extraction the dependencies of HPL. OmpSs does not provide either con-
venient array classes. Similar to HPL, DepSpawn [7] provides such classes and also
automatically extracts the data dependencies of the parallel tasks it allows to define,
but it has no support for heterogeneous systems.

The exploitation of heterogeneous parallelism across the devices existing in a
node by combining OpenMP and OpenACC, or ad-hoc directives has been explored
in [26] and [5], respectively. The result and the differences with respect to HPL are
similar to those of OmpSs, with the addition that these solutions do not automatically
schedule and synchronize the tasks based on their data dependencies.

Finally, skeleton libraries [1,20] are another approach to use multiple heteroge-
neous devices with reduced programming effort. The Heterogeneous Programming
Library has a wider scope of application than these tools, as they only allow to ex-
ploit parallelism in computations whose structure conforms to one of their skeletons.

6 Conclusions

In this paper we have extended HPL with an automated and optimized coherency
system for arrays that can be used across multiple accelerators as well as the host
of a computing node. The extension is also adaptive, as it chooses the most efficient
mechanism to perform the copies and it avoids transfers when it detects the source
and the destination are in the same device. The resulting tool reduces on average
the programming cost metrics of SLOCs and programming effort of multi-device
OpenCL C++ baselines by 27% and 43%, respectively. As for performance, while
HPL can present large overheads for small applications that require features not yet
implemented such as the copy of a subarray, its overheads are quite small for medium
and large applications, where they peak at 9%. Furthermore, its adaptive nature allows
to obtain noticeable speedups with respect to hand-coded OpenCL in applications that
exchange data between devices, achieving an average and a maximum speedup on a
series of tests for this kind of applications using different problem sizes of 28% and
106%, respectively. We plan to extend HPL to heterogeneous clusters and to further
enhance programmability by allowing to define subarrays that can be used both in the
data transfers and the kernels.
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25. Viñas, M., Lobeiras, J., Fraguela, B.B., Arenaz, M., Amor, M., Garcı́a, J., Castro, M., Doallo, R.: A
multi-GPU shallow-water simulation with transport of contaminants. Concurrency and Computation:
Practice and Experience 25(8), 1153–1169 (2013)

26. Xu, R., Chandrasekaran, S., Chapman, B.: Exploring programming multi-GPUs using OpenMP and
OpenACC-based hybrid model. In: 2013 IEEE 27th Intl. Parallel and Distributed Processing Symp.
Workshops PhD Forum (IPDPSW), pp. 1169–1176 (2013)




