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Abstract

Current Chip Multiprocessors (CMPs) consist of several
cores, cache memories and interconnection networks in the
same chip. Private last level cache (LLC) configurations
assign a static portion of the LLC to each core. This pro-
vides lower latency and isolation, at the cost of depriving
the system of the possibility of reassigning underutilized
resources. A way of taking advantage of underutilized re-
sources in other private LLCs in the same chip is to use
the coherence mechanism to determine the state of those
caches and spill lines to them. Also, it is well known that
memory references are not uniformly distributed across the
sets of a set-associative cache. Therefore, applying a uni-
form spilling policy to all the sets in a cache may not be
the best option. This paper proposes Adaptive Set-Granular
Cooperative Caching (ASCC), which measures the degree
of stress of each set and performs spills between spiller and
potential receiver sets, while it tackles capacity problems.
Also, it adds a neutral state to prevent sets from being ei-
ther spillers or receivers when it could be harmful. Fur-
thermore, we propose Adaptive Variable-Granularity Coop-
erative Caching (AVGCC), which dynamically adjusts the
granularity for applying these policies. Both techniques
have a negligible storage overhead and can adapt to many
core environments using scalable structures. AVGCC im-
proved average performance by 7.8% and reduced aver-
age memory latency by 27% related to a traditional private
LLC configuration in a 4-core CMP. Finally, we propose an
extension of AVGCC to provide Quality of Service that in-
creases the average performance gain to 8.1%.

1 Introduction

Choosing either a private or shared configuration for the
last level cache (LLC) is one of the key points of the design

in CMPs. When the LLC is shared among all the cores, it re-
quires a high bandwidth because every single request by any
upper cache needs to access the interconnection network.
Shared LLCs are usually distributed in tiles owned by dif-
ferent cores and, thus, needing different latencies depend-
ing on where the requested line is found. As the number of
cores and cache banks increases, it becomes more difficult
to hide wire delays. Even worse, harmful applications can
hurt the performance of other concurrently executing appli-
cations. On the other hand, in private configurations, each
core is assigned a static portion of the LLC, which provides
lower latency, better scalability, isolation and makes the op-
timization of particular parameters, like power consump-
tion, easier, at the cost of depriving the system of the abil-
ity of sharing underutilized resources. CMPs provide room
for improving performance since multiple different appli-
cations may be executed concurrently, ones being short of
cache resources while others can offer underutilized space.
Therefore, it is interesting to track the global availability of
resources and select the best policies to allocate them ap-
propriately.

Several proposals have been presented in order to share
resources in private configurations by displacing or spilling
lines from one cache to another [1] [2]. A second way
of addressing the impossibility of sharing resources in pri-
vate caches as well as limiting the amount of space devoted
to each application is to set partitions to both private and
shared data. Many approaches which propose partitioning
have appeared in the last years [3] [4], even existing mixed
approaches like [5]. All these techniques uniformly apply
the same policy to all sets in each private cache and they
do not provide alternatives when the sharing of resources
fails. Also, they classify caches in two groups, spillers or
receivers, when sometimes it may be better to be neither
spiller nor receiver.

In this paper we propose an approach to share resources
between caches in a per-set level basis called Adaptive Set-
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Granular Cooperative Caching (ASCC). This design mea-
sures the degree of stress of each set and spills lines from
those sets with a high number of misses related to hits,
which are thus unable to hold their working set, to sets
with underutilized lines in another cache, where they can
be found later using the coherence mechanism. Also, ASCC
adds a third neutral state where the set is disabled for both
spilling or receiving lines. This way each set applies the
policy which best suits it.

Another novel idea explored by ASCC is that the met-
rics used to manage the sharing of resources can also drive
changes in the local management of a set. The fact that the
same metric drives both kinds of optimization eases their
desirable coordination. ASCC first resorts to spills to allevi-
ate high miss rates. If this does not suffice, the cache may be
dealing with capacity problems. ASCC adopts the innova-
tive feature of changing the insertion policy to one specially
designed to deal with capacity problems when spilling is
not enough to hold the working set in the CMP.

Furthermore, previous designs apply their policies using
a static granularity to track the cache behavior. Experi-
ments using different granularities for the ASCC indicate
that granularity is an important point of the design. We pro-
pose an extension that dynamically adjusts the granularity
of ASCC by virtually grouping adjacent sets for the sake of
the tracking of their state and the application of the ASCC
policies. We have called it Adaptive Variable-Granularity
Cooperative Caching. Finally, we have improved this de-
sign adding support for Quality of Service.

The rest of this paper is organized as follows. The next
section describes the motivation and background of our ap-
proach. Sections 3 and 4 explain Adaptive Set-Granular Co-
operative Caching and Adaptive Variable-Granularity Co-
operative Caching, respectively. The environment used in
our experiments is described in Section 5, the results and
analysis of our proposals being discussed in Section 6. The
hardware cost is examined in Section 7. Section 8 intro-
duces an extended design to reach Quality of Service after-
wards. The last section is devoted to the conclusions and
future work.

2 Motivation and Background

Novel approaches, many of which are not suitable for the
traditional multiprocessors, have been proposed to exploit
the new capabilities of CMPs. A great number of them has
focused on the memory hierarchy due to its large impact in
the overall performance. By using private LLCs, a system is
able to provide the applications with isolation, low latency
and minimum bandwidth. Also, it allows easier design ex-
tensions, as the tags are associated to each cache. Several
approaches have appeared in the past years in order to pro-
vide private levels with shared capacity. Some techniques

use partitioning in order to limit the amount of space for
private and shared data while others try to make a better use
of resources by spilling lines between caches, even exist-
ing mixed approaches like the Elastic Cooperative Caching
(ECC) [5]. ECC splits sets in two different regions, a pri-
vate one, to allocate lines evicted from the upper level, and
a shared region, to hold lines spilled by neighbor caches.

Regarding the partitioning-oriented approaches, Adap-
tive Selective Replication [3] dynamically analyzes the
workload behavior and adapts the degree of replication on
a per block basis to match the application requirements.
In Cooperative Cache Partitioning [4] resources are parti-
tioned both in terms of time, giving different priorities of
execution to different partitions, and space, setting the size
of the different partitions depending on the application re-
quirements. The main problem with the approaches that
rely on partitioning is that they can waste space if the al-
located ways in the shared or in the private region are not
useful. These approaches often waste space by forcing to
allocate at least one way for each type of data, even if it
is not profitable, and they need large structures to operate.
Additionally, the uneven demands experienced by different
sets [6] [7] [8] [9] may result in some ways being wasted in
the regions of some sets, while the same regions could bene-
fit from more ways in other sets. As for the designs that rely
on spills, Cooperative Caching (CC) [1] spills lines to other
caches instead of directly evicting them to main memory if
they are the only copy in the chip. CC disregards whether
the spilling is going to benefit the cache. In a similar way,
any cache can play the role of receiver even if it has no
free space to share and the final candidate is chosen ran-
domly. Dynamic Spill-Receive [2] (DSR) labels each cache
as either spiller or receiver depending on a global counter
per cache used by its set dueling mechanism. This global
counter is updated by all the caches in order to determine
whether the spillings are going to hurt receiver caches or
not. A common limitation of CC and DSR is that they apply
uniformly the same policy to all the cache sets, as they can-
not detect whether a given set is going to perform better with
more ways or applying a different policy. Even worse, all
sets have to work always as spillers or receivers when some-
times it may be better to neither spill nor receive spilled
lines. Furthermore, DSR restricts the number of spiller or
receiver sets because they could be members of a Set Duel-
ing Monitor (SDM) which uses a fixed policy even when a
different one is performing better in the cache.

In summary, there are no approaches that use a fine-grain
metric to profile the state of the caches and apply different
policies to different portions of the cache depending on their
status. Also, no approach allows a given set to be in a neu-
tral state, not operating as spiller or receiver. Moreover,
these approaches are not designed to deal with capacity
problems. Our approach, called Adaptive Set-Granular Co-
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Figure 1. MPKI and CPI for SPEC CPU2006 benchmarks as the number of allocated ways varies.
The X axis shows the number of ways allocated from a 16-way 2MB cache (the remaining ways are
disabled). Benchmarks in the upper row can provide cache capacity and benchmarks in the lower
row can benefit from allocating more ways gradually.

operative Caching (ASCC), is able to determine in a per-set
basis whether the set should be a spiller, a receiver or neither
of them while it tackles capacity misses at the same time.
Furthermore, we have designed an extension called Adap-
tive Variable-Granularity Cooperative Caching (AVGCC),
which dynamically changes the granularity of the ASCC
policies.

Figure 1 shows the MPKI and CPI obtained in a 2MB
16 ways L2 cache enabling from 2 to 16 ways for 8 bench-
marks from the SPEC CPU2006 suite. In our experiments
in Section 6 we have used a 1MB 8 ways L2 cache as the
baseline configuration, which is represented in the graphs
with a dotted line. Statistics are gathered for the first 10
billion instructions executed after the initialization. We can
see how benchmarks in the lower row significantly bene-
fit from allocating more ways, while the ones in the up-
per row do not. In the first row we can deduce that milc
and sphinx3 are streaming applications because they have a
high MPKI and they are barely affected by the increase in
the number of allocated ways, namd has a small working
set and sjeng is sensitive to cache capacity only up to 1/4th
MB. All of them can offer cache capacity by increasing the
number of allocated ways for the hungry applications. On
the other hand, benchmarks in the lower row significantly
benefit from allocating more ways. These benchmarks that
are sensitive to cache capacity may take advantage of the
simultaneous execution with applications that do not bene-
fit from receiving extra space to hold their working sets if
we provide a mechanism to reassign underutilized resources
between applications. The last column in each graph shows
the MPKI and CPI using full associativity in the cache. We

can see how in many benchmarks there is still room for im-
proving performance by reducing capacity misses.

Memory references are known to be non uni-
formly distributed across the sets of a set associative
cache [6] [7] [8] [9]. Thus, there may be sets which might
benefit from allocating a greater number of ways and sets
that are able to hold their working set with their current
assigned ways. This fact is illustrated by Figure 2, which
shows the percentage of sets which benefit from enabling
more ways and the percentage of sets which remain unaf-
fected by this increase during the execution of the applica-
tions astar and milc of the SPEC CPU 2006 suite in subfig-
ures (a) and (b), respectively. The simulation environment
is the same as in the previous study. The classification is
based on the MPKI of each set. If the MPKI does not de-
crease when the number of allocated ways increases, or if it
decreases less than 1% related to the previous MPKI, calcu-
lated using 2 fewer ways, we mark this set as a constant set.
Otherwise, it is a favored set. We can see how the percent-
age of sets, either favored or constant, changes considerably
from 10 enabled ways on in Figure 2 (a) and from 6 to 12
in Figure 2 (b).

These results indicate that, depending on the application
and cache associativity, a different number of sets may ben-
efit from getting extra ways, while others do not. Our ap-
proach tries to detect these different behaviors in the sets to
perform cache-to-cache transfers, from a cache set, which is
not currently able to hold its working set and would benefit
from more space, to another cache where the set is under-
utilized. Relatedly, we can see how having a neutral state
can be beneficial, that is, it may be the case that the best for
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Figure 2. Percentage of sets that benefit from allocating more ways (favored) and percentage of sets
which remain unchanged (constant) in the execution of the Astar (a) and Milc (b) benchmarks.

a set is to neither spill to nor receive lines from another set.
For instance, increasing the number of ways in Figure 2 (a)
from 10 to 12 leaves around 90% of favored sets, while 10%
remain unaffected. When we increase the number of allo-
cated ways up to 14, only 36% of the sets whose behavior
improved when going from 10 to 12 lines keep taking ad-
vantage of having more ways. The other 64% has reached
its optimum behavior using 12 ways and they do not bene-
fit from getting more ways, while allocating fewer than 12
could be harmful. As a result, a neutral state, where the
set is neither spiller nor receiver, is beneficial for this latter
group of sets.

Furthermore, as we could see in Figure 1, a noticeable
percentage of the miss rate is due to capacity misses. Since
spills may not be enough to alleviate capacity problems, our
approach tackles these problems changing the insertion pol-
icy of the sets as well.

3 Adaptive Set-Granular Cooperative
Caching

We propose the Adaptive Set-Granular Cooperative
Caching to promote a better distribution of cache resources
in CMP platforms, which use private last levels for the
cache memory hierarchy, by spilling lines from those caches
which are short of space to other ones with underutilized re-
sources and by adapting the insertion policy of cache sets to
their demand. Our approach tries to balance the storage of
working sets of each core between caches and to reduce ca-
pacity misses by displacing lines and applying a new inser-
tion policy, respectively. In order to track the status of each
set, our proposal uses, initially, one saturation counter per
set [7]. This is a counter with saturating arithmetic that is in-
creased when a miss occurs in the set, and decreased when a
hit takes place. The value of this counter is called Set Satu-
ration Level (SSL). We use the same design as in [7], where
the saturation counters work in the range 0 to 2 ∗K − 1, K

being the associativity of the cache henceforth.

3.1 Balance of working sets

Our design classifies a set in one of three groups de-
pending on its SSL. We have used thresholds for the dif-
ferent values of SSLs regarding the previous results in [7].
Thus, when the SSL is below K, the high recent proportion
of hits indicates that the set can hold quite successfully its
working set. In this situation it is likely there are under-
utilized lines in the set that could be used to store part of
the working set of the set with the same index in other pri-
vate caches. Therefore the set is classified as a receiver set.
When K ≤ SSL < 2 ∗ K − 1, the set has some recent
hits but given the degree of pressure on it, it might be un-
wise to devote lines of it to store lines of the working set of
other sets. This way, the set is in a neutral state where it is
neither a sender nor a receiver. Finally, when the saturation
counter of a set reaches its maximum value, 2 ∗K − 1, the
high proportion of misses related to hits indicates that the
set is not able to hold its working set and is thus classified
as a sender. If the line to be evicted during a replacement
operation in a sender set is the last copy in the chip, our pro-
posal tries to optimize the usage of the caching resources by
spilling it to a receiver set (with the same index) in another
private cache in the same level instead of evicting it to a
lower level. If there are several potential receiver sets, the
one with the lowest value will be selected. If a tie occurs
among several caches, the destination cache is selected ran-
domly among the ones with the lowest value. This is the
only point of the design which requires further access to the
interconnection network. In order to scale the design, an
intermediate structure per cache similar to the Spill Allo-
cator proposed in [5] can be easily adapted. It would only
require one entry per set and it would store the saturation
counter value, which must be lower than K or K when there
is no valid candidate, and the index of the current candidate
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Figure 3. Different insertion policies for the
new line E in set X in a 4-way cache.

cache. It should be updated with every miss in the other
caches. Note that the low SSL in the receiver set favors that
a previously spilled line is not likely to be spilled again in
the near future, preventing inactive lines from being spilled
repeatedly. As the spilling of lines is performed after a miss,
the search of a candidate cache can be done simultaneously
with the line search operation provided by the coherence
mechanism, just as in [2].

3.2 Spilling-Aware BIP: A new insertion
policy

Another novelty of our approach is that it changes a ba-
sic policy of the private caches in CMPs in response to the
feedback of the cooperation mechanism. Namely, when a
spiller set is not able to find a candidate receiver set, this
indicates that spilling is not possible because the set has a
high SSL in all caches, which indicates a global problem
of capacity. Thus, in this situation our design changes the
insertion policy of the spiller set in order to avoid capacity
misses. The insertion policy reverts to the traditional MRU
(Most Recently Used) one when the value of the saturation
counter falls below K, indicating that the capacity problem
has disappeared. The Bimodal Insertion Policy or BIP [10],
which inserts new lines in the MRU position of the recency
stack with a low probability, ε, while it inserts most lines
in the LRU position, proved to be very effective to provide
thrashing protection and thus reduce capacity misses. Our
design uses a variation of BIP which inserts most lines not
in the LRU position, but in the previous one in the recency
stack, LRU-1, in order to discard temporary data. We have
called this insertion policy Spilling-Aware BIP or SABIP.

Note that using the original BIP two harmful behaviors
could happen. Firstly, destination sets working under BIP
could evict just inserted lines, depriving them of a chance
to be reused and consequently promoted to the MRU posi-
tion, not only due to local misses, but also to make room
for a spilled line. Our proposal avoids that behavior by ap-
plying the restriction on the SSL value of the destination
sets so that destination sets always apply MRU insertion.
But this situation could also happen in sets which were pre-
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Figure 4. Performance improvement over the
baseline for several intermediate designs of
the ASCC using local (L) or global (G) poli-
cies to make decisions on spillings, for DSR
and for ASCC itself running four applications.

viously in BIP mode and which, due to a recent good be-
havior, become destination sets. Here only SABIP protects
the most recently inserted line, which has probably good
locality given the change of behavior of the set, from be-
ing evicted due to a spill from another set. Also, as SABIP
gives more chances than BIP for lines to be reused before
their eviction, it generates fewer spillings of lines with some
locality, as they are retained more effectively in the set.

Our approach uses an insertion policy bit per set to de-
termine the current insertion policy of the set. Figure 3 ex-
plains the behavior of different insertion policies. Also, our
approach adds swapping of lines between caches when both
the requested line found in another cache and the victim line
selected by the replacement policy in the cache that per-
formed the request, are the last copy on chip. This is done
in order to keep these lines longer in the CMP.

3.3 Design breakdown

Figure 4 reasserts our design decisions and measures the
contribution to performance of each one of them by show-
ing some intermediate points of the design. The experi-
ments consider 4 cores and multiprogrammed workloads
using benchmarks from the SPEC CPU2006 suite. The
characterization of these benchmarks and the simulation en-
vironment will be described in Section 5. In this figure,
LRS or Local Random Spilling is ASCC without insertion
policy modifications to tackle capacity misses and choosing
randomly any cache with a value in the saturation counter
of the current set lower than K as a candidate to receive a
spilled line. LMS or Local Minimum Spilling selects the
cache with the lowest value instead. GMS or Global Min-
imum Spilling uses only one counter to globally manage
each cache (4 bits to represent the only saturation counter
per cache with an associativity of 8), so that all the cache
sets have the same behavior. LMS+BIP adds BIP to LMS
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Figure 5. Performance improvement over the
baseline for ASCC, a variation that uses only
2 states to classify the role of the sets, DSR
and a variation that uses 3 states to classify
the role of the cache, running four applica-
tions.

and GMS+SABIP (with an extra bit to determine the current
insertion policy in the cache) adds SABIP to GMS. Also, we
show the Dynamic Spill-Receive (DSR) [2] performance.
Note that DSR is similar to GMS but using the set dueling
mechanism instead of the SSL one, and ASCC is identical
to LMS+BIP but using SABIP. We can see that LMS out-
performs LRS thanks to the selection of the receiver cache
with the lowest value for the saturation counter of the cur-
rent set. In a similar way, LMS outperforms GMS thanks to
its ability to handle each cache set separately. The benefits
of SABIP, with respect to BIP in this environment, can be
deduced comparing ASCC with LMS+BIP. It is worthy to
point out the improvement of GMS+SABIP over DSR. This
design, which uses half the negligible storage overhead of
DSR, provides 30% more speedup over the baseline thanks
to its management of the insertion policy. Furthermore, the
comparison of GMS+SABIP with ASCC gives an idea of
the value of a fined grain granularity in the cache manage-
ment.

Figure 5 evaluates the usefulness of the neutral state of a
set, in which it is neither a spiller nor a receiver. DSR with
three states (DSR-3S) is a variation of DSR which uses the
2 most significant bits of its selector counter to decide if
the cache is a spiller, when the 2 MSBs are 11, receiver,
00, or neutral, 01 or 10. This design achieves 9% more
performance improvement over the baseline cache than the
original DSR. Also, we have tried an ASCC design which
uses only 2 states, ASCC-2S, in which a set is a spiller if its
SSL is >= K and a receiver otherwise, to see the effect of
the neutral state in ASCC. We can see in the last column,
which represents the geometric mean, that its performance
improvement over the baseline is 10% smaller than that of
ASCC.
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Figure 6. Different levels of granularity.

4 Adaptive Variable-Granularity Coopera-
tive Caching

In Figure 4 we could see how the designs that apply a
global metric to trigger the spilling of lines perform better
in the first two of the six multiprogrammed workloads. We
have performed experiments applying different granulari-
ties in ASCC to study their influence on the performance.
Applying a granularity for n consecutive sets using satura-
tion counters simply involves updating a single counter and
using its value to take the decisions for the whole group.
Table 1 shows the percentage of performance improvement
over the baseline when applying ASCC grouping sets 1 by
1, 4 by 4 and so on, up to 4096, i.e, from using 4096, 1024
counters and so on, to using only one counter for the whole
cache. Note that the insertion policy relies on the satura-
tion counter, so all the sets associated to one counter apply
the same insertion policy. This is sensible, as if the number
of counters is small, it means we are using a global metric
and the insertion policy should be global as well. Figure 6
shows an example for a 4-set cache applying different levels
of granularity using SSLs.

From these results we can infer that some workloads, or
individual benchmarks within a workload, are better man-
aged using a global metric, while others work better with
a fine granularity of management. Increasing the granular-
ity can help to correct ASCC overreactions to temporary
outstanding behaviors of particular sets, while decreasing it
allows to track the state of the cache sets and detect capacity
problems in a more accurate way. Therefore, we have two
options. The first one is to fix statically the granularity to
some value that seems to work well overall. The drawbacks
of this option are that it is not optimal, it does not adapt to
the nature and the changes of behavior of the workloads,
and there is no guarantee the granularity selected will be
far from good for some workloads. The second option is to
design a dynamic mechanism to adapt the algorithm granu-
larity to the needs of the applications during the execution.
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Table 1. Percentage of performance improvement of the ASCC from using 4096 counters (the original
ASCC design, using 1 counter per set) to using only 1 counter (grouping all 4096 sets in the cache),
related to the baseline configuration.

MW ASCC ASCC1024 ASCC256 ASCC64 ASCC16 ASCC4 ASCC1

445+401+444+456 1% 1% 1% 1% 1% 1.2% 2.1%
445+444+456+471 8% 13.6% 15.6% 17.9% 17.9% 16.4% 11%
433+462+450+401 0.1% 0.96% 1.4% 1.4% 1.4% 1.5% 2.7%
433+471+473+482 5.1% 6.17% 5.6% 6.4% 6.2% 6.1% 1%
458+444+401+471 10.2% 5.13% 6.6% 9% 9.1% 7.1% 1.4%
458+444+471+462 10.1% 5.45% 7.9% 9.2% 9.1% 7.6% 7%

geomean +5.7% +5.2% +6.2% +6.9% +6.8% +6.5% +4.5%

Our proposal entails starting with one counter for the whole
cache. The number of counters used is increased, dupli-
cating the current number, if more than half the saturation
counters in use have a value lower than K. When this hap-
pens, it means that most sets in the cache can provide sets
in other caches with space, so we use a finer granularity
to allow the sets to exchange lines in a more accurate way.
Also, the current number of counters in use is decreased,
halving it, when every pair of neighbor counters has a sim-
ilar value, specifically when there is an absolute difference
between their values of two at the most, and their embraced
sets are working under the same insertion policy. This is
sensible, since we can save storage space using one counter
to track their SSL simultaneously, as they are similar. Note
that different caches in the same CMP can be applying dif-
ferent granularities. We have called this technique Adaptive
Variable-Granularity Cooperative Caching or AVGCC.

4.1 Hardware description

In order to implement the described mechanism,
AVGCC needs three counters per cache. The first one, D
henceforth, stores the logarithm of the current number of
sets per saturation counter to base 2, that is, D is the loga-
rithm to base 2 of the granularity applied by AVGCC. For
instance, if 4 sets map to a single saturation counter, D will
store the value 2. The saturation counters are then accessed
adding a shifter controlled by D. This way, given a set index
I, the associated counter would be I >> D.

Secondly, AVGCC uses another counter, A, in order to
track how many pairs of SSLs fulfill the conditions required
when checking whether the number of counters in use must
be halved. The condition is evaluated twice, before up-
dating the accessed SSL and after doing it. A flip-flop is
needed to check whether the evaluation of the condition be-
tween the given SSL and its adjacent one has changed after
updating the former. Counter A is decreased if the evalua-
tion of the condition turns from being fulfilled to not being,
increased in the opposite case, and it remains unchanged
otherwise. Finally, the number of counters in use must be

duplicated if more than half the saturation counters have a
low value (below K). A counter, B, is needed for this pur-
pose. B is increased when the value of a saturation counter
goes from K to K-1 and decreased when it changes from
K-1 to K. Furthermore, as it was previously mentioned, the
D counter is increased when A = (S >> D)/2, where S is
the number of sets, as every pair of the (S >> D) satura-
tion counters in use fulfills the condition for it. Counter D
is decreased when B > (S >> D)/2. Also, after updating
the current number of counters, the new ones are initialized
to K − 1 and the associated insertion policies are reset to
the traditional MRU one. This process is performed peri-
odically. We will see in Section 6 that this design provided
an average improvement of 7.8% over the baseline for the
same set of workloads and configuration used in Table 1, in
comparison with the 6.9% of the best static approach.

5 Simulation environment

To evaluate our approach we have used the SESC simu-
lator [11] with a baseline configuration based on four-issue
out-of-order cores with two cache levels, both of which are
private to each core. This configuration is detailed in Ta-
ble 2. The ratio of LLC space per core is similar to that used
in the related bibliography and modern processors [12] [13].

We have used 13 SPEC CPU2006 benchmarks with an
MPKI of at least 1, as shown in Table 3, to make 14 multi-
programmed workloads of two applications and 6 of four.

Table 2. Architecture.
Processor

Frequency 4GHz
Fetch/Issue 4/4
ROB entries 176

Integer/FP registers 96/80

Memory subsystem
L1 i-cache & d-cache 32kB/2-4-ways/32B/LRU/WT

L2 (unified, inclusive) cache 1MB/8-way/32B/LRU/WB
L2 Cache latency (cycles) 9 local hits, 25 remote hits

Main memory latency 115ns
Coherence protocol MESI-based broadcasting
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Figure 7. Performance improvement for DSR, DSR+DIP, ECC, ASCC and AVGCC running two appli-
cations over the baseline.

These workloads cover combinations between applica-
tions that benefit from allocating more ways and other ones
that do not, workloads where no benchmark benefits from
getting extra space and workloads where all the benchmarks
would benefit from getting it. They have been executed us-
ing the reference input set (ref ), during 10 billion instruc-
tions after the initialization. When each core commits this
number of instructions it continues its execution until the
last core finishes, in order to keep competing for the cache
resources.

6 Performance evaluation

Our evaluation relies on the weighted speedup [14],
which indicates execution time reductions, and the har-
monic mean of CPIs [15], which balances fairness and per-
formance. ASCC, as well as the other approaches, has been
applied in the last level of the cache memory hierarchy. In
our experiments we have also tested DSR with 32 sets per
Set Dueling Monitor and 1 SDM per policy, a combination
of DSR and DIP [10], where DIP decides the insertion pol-
icy for the global cache (either BIP or the traditional LRU
one) depending on which policy is working better using also
set dueling and, finally, the ECC approach described in Sec-
tion 2. Our designs, as well as the DIP used in the combi-
nation with DSR, use a probability ε = 1/32 of inserting
the new line in the MRU position using BIP. ECC uses the

Table 3. Benchmarks characterization.

Benchmark L2 MPKI CPI Benchmark L2 MPKI CPI
401.bzip2 2.7 1.8 458.sjeng 1.36 1.6
429.mcf 40.1 10.4 462.libquantum 22.4 4.3
433.milc 33.1 4.28 470.lbm 29 2
444.namd 1 0.76 471.omnetpp 15.2 2

445.gobmk 1.1 1.34 473.astar 7.3 3.5
450.soplex 3.6 1 482.sphinx3 16.1 4.37
456.hmmer 3.4 1.3

values proposed in [5] for the thresholds and we have im-
plemented it without the distributed structures they propose,
tracking the shared state of the lines with an additional bit
per block. Note that this implementation provides the ECC
design with more accuracy than the original design, which
cannot track the information of all lines in the cache, spe-
cially if the degree of replication is low. Finally, AVGCC
checks whether the number of counters must be updated ev-
ery 100000 accesses to the cache.

6.1 Speedup and fairness analysis

Figures 7 and 8 show the performance improvement over
the baseline for the different approaches, measured as the
weighted speedup of CPIs, using 2 and 4 cores, respec-
tively. Numbers above or beneath the bars provide the per-
centages that are outside the scale range. The last column
shows the geometric mean for each design. ASCC, which
gets 6.4% and 5.7% of performance improvement over the
baseline when executing 2 and 4 applications, respectively,
and AVGCC, which achieves 7% and 7.8%, respectively,
clearly outperform the other approaches. DSR adapts to the
requirements of the applications thanks to the set dueling
mechanism, but it is not able to take advantage of the state
of each set as ASCC and AVGCC do. Also, it forces sets
to be either spillers or receivers and lacks of a policy ori-
ented to capacity problems. DSR+DIP outperforms DSR
executing 2 applications because it tackles capacity misses
as well. The problem with DSR+DIP is that its BIP inser-
tion policy is not aware of the spillings, as we explained in
Section 3.2. Thus, one just inserted line, which is not likely
to be reused in the near future if the set is applying BIP, can
be spilled to another cache and, as a result, a line with more
locality could be evicted there. Even worse, a spilled line
can evict a just inserted line in a set applying BIP depriving
it of a chance to be reused and consequently promoted to
the top of the recency stack. Let us recall that this particular

8



0

5

10

15

401+444+

445+456 

(2.5)

444+445+

456+471 

(3.1)

401+433+

450+462

(33.9)

433+471+

473+482 

(42.3)

401+444+

458+471

(3)

444+458+

462+471

 (16.2)

geomean

18.9

0

5

10

15

%
 P

er
fo

rm
a
n

ce
 i

m
p

ro
v

em
en

t

 r
el

a
te

d
 t

o
 L

R
U

DSR

DSR+DIP

ECC

ASCC

AVGCC

Figure 8. Performance improvement over the
baseline for DSR, DSR+DIP, ECC, ASCC and
AVGCC running four applications.
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Figure 9. Fairness improvement over the base-
line for DSR, DSR+DIP, ECC, ASCC and AVGCC
running four applications.

behavior cannot happen in our designs. As the number of
executing applications increases, the number of candidate
caches to receive spilled lines increases as well, so the neg-
ative effects of BIP are likely to happen more frequently.
That is why DSR+DIP degrades the performance of DSR
executing 4 applications. The discrete and even negative
behavior of DSR+DIP with respect to DSR emphasizes the
need for modifying policies to adapt them to different envi-
ronments, as we have done with SABIP, and for integrated
management designs such as ASCC and AVGCC. The ECC
performance improvement is modest compared to those of
ASCC and AVGCC because it mainly relies in a high degree
of replication, as it uses scalable structures that cannot hold
information for all the lines in the cache and has the prob-
lems inherent in partitioning described in Section 2. Finally,
AVGCC outperforms ASCC by adapting the granularity of
its policies to the different requirements of the applications.

Figure 9 shows the percentage of fairness improvement
with respect to the baseline system of each one of the con-
sidered approaches calculated as the harmonic mean of
IPCs, using 4 applications. ECC gets better results than
DSR and DSR+DIP because it is able to reduce the exe-
cution time for the longest applications. Overall the results
and therefore the explanations for them, are similar to the
ones obtained in the performance analysis. From these re-
sults we can conclude that ASCC and AVGCC do not hurt
fairness when speeding up mixed workloads, AVGCC being
again the leader thanks to its larger flexibility.

We have also simulated the usage by all the cores of an
L2 shared cache of the same aggregated capacity in which
addresses are mapped to banks in an interleaved way. This
cache has been simulated using an average latency (almost
twice the latency of a private L2 in the baseline for the 2-
core experiments and almost four times using 4 cores) for
the accesses to the different banks, assuming a uniform dis-
tribution of the accesses across the banks given by the in-
terleaved mapping. Finally, all caches are write-back in this

configuration. For the sake of space and clarity the results
for these simulations are not shown in the figures. Globally,
the 2MB shared cache outperformed the baseline private
configuration in the 2-core experiments by 1.8% and 1.7%
in terms of performance and fairness, respectively, laying
quite far from the performance of AGCC and AVGCC. Us-
ing 4 cores, the 4MB shared cache got a 3% of improvement
in both metrics. This means that, in general, and despite the
automatic sharing of resources inherent in shared caches,
private designs with additional sharing mechanisms can be
more effective.

6.2 Average Memory Latency analysis

Figure 10 shows the average memory latency normalized
to the baseline configuration (represented by the horizontal
dotted line of 100) for all the approaches in the 2-core con-
figuration. Each bar is broken down showing the percentage
of accesses to the L2 which result in hits in the local L2, in
a remote one or in main memory. The percentage due to
the L1 hits is not shown because it is almost the same for
all the approaches. The average memory latency has been
calculated regarding that each access is sequentially pro-
cessed, without overlaps between accesses. This bar graph
provides some feedback on previous results. For instance,
we can infer that ASCC and AVGCC degrade the base-
line performance for the workload 429+401 (mcf+bzip2)
because most local L2 hits in the baseline become remote
L2 hits for both approaches. The last column shows the ge-
ometric mean. DSR gets a 5% of improvement, DSR+DIP
12%, ECC 1%, ASCC 18% and AVGCC 22% in the 2-core
configuration. As for the 4-core configuration, not shown,
DSR outperforms the baseline design by 10%, DSR+DIP
by 14%, ECC by 11%, ASCC by 21% and finally AVGCC
by 27%. This translates in average power consumption re-
ductions in the memory hierarchy for the AVGCC of 25%
and 29% in our 2 and 4-core experiments, respectively.
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Figure 10. Percentage of improvement in the average memory latency and breakdown of the ac-
cesses for DSR, DSR+DIP, ECC, ASCC and AVGCC running two applications over the baseline.

6.3 Sensitivity analysis

We have performed experiments with multithreaded ap-
plications in order to evaluate our proposals in environ-
ments where sets tend to have a more uniform demand in
all caches. For these experiments we used benchmarks from
the SPLASH2 and PARSEC suites running them during 10
billion instructions (most of them until completion) and us-
ing the large input set for PARSEC and the appropriate in-
put set for SPLASH2 using 4 threads. Most of these bench-
marks are not hard memory demanding, so the L2 capacity
was reduced to 512KB to get meaningful results. ASCC,
with an average improvement of 5%, and AVGCC, with
6%, achieved the best results again in terms of reduction
in execution time over the baseline. In this environment the
spilling of lines can benefit even the receiver caches, which
may need the line in the near future, so our policies aim to
take advantage of this behavior as well.

Furthermore, we added a 16KB stride prefetcher to each
LLC in the multiprogrammed experiments obtaining simi-
lar results. Namely, ASCC outperformed the baseline by
6% and 5.5% and AVGCC by 6.4% and 7.6% in the 2 and
4 core configurations, respectively. Prefetchers reduce the
miss rate in the LLC, but this is done at the expense of
consuming more bandwidth. This way, the impact of our
policies is slightly reduced by the presence of prefetchers
in the 2-core configuration. The reduction is negligible in
the 4-core CMP because as the number of cores increases
the bandwidth savings provided by ASCC and AVGCC are
much more critical, particularly as the prefetchers consume
more bandwidth.

Table 4. Cost-benefit analysis of the AVGCC
as a function of the cache size.

Cache size % Average reduction in off-chip
accesses (4 / 2 cores)

Storage Overhead

1MB 27% / 14% 0.17%
2MB 12% / 9% 0.17%
4MB 12% / 9% 0.17%

Finally, Table 4 shows the percentage of reduction in the
number of off-chip accesses achieved by AVGCC with re-
spect to the baseline, as well as the overhead it involves, for
different cache sizes. The computation of the overhead of
our proposals will be discussed in Section 7. Since the miss
rate decreases as the cache size increases, AVGG impact
tends to be smaller the larger the cache is.

6.4 AVGCC Behavior

In this section we use measurements on the internal be-
havior of AVGCC and compare them to those of other tech-
niques in order to better understand how it achieves these
results. We have performed experiments on two parameters,
the number of spillings and hits per spilled line. In the 2-
core experiments AVGCC performed on average 13% fewer
spills than the second best approach (DSR+DIP henceforth)
and 60% fewer than the worst one (ECC). Also, its ratio
of hits per spilling is 28% larger than that of the second
best policy. Regarding the 4-core experiments, AVGCC
performed 28% fewer spillings than the following best ap-
proach, and 70% fewer than the worst case. Also, its ra-
tio of hits per spilling was 36% greater than the one of the
DSR+DIP approach.

From these results we infer that AVGCC is not only able
to achieve a higher ratio of hits per spilled line, but it also
needs fewer spillings to get it. This means that AVGCC
performs fewer useless spillings by relying, among other
points of the design, on the neutral state of the sets.

7 Cost

In this section we evaluate the cost of AVGCC in terms of
storage requirements. AVGCC requires a saturation counter
per set to monitor its behavior and one additional bit per set
in order to determine the insertion policy. Also, AVGCC
needs three additional counters: one to track the current
granularity for its policies (the D counter, explained in Sec-
tion 4), another one to determine if all pairs of neighbor
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Table 5. Baseline and AVGCC storage cost in
a 1MB/8-way/32B/LRU cache.

Baseline AVGCC

Tag-store entry:
State(MESI+LRU) 5 bits 5 bits

Tag (42− log2 sets− log2 32) 25 bits 25 bits
Size of tag-store entry 30 bits 30 bits

Data-store entry:
Set size 32*8*8 bits 32*8*8 bits

Additional structs per set:
Saturation Counters - 4 bits
Insertion policy bit - 1 bit

Total of structs per set - 5 bits

Halving/Duplicating counters
mechanism:

A,B & D counters - 12+12+4 bits
Total - 28 bits

N of tag-store entries 32768 32768
N of data-store entries 32768 32768

N of sets 4096 4096
Size of the tag-store 120kB 120kB
Size of the data-store 1MB 1MB

Size of additional storage - 2560B+∼4B

Total 1144kB 1146kB (0.17%)

sets have a similar value (the A counter) and a last counter
to check whether more than half the saturation counters in
use have a value lower than K (B counter). Based on this,
Table 5 calculates the storage required for AVGCC related
to an 8-way 1MB baseline cache with lines of 32 bytes, as-
suming addresses of 42 bits. Note that the ASCC storage
cost would be the same as the AVGCC one except for the
additional 4 bytes that A, B and D counters mean. We can
see that the storage overhead of the AVGCC is very small,
and it pays off for the performance benefits and power sav-
ings obtained.

Furthermore, as we could see in Section 4, it is not nec-
essary to have one counter per set, i.e., to apply the finest
granularity, in order to get the best overall results. Thus, we
performed experiments limiting the maximum number of
counters, that is, using a coarser granularity than the finest
one in the AVGCC, in order to reduce the storage overhead.
The speedups achieved using 4 cores go from 6.8% when
limiting the number of counters to 128 (which only requires
83B) to 7.1% using 2048 counters at the most (1284B).
While these results are lower than the 7.8% AVGCC ob-
tains by having the finest granularity using 4096 counters,
they need 97% and 50% less storage, respectively.

8 Quality of Service Aware AVGCC

In some CMPs losing performance may be unacceptable.
AVGCC degrades the baseline performance sometimes. In

order to solve this problem we propose an extended de-
sign to provide Quality of Service. Our design can inhibit
AVGCC by stopping spillings and fixing the insertion pol-
icy to MRU. We leverage the fact that this inhibition can be
done by limiting the increase that an update in the satura-
tion counters means when a cache miss occurs. A harm-
ful operation of AVGCC is detected when its number of
misses is greater than in the baseline cache. The number of
misses of the baseline cache (MBC) is estimated by track-
ing the misses (SampledSetMisses) in those sets (Sampled-
Sets) working under the MRU traditional insertion policy
and which have a value for their saturation counters greater
than K − 1, as these sets cannot receive lines. Then MBC
is estimated as:

MBC = CacheSets ∗ (SampledSetMisses/SampledSets) (1)

As for the number of misses for AVGCC (MissesWith-
AVGCC), it is simply collected using a counter. Our design
calculates a ratio called QoSRatio whose purpose is to ad-
just the saturation value of the sets in order to penalize or
reward them depending on their behavior. It is calculated
every 100000 cycles simultaneously with the recalculation
of the number of counters following the equation:

QoSRatio = MBC/max(MBC,MissesWithAV GCC) (2)

After the computation all the parameters are initialized
and the saturation counters are updated after each miss by
adding the QoSRatio, while they are decreased in 1 unit
after a hit as usual. The QoS-Aware AVGCC requires a
per-core storage overhead of 2 bytes for both miss coun-
ters (SampledSetMisses and MissesWithAVGCC), 4 bits to
store the QoSRatio value (1.3 fixed point format) and 12
bits (assuming 4096 sets in the cache) to count the number
of sampled sets. Finally, 3 additional bits are needed per
saturation counter (4.3 fixed point format). Altogether, this
design means a 0.35% of storage overhead over the base-
line considering the finest granularity, that is, having one
counter per set. Figure 11 shows the percentage of perfor-
mance improvement over the baseline system of the Qual-
ity of Service Aware AVGCC using two cores. Our Qual-
ity of Service approach globally outperforms the original
AVGCC, as stated in the last column of the bar graph. Us-
ing 4 cores, which has not been shown because AVGCC
did not degrade the performance of any workload, our QoS
approach gets 8.1% improvement over the baseline.

9 Conclusions

We have presented Adaptive Set-Granular Cooperative
Caching (ASCC), a new design aimed at last level caches in
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Figure 11. Percentage of performance im-
provement for QoS-Aware AVGCC and
AVGCC over the baseline using 2 cores.

CMP private configurations with a good cost-benefit rela-
tion. This cache detects the different demand of sets in order
to balance their working set by spilling lines to other caches
where the set is underutilized. When the sharing of re-
sources does not suffice, ASCC modifies the cache insertion
policy in order to deal with the problem of capacity. Fur-
thermore, we propose Adaptive Variable-Granularity Coop-
erative Caching (AVGCC), which is able to adapt the gran-
ularity with which the sets should be profiled and managed.
Also, this design has been improved with a Quality of Ser-
vice mechanism.

As far as we know this is the first approach that uses
spills for sharing resources using a set level metric. It is also
the first one able to adapt its granularity depending on the
behavior of the cache and capable of coordinating a spilling
mechanism with a local policy to tackle capacity misses.
Finally, it demonstrates the benefits of operating portions of
the cache, groups of sets in this case, neither as spillers nor
as receivers of lines, that is, not participating in the spilling
mechanism.

In a 4-core system running multiprogrammed workloads,
AVGCC achieved a performance improvement of 7.8% with
respect to the baseline. Also, it clearly outperformed recent
proposals both in terms of speedup and fairness, while hav-
ing a very small storage overhead. The 27% average mem-
ory latency reduction and 29% power consumption reduc-
tion it provided in these tests are also remarkable. Similar
results were obtained in experiments with multithreaded ap-
plications.

Future directions for research include tuning the size and
limits of saturation counters, as well as exploring other met-
rics, to obtain a more accurate picture of the state of the
cache.
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