
Parallelization of Shallow Water Simulations on

Current Multi-threaded Systems

J. Lobeiras (jacobo.lobeiras@udc.es) ∗

M. Viñas (moises.vinas@udc.es) ∗

M. Amor (margarita.amor@udc.es) ∗

B.B. Fraguela (basilio.fraguela@udc.es) ∗

M. Arenaz (manuel.arenaz@udc.es) †

J.A. García (jagrodriguez@udc.es) ‡

M.J. Castro (castro@anamat.cie.uma.es) §

September 24, 2012

Abstract

In this work, several parallel implementations of a numerical model

of pollutant transport on a shallow water system are presented. These

parallel implementations are developed in two phases. First, the sequen-

tial code is rewritten to exploit the stream programming model. And

second, the streamed code is targeted for current multi-threaded systems,

in particular, multi-core CPUs and modern GPUs. The performance is

evaluated on a multi-core CPU using OpenMP, and on a GPU using the

streaming-oriented programming language Brook+, as well as the stan-

dard language for heterogeneous systems OpenCL.

Keywords: Shallow water, pollutant transport, stream programming, com-

piler parallelizing transformations, GPU, OpenMP, Brook+, OpenCL.

∗Computer Architecture Group (GAC), Univ. of A Coruña (UDC), A Coruña, Spain
†Univ. of A Coruña (UDC), A Coruña, Spain
‡M2NICA group, Univ. of A Coruña (UDC), A Coruña, Spain
§EDANYA group, Univ. of Málaga (UMA), Málaga, Spain

1

1 Introduction

Shallow water systems describe the evolution of an incompressible �uid in re-

sponse to gravitational accelerations, where the vertical �ow is small compared

to the horizontal �ow. These systems have many applications, enabling the sim-

ulation of rivers, canals, coastal hydrodynamics or dam-break problems, among

others. In particular, the transport of pollutant in a �uid, that is modelled

by a transport equation, has particular relevance in many ecological and envi-

ronmental studies. This paper uses a mathematical model that consists in the

coupling of a shallow water system and a transport equation. These coupled

equations constitute a hyperbolic system of conservation laws with source terms,

that can be discretized using �nite volume schemes (R.J. LeVeque, 2002; E.F.

Toro, 2001).

Finite volume schemes solve the integral form of the shallow water equations

in computational cells of a geometrical mesh that describes the computational

domain. Some main bene�ts of using explicit �nite volume schemes are observed.

First, mass and momentum are conserved in each cell, even in the presence of

�ow discontinuities. A good approximation of fast waves as moving shocks

or wet-dry fronts appears in �uid or coastal hydraulics. Furthermore, much

reduced memory overheads are involved, as complex iterative matrix solvers are

not required. Finally, explicit �nite volume schemes are easy to implement in

multi-core and many-core systems as the most intensive computational part of

the algorithm consists of a set of operations that can be performed independently

(and thus asynchronously) at each edge of the mesh. This set of operations can

be identi�ed with a lightweight computational kernel, which is invoked a large

number of times for big meshes, and thus the algorithm �ts perfectly a stream

programming model.

The simulations of these problems have very large computing requirements

which grow with the size of the space and time dimensions of the domain. For

example, in the simulation of marine systems, the spatial domain can have many

kilometers and the time integration of the problem can last several weeks or even

months. Precise simulations over large detailed terrains require big meshes that

usually result in prohibitive execution times.

Thus, due to the interest of this kind of problems and its high computational

demands together with the fact that explicit FV solvers �t well with the stream-

ing programming model, several parallel implementations have been proposed on

a wide variety of platforms, such as computer clusters using MPI (M.J. Castro

et al., 2006), a version combining MPI and SSE (Streaming SIMD Extensions)

2

instructions (M.J. Castro et al., 2008a) and other generic multi-platform imple-

mentations like (D. van Dyk et al., 2009). Despite these e�orts, the increasing

computing power required by the most complex simulations motivated the de-

velopment of GPU (Graphics Processing Unit) solvers (T. Runar et al., 2006; M.

Lastra et al., 2009; T.R. Hagen et al., 2007) based on the �rst generation of GPU

programming languages like Cg or GLSL. The rapidly increasing computational

power and low cost of GPUs and the advances in GPU high-level programming

languages motivated the development of new parallel versions for modern GPUs.

Examples of CUDA implementations are a one-layer simulator (M. Geveler et al.,

2010; D. Ribbrock et al., 2010), a multi-GPU version (M.L. Sætra and A.R.

Brodtkorb, 2012) or high order implementations (A.R. Brodtkorb et al., 2012;

J.M. Gallardo et al., 2011). The parallel implementations mentioned above do

not handle pollutant transport problems. Even if single species transport does

not introduce any mathematical di�culties, we have decided to consider SWE

together with pollutant transport equation as this system is the basis of more

complicated models as turbidity current system presented in (T. Morales de

Luna et al., 2009). Turbidity currents are of great interest as those have a big

impact on the morphology of the continental shelves and ocean basins. Thus,

the scheme presented in this paper can be easily adapted to solve 2D turbidity

currents following the aforementioned work. A direct implementation for pol-

lutant transport simulation on CUDA GPUs was presented in (M. Viñas et al.,

2011).

This paper proposes a parallel shallow water simulator that solves a broad

variety of problems, even with pollutant transport and the presence of wet-dry

fronts in emerging bottom situations, and which runs very e�ciently on current

multi-threaded architectures. Our approach �rst applies generic parallelizing

transformations to rewrite the sequential code following the stream program-

ming model. In this paradigm the same function or streaming kernel is applied

to a set of inputs in parallel, producing another set of outputs. There should

be no data dependencies among the threads nor overlapping between the in-

put and the output data to prevent race conditions. This model is designed

to encourage and exploit a high degree of parallelism without signi�cant com-

piler e�ort, o�ering �exibility to exploit current GPUs and multi-core CPUs.

Then, the streaming sequential version is �ne-tuned to exploit the hardware

characteristics of multi-core CPUs using OpenMP (R. Chandra et al., 2001)

and of modern GPUs using Brook+ (AMD, 2009) and OpenCL (Khr, 2011).

Our two-phase parallelization approach contributes to reduce development time

as well as maintenance costs. This paper shows that shallow water problems

3

are well suited for the stream paradigm, and that it is possible to take advan-

tage e�ciently of the stream programming model in both modern GPUs and

multi-core CPUs. The resulting implementations achieve very good scalabil-

ity on CPUs using OpenMP and excellent performance on GPUs using either

Brook+ or OpenCL, which enables really large simulations even when dealing

with pollutant transport problems and wet-dry zones on very complex terrains.

The outline of the article is as follows. Section 2 describes the mathematical

model, which in our case consists in the coupling of a shallow water system

and a transport equation in a bidimensional domain. Section 3 presents the

numerical scheme that approximates the solution of the mathematical model.

Section 4 introduces the structure of the sequential numerical algorithm. Section

5 presents our two-phase approach to develop three e�cient parallel versions,

on multi-core CPUs with OpenMP and on GPUs with Brook+ and OpenCL.

Section 6 presents experimental results for an academic 2D dam-break problem

to asses the correctness and the accuracy of the parallel implementation. It

also presents results for a realistic domain, the Ría de Arousa located in Galicia

(North-West Spanish region), comparing the performance and scalability of the

CPU /OpenMP, GPU /Brook+, and GPU /OpenCL implementations. Finally,

Section 7 presents conclusions and future work.

2 Coupled model: 2D shallow water equations

with pollutant transport

A pollutant transport model consists in the coupling of a �uid model and a

transport equation. In this work, to model the �uid dynamics we consider the

bidimensional shallow water equations, which describe the evolution of a �uid

over a bottom, where the thickness and the vertical �ow is small compared to

the horizontal �ow:

∂h

∂t
+
∂qx
∂x

+
∂qy
∂x

= 0,

∂qx
∂t

+
∂

∂x

(
q2x
h

+
1

2
gh2
)

+
∂

∂y

(qxqy
h

)
= gh

∂H

∂x
+ ghSf,x,

∂qy
∂t

+
∂

∂x

(qxqy
h

)
+

∂

∂y

(
q2y
h

+
1

2
gh2

)
= gh

∂H

∂y
+ ghSf,y.

(1)

The unknowns of the problem are the vertically averaged height of the water

column h(x, t) and the �ux q(x, t) = (qx(x, t), qy(x, t)) = h(x, t) ·u(x, t), where

4

Figure 1: Sketch: pollutant transport.

u(x, t) = (ux(x, t), uy(x, t)) is the vertical averaged velocity of the �uid, at

each point xxx = (x, y) of the computational domain and at time t. H(x) is the

function that describes the bottom bathymetry, measured from a �xed reference

level (see Figure 1), and g is the gravitational constant.

The friction forces are given by a Manning Law:

Sf,x = n2
ux‖u‖
h1/3

, Sf,y = n2
uy‖u‖
h1/3

, (2)

where n is the bed roughness coe�cient.

The pollutant transport equation is given by:

∂(hC)

∂t
+
∂(qxC)

∂x
+
∂(qyC)

∂y
= 0, (3)

where C(x, t) is the pollutant concentration.

The system given by Equations (1) and (3) can be written as a system of

conservation laws with source terms:

∂W

∂t
+

∂

∂x
F1(W) +

∂

∂y
F2(W) = S1(W)

∂

∂x
H(x) + S2(W)

∂

∂y
H(y) + Sf , (4)

where W is the vector of unknowns:

W =

h

qx

qy

hC

 , (5)

5

where h(xxx, t)C(xxx, t) is the amount of pollutant dissolved in the �uid, and

F1(W) =

qx

q2x
h

+
1

2
gh2

qxqy

h

qxC

 , F2(W) =

qy

qxqy

h

q2y

h
+

1

2
gh2

qyC

 ,

S1(W) =

0

gh

0

0

 , S2(W) =

0

0

gh

0

 , (6)

and

Sf =

0

ghSf,x

ghSf,y

0

 . (7)

System (4) can be written in a more compact form:

∂W

∂t
(xxx, t) + divFFF (W) = S(W) · ∇H(x) + Sf , (8)

where FFF = (F1, F2) is the �ux function and S(W) = (S1(W), S2(W)).

Given an unitary vector η = (ηx, ηy), we de�ne the matrix

A(W,η) = A1(W)ηx +A2(W)ηy, (9)

where

A1(W) =
∂

∂W
F1(W), A2(W) =

∂

∂W
F2(W) (10)

are the jacobian matrices of F1(W) and F2(W), respectively.

System (8) is hyperbolic if h(x, t) > 0. E�ectively, A(W,η) is diagonalizable

and the eigenvalues of A(W,η) are

λ1 = u · η, λ2 = u · η −
√
gh, λ3 = u · η +

√
gh, λ4 = u · η. (11)

3 Finite volume numerical scheme.

In this section we brie�y describe the �nite volume scheme that we use to

discretize the Equation (8). More details can be found in (M.J. Castro et al.,

2006, 2008b, 2009).

6

Figure 2: Finite volume: structured mesh.

Let us remark that the term Sf is discretized in a semi-implicit way as

detailed in (M.J. Castro et al., 2008b), thus in what follows we focus on the

discretization of Equation (8) where Sf is supposed to be zero.

To discretize the Equation (8), we split the computational domain in cells or

control volumes, Vi ⊂ R2, i = 1, . . . , L. In our case we will consider a structured

mesh given by squares. We will use the following notation: given a �nite volume

Vi, xxxi is its center, |Vi| its area, Ni is the set of indexes j such that Vj is the

neighbor of Vi, Eij is the edge shared by two neighbor cells Vi and Vj and |Eij | is
its length, and ηij = (ηij,x, ηij,y) is the unitary vectorial normal to edge Eij and

that points towards the cell Vj (see Figure 2). Finally, we call Vij the triangular

subcell with one edge given by Eij and the opposite vertex given by xxxi (see

Figure 2).

In �nite volume schemes, constant approximations of the solution at each

cell are computed. More precisely, if W (x, t) is the exact solution at point xxx

and at time t, we will denote by W n
i an approximation of the average of the

solution on the volume Vi at time t
n,

W n
i '

1

|Vi|

∫
Vi

W (x, tn)dx. (12)

Integrating the Equation (8) over each �nite volume Vi

∂

∂t

∫
Vi

W (xxx, t) dV +

∫
Vi

(divF(W)) dV =

∫
Vi

S(W) · ∇H(x) dV. (13)

Dividing by |Vi| and applying the Divergence Theorem:

∂

∂t

(
1

|Vi|

∫
Vi

W (xxx, t) dV

)
=

− 1

|Vi|

∑
j∈Ni

∫
Eij

F(W) · ηηηij dγ −
∫
Vi

S(W) · ∇H(x) dV

 . (14)

7

To discretize Equation (14) we will use the �nite volume numerical scheme

presented in (M.J. Castro et al., 2008b). Once the approximation ofWi is known

at time tn, Wn
i , the approximation at time tn+1 is given by:

Wn+1
i = Wn

i −
∆t

|Vi|
∑
j∈Ni

|Eij |F−ij (Wn
i ,W

n
j ,ηij), (15)

with

F−ij (Wn
i ,W

n
j ,ηij) = Pnij

(
F (Wn

j) · ηij − F (Wn
i) · ηij − Snij

)
−
F (Wn

j) · ηij − F (Wn
i) · ηij

2
+ Fα(Wn

i ,W
n
j ,ηij)− Snα,ij , (16)

where the projection matrix, Pij , is given by:

Pnij =
1

2
Kn
ij

(
I − sgn(Dn

ij)
)

(Kn
ij)
−1, (17)

being I the identity matrix and Kn
ij the matrix whose columns are the eigen-

vectors related to the Roe matrix Anij given by

Anij = A(Wn
ij , ηηηij) = A1(Wn

ij)ηij,x +A2(Wn
ij)ηij,y, (18)

where

Wn
ij =

hnij

hniju
n
ij,x

hniju
n
ij,y

hnijC
n
ij

 , (19)

is the intermediate Roe's state, which is the state that satis�es the equation

F (Wn
j) · ηij − F (Wn

i) · ηij = Anij(W
n
j −Wn

i) (20)

and it is given by:

hnij =
hni + hnj

2
, (21)

unij,l =

√
hni u

n
i,l +

√
hnj u

n
j,l√

hni +
√
hnj

, l = x, y, (22)

Cnij =

√
hni C

n
i +

√
hnjC

n
j√

hni +
√
hnj

. (23)

8

Dn
ij the diagonal matrix whose elements are the eigenvalues of Anij that are

given by:

λij,1 = uuunij · ηηηij ,

λij,2 = uuunij · ηηηij −
√
ghnij ,

λij,3 = uuunij · ηηηij +
√
ghnij ,

λij,4 = uuunij · ηηηij ,

(24)

and

sgn Dn
ij =

sgn λij,1

sgn λij,2

sgn λij,3

sgn λij,4

 . (25)

The term Snij is given by

Snij =

0

ghnij(Hj −Hi)ηij,x

ghnij(Hj −Hi)ηij,y

0

 . (26)

FFFα(Wn
i ,W

n
j , ηηηij) =

FFF (W(1−α)i+αj) · ηij +FFF (Wαi+(1−α)j) · ηij
2

, (27)

where we denote:

W(1−α)i+αj =

h(1−α)i+αj

(qx)(1−α)i+αj

(qy)(1−α)i+αj

hC(1−α)i+αj

 = (1− α)Wn
i + αWn

j , α ∈ [0, 1], (28)

a convex combination of Wn
i and Wn

j , and �nally,

Snα,ij =

0

g

2

(
h(1−α)i+αj + hni

2
(H(1−α)i+αj −Hi) +

hαi+(1−α)j + hnj

2
(Hαi+(1−α)j −Hj)

)
ηij,x

g

2

(
h(1−α)i+αj + hni

2
(H(1−α)i+αj −Hi) +

hαi+(1−α)j + hnj

2
(Hαi+(1−α)j −Hj)

)
ηij,y

0

,

(29)

9

where

Hαi+(1−α)j = αHi + (1− α)Hj , (30)

is again a convex combination of Hi and Hj .

The Equations (27) and (29) are used to avoid entropy corrections needed by

the Roe scheme in critical points (see (M.J. Castro et al., 2008b)). The authors

propose di�erent values of the parameter α. In practice, the value α = 1/8 gives

good results (see (M.J. Castro et al., 2008b)), so here we take α = 1/8. Note

that in the case α = 0 we obtain the usual Roe Scheme (see (M.J. Castro et al.,

2008b)).

The previous numerical scheme is exactly well-balanced for the stationary

solution corresponding to water at rest (see (M.J. Castro et al., 2008b)) and

linearly L∞ under the usual CFL condition:

∆t = min
i=1,...,L

{∑
j∈Ni |Eij | ‖D

n
ij‖∞

2γ|Vi|

}
(31)

where γ, 0 < γ ≤ 1, is the CFL parameter and ‖Dn
ij‖∞ is the in�nite norm of

the matrix Dn
ij , that is, the maximum eigenvalue of the matrix Anij .

The resulting time step can be small, which gives rise to a large number of

time steps for simulations that occur on large time scales, which is the case for

many geophysical �ow problems. Thus, from the computational point of view,

the solution of the problem is reduced to a huge number of matrix operations

and vectors of size 4× 4.

Finally, let us recall that the �nite volume scheme described in this section is

of �rst order. High order schemes have been implemented in CPU (M.J. Castro

et al., 2009) and in GPUs (A.R. Brodtkorb et al., 2012; J.M. Gallardo et al.,

2011) and they provide very good results in academic examples. Nevertheless,

the extension of those schemes to simulate real �ows with real bathymetries is

not a simple task and sometimes, they produce inaccurate results in wet-dry

fronts. Let us also remark that this scheme is a generalization of Roe scheme,

which gives very precise results and, moreover, it can approximate stationary

regular solutions up to second order (see Theorem 10 in (M.J. Castro et al.,

2009)).

3.1 Wet-dry fronts

One of the main di�culties that can appear in practical applications is the

presence of wet-dry fronts. These fronts develop when, due to the initial con-

ditions or as a consequence of the �uid motion, the thickness of the layer van-

ishes. These situations arise very frequently in practical applications such as

10

�ood waves, dam-breaks or coastal tidal currents. We handle this situation in

two ways. First, we compute the velocities and concentrations as follows (A.

Kurganov and G. Petrova, 2007):

lui,x =

√
2hiqi,x√

h4i +max(hi, ε)4
, (32)

ui,y =

√
2hiqi,y√

h4i +max(hi, ε)4
, (33)

Ci =

√
2hiqi,C√

h4i +max(hi, ε)4
, (34)

where ε = 10−6 is the single precision limit. In practical situations this value

gives good results.

Second, if the thickness of the layer of �uid becomes tiny at both cells Vi and

Vj , that is hi, hj < heps = 10−4, then the fourth component of the numerical

�ux F−ij (Wn
i ,W

n
j ,ηij) is de�ned as follows:

F−ij [4] =

F
−
ij [1]
· Cj if uuuij · ηηηij < 0,

F−ij [1] · Ci if uuuij · ηηηij > 0,
(35)

where F−ij [l], denotes the l-th component of the vector F−ij . This value of heps
has been chosen such as gives the best results in the numerical experiments we

have performed.

It must be remarked that the numerical scheme described in the previous

section corresponds to the case where the �uid occupies the whole domain. If

this numerical scheme is applied without any modi�cation to a case with wet-

dry fronts (situations with emerging bottom topography), the results obtained

have spurious values. In those cases it is necessary to modify the scheme, as

is proposed in (M.J. Castro et al., 2008b). This modi�cation allows to balance

the �uxes against the driving forces so that the non-physical pressure forces

disappear in the case of bottom emerging topographies.

Finally, let us remark that in order to provide numerical simulations in real

domains, friction terms are very important to reproduce the correct position

of wet-dry fronts. Moreover, the semi-implicit way of discretizing the friction

terms enforces the numerical stability of the scheme in areas where h is small

(see (M.J. Castro et al., 2008b) for more details).

11

4 Structure of the sequential algorithm

The edge-based algorithm that approximates the solution of the numerical

scheme of the coupled system given by Equation (4) is shown in Figure 3(a).

It mainly consists of a loop that performs a simulation through time. In each

time step, the amount of �ow that crosses through each edge is calculated in

order to compute the �ow data corresponding to every �nite volume of the

mesh. For each edge of the mesh, this edge-driven algorithm performs a huge

number of small vector and matrix operations (e.g., product or inverse) to solve

the equations of the coupled system. Each time iteration is divided into three

stages:

À Compute the numerical �uxes ∆M and the time step ∆t for each volume

v (see Stage À), where ∆M [Vi] =
∑
j∈Ni F

−
ij (Wi,Wj , ηij). For each edge

a, the amount of �uid and pollutant that crosses the edge towards the

neighbor volume on the left, ∆M [left(a)], is computed. Furthermore, the

contribution to the neighbor on the right, ∆M [right(a)]), is also com-

puted. At the beginning of this stage for each volume v, ∆M [v] and

∆t[v] are initialized to the value zero (�ow information ∆M [v] has four

components: the water column height, the volume �ow in the x and y

coordinates, and the pollutant concentration). Upon the completion of

this stage, every �nite volume will have received the contributions from

all of its four neighbor edges. The time step ∆t of each volume is com-

puted in a similar manner. This stage corresponds to the expression inside

summation of Equation (15).

Á Compute the global time step ∆tGlobal (see Stage Á) as the minimum of

the local time steps ∆t computed for each volume in Stage À. This stage

corresponds to the minimum computed in Equation (31).

Â Compute the simulated �ow data M for each volume (see Stage Â). This

is achieved by updating in each volume the pollutant density and �uid

data using ∆M from Stage À and ∆tGlobal from Stage Á. This stage

corresponds to the right-hand side of Equation (15), after computing the

summation.

Stage À is the most computationally intensive part, because the large number

of small vector and matrix operations are numerically intensive. This way, for an

example mesh of 4000× 2666 volumes, a pro�ling execution of the code reveals

that about 75% of the total CPU execution time is consumed by the �rst stage.

12

Figure 3: Diagram comparing the studied implementations.

Consequently, the following section of the paper describes our e�cient and cost-

e�ective parallel implementation of the algorithm, with special attention to

Stage À and its coupling with the other stages of the algorithm.

5 Parallelization on multi-threaded systems

The parallelization of large real applications is a complex process. Many tech-

niques and tools have been developed to assist programmers in this manual

process. In this work, we have used an analysis based on domain-independent

kernels (M. Arenaz et al., 2008), which have been successfully applied to the

13

parallelization of algorithms and full-scale applications for CPUs and GPUs (M.

Arenaz et al., 2004; J. Setoain et al., 2008).

The rest of the section is organized as follows. Section 5.1 deals with the

optimization of the sequential code. Section 5.2 addresses the construction of

the streamed version. Section 5.3, Section 5.4, and Section 5.5 describe the e�-

cient parallel implementations of the streamed version for multi-core CPUs with

OpenMP, for GPUs with Brook+, and for GPUs with OpenCL, respectively.

5.1 Optimization of the sequential code

The �rst step of the development process was to optimize our initial sequential

implementation, whose numerical scheme was described in Section 3. In our

problem there are zones in the mesh that are free of �uid (the �rst component

of W in Equation (5) is zero), either because they are dry terrain areas where

the water will never reach, or because some volumes could become dry during

the simulation due to tides or water natural �ow. In particular, if a volume

is dry and its four neighbor volumes are dry as well, it will receive no �ow

contribution. Thus, the �rst optimization applied to the sequential code is

to avoid the computation of empty volumes by checking if the surrounding

volumes are dry as well. This is specially useful if the simulated environment has

mountains or large elevated terrain zones, where the water will never reach. On

CPUs this optimization is specially relevant due to their more limited computing

power.

Other well-known code transformations have been manually applied in order

to make the sequential code amenable to the compiler and to the stream pro-

gramming model. Thus, loop-invariant elimination, loop unrolling and common

subexpression elimination were applied. Examples of other transformations are

computing the equivalent expression of a particular inverse matrix (like the in-

verse of K in Equation (17)), or simplifying expressions containing edge normal

and unitary vectors. The use of symbolic algebraic manipulation software was

shown to be helpful in situations where complex expressions make manual opti-

mizations very complex and the compiler automatic optimization does not work

as expected.

Current CPU architectures support special instructions to speed up common

operations involving small vectors, like the SSE instructions (Streaming SIMD

Extensions) in the x86 architecture or the AltiVec extensions in the Power

and Cell architectures. These instructions can be used to perform the same

operation in parallel over a small set of elements (typically up to four scalar

14

values, but this depends on the hardware and the data types). Visual C++

2008, which is the compiler used in this work, has basic support to automati-

cally generate vectorized code without the explicit usage of SIMD instructions

by the programmer. One example where SIMD instructions can have a great

bene�t is in Equation (17) (used in Stage Á) because this equation involves

many small matrix and vector operations. According to our experiments, with

the autovectorization feature of the Microsoft Visual C++ 2008 compiler, our

implementation achieves about a 85% performance increase.

5.2 Construction of the streamed code

As shown in Figure 3(a), the sequential algorithm consists of three stages. As

each stage depends on the results of the previous one, they cannot be reordered

for parallel execution. As discussed in Section 4, Stage À is the most time-

consuming part of the algorithm. It consists of a loop that traverses the edges

of the mesh so that each edge a writes its contribution to its two neighbor

volumes left(a) and right(a). As a result, the concurrent execution of this loop

may cause write con�icts among di�erent iterations, so the value of the sum of

the edge contributions (which will be stored in ∆M and ∆t) would be unde�ned.

In the literature about parallel programming, there exist three main solutions

to this problem:

Synchronization-based solution. Synchronizations are used to protect write

operations to shared variables by several threads. In this model, the set

of edges of Stage À is divided among the threads, sharing the variables

∆M and ∆t. Con�icts are avoided by executing write operations through

atomic instructions or critical sections. The implementation of this solu-

tion is very simple. However, it may a�ect performance seriously, so its

application must be carefully studied for each application on each target

architecture.

Recomputation-based solution. Recomputation is used to avoid communi-

cations and synchronization among the threads. In this solution, the sets

of elements ∆M and ∆t are divided among the threads creating blocks of

adjacent volumes. Each thread is responsible for computing all the data

associated to its block of volumes. This way, this implementation would

be volume-driven, rather than edge-driven because each thread would it-

erate on the volumes assigned to it. Note that using this approach, the

edges common to the volumes of two threads (located at the borders of

15

the block) are processed twice, once for each neighbor volume. As a re-

sult, some redundant calculations are computed. There is a particular

case when the size of the block is equal to a single volume, each thread

has to compute the �ow associated to the four edges of the volume. In

this case, note that each edge is processed twice. The contribution that

volume vm does to volume vn takes the same value (though distinct sign)

as the contribution of volume vn to volume vm. However this contribu-

tion is recalculated when volume vm computes the contribution from its

neighbors, thus half of the computations will be redundant.

Privatization-based solution. Privatization is used to avoid write con�icts

and minimize synchronization. In this two-stage strategy each thread

only computes the contributions from its right and bottom neighbors,

and each thread owns a private copy ∆MC and ∆tC. In the �rst stage,

the threads run in a con�ict-free manner by computing partial results in

∆MC and ∆tC, and writing the partial results in two communication

bu�ers (for the right and bottom edges respectively). In the second stage,

the contributions stored in the communication bu�ers are merged safely.

Each thread reads data from the communication bu�ers of other threads

in order to compute the �nal results ∆M and ∆t.

The �rst streamed code proposed in this paper is built by rewriting Stage À

following the recomputation-based solution, where all threads run concurrently

in a con�ict-free manner by writing on di�erent locations of ∆M and ∆t. Notice

that this involves changing from an edge-driven approach to a volume-driven

one, giving place to the algorithm in Figure 3(b).

Stage Á computes the minimum time step ∆tGlobal of the ∆t structure,

which is a type of reduction operation. Reductions are collective operations

that obtain a single value from several elements. If the reduction function is

associative and commutative, the reduction may be rewritten for parallel execu-

tion by applying the privatization-based solution. Thus, the reduction variable

is privatized to store thread-local partial results, which are later merged safely

to compute global results with the appropriate synchronization mechanisms.

Finally, note that parallel reductions are very common, so they are natively

supported in many programming languages.

Stage Â updates the simulated �ow data M in every volume of the mesh

using ∆M from Stage À and ∆tGlobal from Á. This loop can be easily executed

in parallel because there are no data dependencies among loop iterations, thus

the execution order will not a�ect the result.

16

The parallel shallow water simulators presented in this paper were developed

in two phases. The �rst phase consisted in rewriting the edge-driven algorithm

into a stream programming model. This phase was described above, the re-

sulting streamed algorithm being depicted in Figure 3(b). The second phase

consisted in �ne-tuning the streamed code for each particular architecture, a

multi-core CPU using OpenMP (see Section 5.3), a GPU using Brook+ (Sec-

tion 5.4), and a GPU using OpenCL (Section 5.5). As we will see, in this

process a version based in a privatization approach, depicted in Figure 3(c),

was developed.

5.3 Mapping the streamed code on a multi-core CPU us-

ing OpenMP

OpenMP is a standard parallel programming extension for shared memory mul-

tiprocessor architectures. In OpenMP the programmer uses a set of preprocessor

directives to instruct the compiler how to generate the parallel code. The main

advantage of OpenMP is its simplicity, as with little e�ort it is possible to de-

velop a parallel version of the code.

The streamed code of Figure 3(b) hinges on the recomputation-based so-

lution described in Section 5.2. However, as the CPU peak computational

power is small when compared to the bandwidth of the memory hierarchy, the

streamed algorithm becomes compute bound on the CPU. In order to increase

the performance, the recomputation strategy was �ne-tuned for the CPU by

applying the privatization-based solution we describe in the next paragraph.

The resulting algorithm, shown in Figure 3(c), performs about 30% faster than

the recomputation approach for the largest mesh size 4000× 2666.

The volume-driven loop on Stage À in Figure 3(b) was split into two stages.

In the �rst stage (see Stage À a© in Figure 3(c)), each thread computes the

contribution of the right and down edges of the volume v, and stores these

contributions in two communication bu�ers ∆MR[v] and ∆MD[v], respectively.

In addition, the partial result ∆MC[v] is computed as ∆MR[v] + ∆MD[v]. In

the second stage (see Stage À b© in Figure 3(c)), each thread computes the �nal

result ∆M [v] using its own partial result ∆MC[v] and the values stored in the

two communication bu�ers ∆MR[v] and ∆MD[v]. The same applies to the

computation of ∆t. Figure 4 represents the transformation of the algorithm

from the point of view of the �nite volume numerical scheme. Figure 4(a)

illustrates the initial edge-driven version (see Figure 3(a)), where each edge of

the 2D mesh contributes to the solution of its two neighbor volumes. Figure 4(b)

17

(a) Edge-driven algorithm (b) Recomputation volume-driven algorithm

(c) Privatization volume-driven algorithm

Figure 4: Parallelization strategies evaluated in this work.

illustrates the behavior of the streamed version (see Figure 3(b)), where each

volume of the 2D mesh is processed computing the contribution from its four

edges. Figure 4(c) shows the privatization volume-driven algorithm used in the

CPU (see Figure 3(c)). The algorithm is divided into two stages that use storage

bu�ers to avoid recomputation.

The OpenMP 2.0 speci�cation for the C language does not support the

minimum reduction operation used in Stage Á. However, this parallel reduction

can be executed e�ciently by applying the privatization-based solution (see

Section 5.2). First, each thread computes the reduction of a subset of iterations

in a private variable. Then, the partial results are combined into one element

using a critical section.

5.4 Mapping the streamed code on a GPU using Brook+

Brook+ is a C language extension for AMD GPUs that exposes a stream pro-

gramming model. In this paradigm the same function (called the streaming

18

kernel) is applied to a set of inputs (input streams) in parallel, producing an-

other set of outputs (output streams). In particular, a thread is created for each

output element. The streaming kernel is allowed to read several locations of the

input streams but it can only write to one location of each output stream. Thus,

the programmer is responsible for writing streaming kernels that are free of race

conditions. Brook+ uses texture memory in order to access input data through

GPU texture units, a dedicated hardware which provides cached memory ac-

cess, good 2D locality or memory access clamping. Although Brook+ latest

version (v1.4) permits the utilization of shared memory, it is a beta feature and

in our tests it resulted in poor performance or even incorrect results.

The parallelization of Stage À of the streamed code of Figure 3(b) is as fol-

lows. The recomputation-based solution is implemented in Brook+ by enclosing

the loop body in a stream kernel that produces two output streams ∆M and

∆t. Each stream kernel invocation processes one volume of the mesh. For this

purpose, the four neighbors volumes (up, down, left and right) are fetched (see

Figure 4(b) for illustration purposes). The volume mesh can be easily mapped

to a 2D stream, which is useful because the described memory access pattern is

a kind of stencil operation which has good 2D locality, and this access pattern

is very optimized on the texture memory cached access. Furthermore, access

clamping is useful to prevent out of range memory access while preserving code

regularity (negative coordinates are set to zero and out of range coordinates are

set to the maximum allowed value). The resulting code requires fewer condi-

tional statements to process domain boundaries in the GPU, reducing branch

divergence and avoiding the use of ghost cells in the domain boundaries. The

cost of the redundant operations in the recomputation may seem high, butGPUs

usually have such a large computing power that, even following this approach,

some of the resources may remain occasionally unused.

Note that the synchronization-based solution cannot be applied to Stage À

because shared memory is not available, so inter-thread communication would

require separate kernel calls and rely on slow global memory. The privatization-

based solution is applicable to the GPU (see Figure 4(c)), but results about

13% slower than the recomputation-based solution. The privatization approach

was previously used in other works (M. de la Asunción et al., 2010). Its main

drawback is that the two communication bu�ers require additional memory and

bandwidth. Furthermore, it requires invoking two stream kernels, one for each

substage. The cost of calling two GPU kernels instead of one is quite high,

so the �nal performance is worse than the recomputation-based solution used

in our parallel shallow water simulator. Although the recomputation approach

19

intuitively requires twice as many operations, thanks to expression simpli�cation

and VLIW (Very Long Instruction Word) instruction packing, recomputation

only generates about 23% more work than the privatization-based approach,

while being about 44% faster thanks to the usage of a single GPU kernel.

The VLIW design of the GPU helps to reduce the impact of the additional

operations by properly �lling the available instruction slots.

The other stages can be easily implemented in Brook+. Stage Á performs

a reduction operation, which is natively supported by the language. Stage Â

consists of a con�ict-free loop that is mapped to the GPU by implementing a

stream kernel whose code corresponds to the body of the loop (see Stage Â in

Figure 3(b)).

Analogously to the CPU SSE SIMD vector instructions, the GPU VLIW

architecture supports instructions and registers to process several operations in

parallel. In addition, it also provides several highly optimized intrinsic opera-

tions like scalar product or vector product, which are useful for matrix multipli-

cation and matrix inversion. Usually, AMD's compiler does a good job in code

vectorization, but after applying the well-known code transformations such as

loop-invariant elimination, loop unrolling, common subexpression elimination

and symbolic algebra manipulation better VLIW slot utilization was achieved.

In order to optimize certain vector and matrix operations, it was necessary to

write several intrinsic operations explicitly. For example, the four component

matrix-vector product (which normally requires 16 products and 12 sums) was

rewritten as a set of four scalar products using the dot intrinsic.

Finally, a special feature of GPUs is that there is an upper bound that limits

the number of simultaneous threads, which depends on the hardware and the

number of registers used by the kernel. If a kernel uses too many registers, the

number of hardware threads decreases. It is possible to �ne-tune the kernel

code, constrained by the number of registers, to improve the resource utiliza-

tion. Thus, we have rewritten the code of the streaming kernels to minimize

register usage by applying standard compiler transformations which provided

about a 10% performance increase. For instance, the Stage À of the algorithm

of Figure 3(b) is the most complex kernel and requires 27 registers, therefore at

most 9 wavefronts will be simultaneously executed per SIMD processor.

In the �nal Brook+ implementation all the stages of the algorithm are ex-

ecuted on the GPU and the CPU is only used to maintain the state of the

simulation. Such state is used to con�gure the launch of the GPU kernels, to

write the simulation data to disk at regular intervals, and to display some status

information about the process. Thus, few device memory transfers are needed.

20

An interesting feature of the GPU implementation is the use of an additional

thread to perform disk writes. Depending on the desired time intervals to write

the state of the simulation to disk, many frequent disk writes could slow down

the execution if the computation has to wait until the dump of the mesh state

is complete. Our approach consists in dumping the information in an output

bu�er and using a thread to handle the write operations asynchronously, so that

the execution can continue.

5.5 Mapping the streamed code on a GPU using OpenCL

OpenCL (Khr, 2011) is a widely supported standard that enables the execu-

tion of C parallel code on di�erent heterogeneous systems with minimal e�ort.

For optimal performance, it is highly recommended to tune the OpenCL code

for the hardware platform. Thus, an OpenCL implementation that executes

e�ciently on a CPU may not o�er good performance on a GPU due to, for

example, thread divergence, memory coalescence issues or shared memory bank

con�icts. The Brook+ language provides a streaming model that eases GPU

programming. In contrast, OpenCL provides more �exibility and control to the

programmer by exposing some GPU -speci�c hardware features. For instance,

Brook+ always stores data in texture memory, so texture cache is enabled by

default. In contrast, the OpenCL programmer has to specify which data will

be stored in texture memory. Similarly, OpenCL enables one to manipulate the

GPU shared memory and to use intra-block synchronization primitives to avoid

race-conditions. These OpenCL features enable the implementation of fast data

communications, which can signi�cantly impact on performance.

Hereafter, two OpenCL implementations based on the privatization and re-

computation strategies are described. As in this work the same GPU will be

used to test our Brook+ and OpenCL implementations, both versions share some

low level optimizations, such as the VLIW friendly code and the register reduc-

tion. Speci�cally, the OpenCL version includes the standard software changes

to con�gure the runtime, manage the memory bu�ers, perform the online code

compilation and launch the kernels.

The privatization strategy was �ne-tuned for OpenCL in order to improve

performance, by taking advantage of the shared memory for fast intra-block

communications and for reducing global memory bandwidth utilization. Ob-

serve in Figure 3(c) that the algorithm requires two separate stages (Stage À a©
and Stage À b©) to compute the partial �ow contributions (∆M) and local time

steps (∆t) for each volume. The Brook+ implementation relies on slower global

21

memory, requiring a second kernel to integrate the results stored in the com-

munication bu�ers. However, in OpenCL, these communication bu�ers can be

stored in shared memory, which provides a fast and e�cient way to obtain the

partial volume contributions in a single kernel.

The amount of shared memory for each OpenCL block of threads is very lim-

ited, therefore the domain must be divided in smaller rectangular subdomains

which are distributed among the blocks of threads. Intra-block communication

will be performed in shared memory. However, inter-block communications are

not supported by the language. This is solved by performing some recomputa-

tion for the cells that reside in the edge of each block, which makes unnecessary

the communications between blocks. As illustrated in Figure 5, an additional

left column and upper row of ghost cells is added to each block (see for example

cells v3.3, v3.4, v3.5, v4.3 and v5.3 in Figure 5). These cells de�ne a replicated

region which is common to each two adjacent blocks and provides the required

�ow and pollutant contribution without involving any communication between

the blocks. The solution shares some similarities with the recomputation strat-

egy, which also eliminates the need for inter-thread communication. However in

this case, to minimize the number of redundant operations, the recomputation

is restricted to the edges where the block of threads is expecting a �ow contri-

bution from the neighbor block. A block size of 8 × 8 threads will be used in

our GPU (equal to the hardware wavefront), which enables to remove the intra-

block synchronizations primitives between the kernel of Stage À a© and Stage

À b©. Notice that due to the additional ghost cells, only 49 out of 64 threads

from each block perform useful work (that is, a 7× 7 region). This fact causes

some thread divergence and reduces a bit the execution speed.

In addition to the previous tweak, the Stages À a© and À b© have been �ne-

tuned to reduce the memory bandwidth consumption as follows. Each thread

block of Stage À a© now writes a single ∆t value that summarizes the minimum

of all the thread-private ∆t values. As a result, the workload of the �nal global

time step ∆tGlobal reduction of Stage Á is decreased accordingly. Regarding

this reduction of Stage Á, while Brook+ has some built-in support for reductions,

in OpenCL the programmer has to implement his own reductions kernels. In this

work, an e�cient parallel reduction implementation which takes advantage of

shared memory and minimizes synchronizations was used (multi-stage reduction

algorithms are very common in OpenCL and CUDA). Finally, Stage Â updates

the volume mesh with ∆tGlobal and does not present any relevant modi�cation.

The recomputation-based strategy does not take advantage of the GPU

shared memory. Therefore, no signi�cant changes other than the reduction

22

Figure 5: Optimized privatization volume-driven algorithm with block border

replication.

of Stage Á were made. For most mesh sizes the recomputation strategy results

around 2.5% faster than the privatization strategy described above, mostly due

to the better VLIW instruction packing.

6 Experimental results

Our test platform is composed of a Core i7 950 quad-core CPU running at 3.06

GHz, with 6 GB DDR3 1866 CL9 memory, a X58 chipset based motherboard

and a Radeon 5870 GPU. The Radeon 5870 is an AMD GPU with 1600 pro-

cessing elements (distributed in 20 SIMD processors, each one having 16 cores

with 5-way VLIW support). The software setup is Windows XP x64 operat-

ing system, using Microsoft Visual C++ 2008 compiler (x64, release pro�le),

Brook+ 1.4 and AMD's OpenCL SDK 2.5 with the Catalyst 11.11 GPU driver.

The CPU /OpenMP parallel implementations (Section 5.3) are built with

OpenMP directives and SSE -based SIMD instructions inserted by the auto-

matic vectorization capabilities of the compiler. It is run on 8 threads on the

Core i7 processor with hyper-threading (4 cores × 2 threads per core). Hyper-

threading enables the parallel execution of two threads per core, although typ-

ically the second thread only provides between 5% and 20% the performance

of a real core. As will be shown later in Section 6.1.1, there are no signi�cant

numerical di�erences between running our application with single or double pre-

23

Figure 6: Pairwise comparison of the di�erent parallelization strategies for each

platform.

cision, while double precision has a large negative impact on GPU performance.

According to our experiments, some double precision operations like divisions

cannot be directly handled by the GPU hardware and will generate a sequence

of instructions to compute the result, thus heavily reducing performance. In fact

we have measured around 35 times larger runtimes when our application is run

in the GPU using double precision. Therefore, the benchmark results are pre-

sented for single precision. The GPU /Brook+ (Section 5.4) and GPU /OpenCL

(Section 5.5) parallel implementations are run on the Radeon 5870 with VLIW

code generation enabled. The execution time includes all data transfers between

CPU and GPU memory. Nonetheless, to prevent benchmark contamination,

the evolution of the simulation is not written to disk, otherwise the result would

be largely dependent on disk performance, specially for small problems.

Several parallelization strategies were described in Section 5 for each plat-

form. Thereafter, the best strategy must be selected for CPU using OpenMP,

for GPU using Brook+ and for GPU with OpenCL. Figure 6 presents a pairwise

comparison for several mesh sizes, showing the relative performance degrada-

tion of one strategy compared to another. For example, a positive performance

degradation for CPU /OpenMP Synchronization vs Privatization means that

24

synchronization is slower than privatization. For the CPU, the performance

degradation of the synchronization and recomputation strategies compared to

privatization is presented. The privatization solution is clearly the fastest, fol-

lowed by recomputation which is about 30% slower and synchronization which is

about 45% slower. Regarding GPU /Brook+, language restrictions made it im-

possible to implement a synchronization strategy in the GPU. Thus, the �gure

compares privatization against recomputation. Observe that in this case recom-

putation is the fastest, and that privatization is between 15% and 45% slower.

Finally, for GPU /OpenCL the performance of recomputation and the optimized

privatization algorithm is quite similar. Nonetheless, recomputation is up to 3%

faster for mesh sizes larger than 300 × 200. The reason why recomputation is

faster than privatization is that due to the impressive arithmetic power of the

GPU, it is cheaper to take advantage of the Radeon VLIW execution to process

all the data.

The rest of this section evaluates the performance of our parallel shallow

water simulator in terms of execution time and speedups. The speedups are

computed with respect to the best sequential implementation of the shallow

water simulation (CPU /Seq), which is the sequential execution of the privati-

zation volume-driven algorithm of Figure 3(c). According to our experiments,

CPU /Seq is faster than the original sequential version of the numerical algo-

rithm. Hereafter, the notation CPU /OpenMP will refer to the privatization,

GPU /Brook+ to the recomputation algorithm, and GPU /OpenCL to the re-

computation algorithm, all of which are volume-driven.

6.1 Academic 2D problem: Simulator veri�cation

In this section a simple test case is presented to verify the accuracy of the

simulator. The test consists of a dam-break problem where a water column falls

in a water tank creating a series of ripples that can be easily examined. We use

a small [−5,−5]× [5, 5] domain with the depth function de�ned as:

H(x, y) = 1− 0.4e−x
2−y2 , (36)

and with the following initial condition:

W (x, y, 0) =

h(x, y, 0)

0

0

0

 (37)

25

Figure 7: Diagram of the academic 2D problem used for veri�cation.

where

h(x, y, 0) =

 4 when x2 + y2 ≤ 0.36

2 otherwise
. (38)

and the size of the side ∆x = ∆y = 10 / number of volumes per side.

6.1.1 Numerical results

The simulations are executed in the time interval [0, 1] for several mesh sizes

using wall boundary conditions (q · η = 0) and CFL = 0.9. Figure 7 shows a

diagram of the initial setup. This test does not require wet-dry zone processing

and serves to study the proper behavior of the forces and conservation of the

�uid. Figure 8 represents the evolution of the test showing a bisection plane

of the domain for 0.33, 0.66 and 1.00 seconds. In each �gure there are three

lines representing the water height: the REF version (thick solid line), which is

CPU /Seq using a very �ne mesh of 3200× 3200 volumes and the initial waves

were purposely quite high and sharp to be able to observe the behavior in the

test; CPU /OpenMP (dashed line) using a 400× 400 mesh size; GPU /OpenCL

(thin light line) using a 400 × 400 mesh size; and GPU /Brook+ (thin dark

line) using a 400 × 400 mesh size. The CPU /OpenMP, GPU /OpenCL, and

GPU /Brook+ simulations are equivalent as their lines are always overlapped.

However, both of them present a slight di�erence with respect to the reference

solution, specially in the in�ection points, where their contour tends to be more

rounded.

26

(a) Time = 0.33 seconds (b) Time = 0.66 seconds (c) Time = 1.00 seconds

Figure 8: Evolution of the academic 2D problem used for veri�cation.

Table 1: L1 error at time T = 1 for mesh 400 × 400 in CPU /OpenMP and

GPU /Brook+ using single and double precision. The reference solution is

CPU /OpenMP in double precision using mesh 3200× 3200.

L1 GPU /Brook+ CPU /OpenMP CPU /OpenMP

error single single double

h 1.4067375E-02 1.4067372E-02 1.4067382E-02

qx 1.7777456E-02 1.7777453E-02 1.7777532E-02

qy 1.7777455E-02 1.7777509E-02 1.7777532E-02

On the other hand, the numerical error due to the use of single and double

precision is analyzed using two embedded meshes: a very �ne reference mesh

of 3200 × 3200 volumes, and a coarser mesh of 400 × 400 volumes. The refer-

ence solution for the precision analysis is CPU /OpenMP in double precision for

mesh size 3200× 3200. Table 1 details the L1 norm error for variables h, qx, qy

and mesh size 400 × 400. The error is computed for GPU /Brook+ in single,

CPU /OpenMP in single and CPU /OpenMP in double, with respect to the ref-

erence solution (GPU /OpenCL is not presented here as the results were very

similar to the GPU /Brook+ version). It can be observed that in the three cases

the error has the same order and there is no signi�cant di�erence between the

CPU and the GPU or between single and double precision.

Table 2 details the L1 norm error between GPU /Brook+ in single precision

and CPU /OpenMP in double precision when both are using the same mesh size.

In this case it can be observed that the error has the order of the single precision

limit, so for our �nite volume simulations, it is enough to compute using single

precision. This is due to the fact that almost all operations performed by the

27

Table 2: L1 error at time T = 1 for meshes 400 × 400 and 3200 × 3200 in

GPU /Brook+ with single precision, being CPU /OpenMP in double precision

the reference solution.

L1 error 400× 400 3200× 3200

h 2.1429375E-07 5.4036922E-06

qx 3.0220140E-07 4.6754546E-06

qy 3.1466585E-07 4.7149664E-06

algorithm are basic operations (like additions and multiplications), and there

are few GPU transcendental functions involved (whose precision may be lower).

The GPU arithmetic conforms with the IEEE-754 standard except for a little

rounding deviation in some intrinsic functions.

6.1.2 Performance results

Table 3 shows the total execution time (expressed in seconds) of CPU /Seq,

CPU /OpenMP, GPU /Brook+ and GPU /OpenCL for several mesh sizes. The

speedups are computed with respect to the best sequential implementation

CPU /Seq. The Num. Iter. column indicates the number of iterations per-

formed by the algorithm to complete the simulation. Observe that smaller tests

are specially e�cient on the GPU /OpenCL implementation, which is only out-

performed by GPU /Brook+ above the 1600× 1600 mesh.

The �rst mesh size to take longer than one second on the GPU is 600× 600

for GPU /Brook+ and 700× 700 for GPU /OpenCL. However, these simulations

already require more than 40 seconds on CPU /OpenMP. For the largest simula-

tion, GPU /Brook+ �nishes in ≈ 77 seconds and GPU /OpenCL in ≈ 97 seconds,

while CPU /OpenMP requires almost two hours. CPU /OpenMP tends to ob-

tain speedups slightly greater than 4x on the quad-core CPU thanks to the use

of hyper-threading. GPU speedups are huge (up to 388x for GPU /Brook+ and

308x for GPU /OpenCL), although we must remember that this is only a short

test simulation which uses neither wet-dry fronts nor pollutant transport.

Notice how the GPU speedups increase quickly from one mesh size to an-

other. Thereby, in order to obtain good processor utilization in the GPU, we

should work with large domains that create at least about hundreds of thou-

sands threads. GPUs can execute a large number of threads e�ciently because

they rely on latency hiding techniques like interleaved multi-threading, which

switch among threads in order to perform useful work during the time required

to complete dependent arithmetic operations and memory requests.

28

Table 3: Academic 2D dam-break problem: Execution times (in seconds) and

speedups for the CPU /OpenMP and GPU /Brook+ implementations.

Mesh Num. CPU/Seq CPU/OpenMP GPU/Brook+ GPU/OpenCL

size Iter. time time/speedup time/speedup time/speedup

200×200 246 6.8 1.6 4.2 0.4 15.5 0.1 113.3

300×300 372 23.2 5.3 4.4 0.6 36.2 0.1 210.9

400×400 498 55.0 12.6 4.4 0.8 70.5 0.2 250.0

500×500 623 107.1 23.9 4.5 1.0 112.7 0.4 255.0

600×600 749 185.7 41.4 4.5 1.2 151.0 0.7 269.1

700×700 875 294.8 64.6 4.6 1.6 190.2 1.1 270.5

800×800 1001 439.9 97.0 4.5 2.1 213.6 1.6 283.8

900×900 1127 626.3 138.3 4.5 2.6 238.1 2.2 285.9

1000×1000 1253 859.1 190.4 4.5 3.3 259.5 3.1 273.6

1600×1600 2009 3522.7 770.7 4.6 10.8 325.9 12.6 278.7

2000×2000 2514 6873.1 1516.7 4.5 19.8 347.7 24.4 281.2

2700×2700 3396 16287.8 3587.6 4.5 46.5 350.1 58.6 277.9

3200×3200 4027 29887.4 6626.9 4.5 76.9 388.5 97.1 307.8

6.2 Synthetic problem: Ría de Arousa in Galicia (Spain)

The second test uses a synthetic case in order to study the e�ciency in a real

world scenario. The simulation is based on an actual estuary in Northwest Spain

called the Ría de Arousa, whose satellite image is displayed in Figure 9(a). This

natural environment is simulated using the real terrain and bathymetry data in

our test. While the north and east limits of the area involved in the simulation

have free boundary conditions, the tides in the west and south borders are

simulated using the main barotropic tidal components. Wet-dry fronts appear

very often in this test in the coastal zones and emerging islands. The purpose

of the simulation is to study the evolution of a pollutant that is discharged in

this environment, determining its propagation and which are the most a�ected

ares. The total simulated period is one week of real time.

6.2.1 Numerical results

The initial setup is represented in Figure 9(b). It corresponds to the moment

when the pollutant is discharged in a circle with a radius of 400 m in the middle

of the estuary. The normalized concentration of pollutant is given by the color

scale at the bottom of the �gure. Figure 9(c) is a capture of our simulation

after 24 hours. Here the sea currents have started to extend the pollutant along

the estuary, but if containment measures and cleanup activities started at this

moment, it would be possible to safely remove a large part of the contaminant.

29

(a) Satellite image (GoogleMaps) (b) Initial setup

(c) Pollutant concentration after one day (d) Pollutant concentration after two days

(e) Pollutant concentration after four days (f) Pollutant concentration after eight days

Figure 9: Evolution of the Ría de Arousa simulation.

30

After another 24 hours of simulated time we reach the situation depicted in

Figure 9(d), where the pollutant has spread further, increasing portions of it

beginning to reach the seashore. Cleaning e�orts could still be concentrated in

a well de�ned zone and remove most of the contamination. In Figure 9(e), four

days after the spill, the pollutant has spread over a large area, but a reasonable

amount of waste material could still be drawn from the center of the stain.

Cleaning activities can begin in some coastal zones too. After eight days (see

Figure 9(f)) the damage is extensive and only a few areas remain relatively

safe, such as the two north bays and the south one. Now most of the shore

requires cleaning e�orts, specially the south zone, but depending on the toxicity

of the pollutant the process may have reached catastrophic dimensions. The

test benchmark only simulates seven days, but here we used the eighth day to

display an image during low tide, in which we can observe some small emerging

islets. The model has provided a valuable simulation of the disaster evolution

that makes possible to predict the most a�ected areas. Pollutant discharge

may not only have a deep impact on the natural environmental, but also a�ect

very negatively the economy of regions where seafood products or tourism are

relevant industries.

6.2.2 Performance results

Table 4 shows the execution times and speedups of several mesh sizes. The

numbers in Num. Iter. show that this second problem requires about 1000

times more iterations. Although the GPU speedups on big meshes are lower

than the ones observed in the academic problem, they are excellent for a re-

alistic test case. CPU /OpenMP also o�ers good speedups, more than 4x for

4 cores, but it only results adequate for very small simulations. The small-

est mesh (200 × 133) takes just 59 seconds for GPU /OpenCL, around 158

seconds for GPU /Brook+ and more than 16 minutes for CPU /OpenMP. For

4000 × 2666, a simulation that takes about a year with CPU /Seq would take

nearly 3 months using CPU /OpenMP, but it would be reduced to only 39.5

hours with GPU /Brook+ or 43.7 hours with GPU /OpenCL. Note that both

GPU implementations enable real-time shallow water simulations, as for a 7-

day period these simulations require less than 2 days. These impressive results

make it possible to perform complex simulations over long periods of time within

reasonable execution times.

Figure 10 compares the performance results of CPU /Seq, CPU /OpenMP,

GPU /Brook+ and GPU /OpenCL in terms of execution time for several mesh

sizes using a logarithmic scale. Notice that the gap between CPU and GPU

31

Table 4: Synthetic problem: Execution times (in seconds) and speedups for the

CPU /OpenMP, GPU /Brook+ and GPU /OpenCL implementations.

Mesh Num. CPU/Seq CPU/OpenMP GPU/Brook+ GPU/OpenCL

size Iter. time time/speedup time/speedup time/speedup

200×133 335514 4477 978 4.6 158 28.4 59 75.3

300×200 503362 14665 3159 4.6 270 54.4 121 121.3

400×266 671293 34752 7657 4.5 457 76.1 229 151.8

500×333 839236 68684 14805 4.6 691 99.4 409 168.0

600×400 1007255 117995 25839 4.6 954 123.7 643 183.5

700×466 1175349 186205 40730 4.6 1338 139.2 1008 184.8

800×533 1343455 277485 60570 4.6 1867 148.7 1412 196.5

900×600 1511582 395342 85776 4.6 2346 168.5 1986 199.0

1000×666 1679709 541479 117730 4.6 3160 171.4 2804 193.1

2000×1333 3361568 4305369 940258 4.6 19799 217.5 21157 203.5

4000×2666 6727438 33895851 7405598 4.6 142246 238.3 157289 215.5

Figure 10: Execution time (in seconds) for several mesh sizes.

widens as the number of �nite volumes grows (specially for GPU /Brook+) be-

cause GPUs o�er better performance when working on big domains, where

they are able to make a better use of their execution resources and latency

32

hiding techniques. For mesh sizes up to 1000 × 666 GPU /OpenCL outper-

forms GPU /Brook+, GPU /Brook+ being slightly ahead for the �nest meshes

2000× 1333 and 4000× 2666. The reasons for this behavior have to do with re-

strictions of the Brook+ programming language, namely, the use of the graphics

pipeline (in particular, kernel invocation overhead, memory tiling and thread

blocking) to process data and the restricted control over memory allocation and

CPU -GPU transfers. Thus, the impact of CPU -GPU transfers and kernel in-

vocation on performance is smaller as the problem size grows. Furthermore,

the implicit memory tiling (hierarchical-Z pattern) and thread blocking of pixel

shaders o�ers good 2D spatial locality, which leads to slightly better e�ciency

for larger meses.

6.2.3 Performance scaling and limiting factors

The analysis of the performance scaling depending on the amount of execution

resources and the application pro�ling can be used to estimate the performance

limiting factors, which is useful to �nd out which parts of the implementation

may be subject to further optimization.

An interesting performance metric is the number of cells that can be pro-

cessed per unit of time, which in our case will be expressed in Mcell/s (million

cells per second). The processing rate of CPU /Seq remains quite stable at about

2.05Mcell/s, this points to some kind of performance limiting factor which leads

to a �xed processing rate. The CPU /OpenMP version enables to use additional

computational resources, but the required memory bandwidth is also increased

according to the amount of threads. The cell processing rate of CPU /OpenMP

using 8 threads is also quite stable at around 9.4 Mcell/s, which results in about

a 4.6x speedup. If hyperthreading is disabled to obtain a more accurate scaling

factor depending only on the number of real cores, the thread processing rate

drops to about 7.75 Mcell/s. The resulting application speedup is nearly 3.8x,

and remains fairly stable as the mesh size increases. The good performance

scaling of CPU /OpenMP (95% of a perfect speedup) points to the computing

power as the main limiting factor. To con�rm this, further tests were conducted

to �nd out the cache miss ratio of the last cache level in the larger meshes.

Thanks to the predictability of the memory access pattern and the CPU data

prefetchers, the L3 miss ratio was only about 1% of the memory requests.

On both GPU /Brook+ and GPU /OpenCL the cell processing rate does not

seem to stabilize and keeps steadily growing as the mesh size increases. For

the smallest mesh size GPU /OpenCL obtains only 151 Mcell/s, while for the

largest mesh it achieves 456 Mcell/s and the GPU /Brook+ version exceeds 500

33

Mcell/s. The lower initial results can be attributed to some �xed execution

costs, such as GPU initialization, kernel launch times and memory transfers.

GPU architectures largely rely on their multi-threading capabilities to improve

e�ciency and hide memory latency, therefore it is normal to obtain better re-

source utilization for the larger meshes. Notice that the GPU speedups are not

directly comparable to the CPU architecture, where performance scaling was

directly related to the number of cores. Although the GPU has many times

more processing resources, the architecture was designed for parallel execution,

with simpler and slower cores that make quite di�cult to achieve nearly perfect

scaling or peak performance in real-world applications. In fact, the cores of the

Radeon 5870 GPU work at 850 MHz, a much lower clock frequency compared

to the 3.06 GHz of the Core i7 950 CPU. These GPU cores largely rely on

SIMD execution, therefore runtime code divergence is processed sequentially,

leading to a signi�cant performance penalty when complex control �ow is in-

volved. Moreover, the VLIW design of the architecture makes very di�cult to

achieve high resource utilization in real applications. In our tests, the recompu-

tation strategy achieves an average of 3.97 slots per 5-way VLIW instruction,

which is a very good utilization rate for the architecture.

The CPU /OpenMP implementation seems to be clearly compute-bound,

however, it is not so evident to determine whether GPU solutions are compute-

bound or memory-bound. Although the GPU memory bandwidth utilization is

higher than the GPU computing resource utilization, GPUs usually can cope

well with high bandwidth utilization. To provide more information about the

limiting factor in GPU /Brook+, Figure 11 shows, for all mesh sizes, the per-

formance degradation experienced when lowering the GPU core clock by 15%,

the GPU memory clock by 15%, or both clocks at the same time for several

mesh sizes. As can be observed, the mesh size rapidly increases the impact of

the core clock reduction, while the in�uence of the memory clock reduction is

smaller. Furthermore, the impact of core clock reduction (11% in the worst

case) is nearly twice the impact of memory clock reduction (about 6% in the

worst case). This fact suggests that the performance of the GPU is more bound

by computing power than by the memory bandwidth. Finally, note that a 15%

reduction in both core and memory clocks results in a 17% performance drop.

This information provides an estimation of the architecture scalability with re-

spect to the clock speed in our application. The opposite should also be true,

and increasing both parameters by 15% instead of reducing them, will probably

result in about a 15% performance improvement, which is a very good scaling.

Further improvements in the parallel implementations should focus on the

34

Figure 11: Performance impact of the GPU core and memory clock frequency

on performance.

most costly parts of the algorithm. Figure 12(a) shows the relative computa-

tional cost for each stage of our CPU /OpenMP parallel implementation, Fig-

ure 12(b) for GPU /Brook+ and Figure 12(c) for GPU /OpenCL. The three

�gures present the information for all mesh sizes, thus, it is possible to study

performance factors that depend on the problem size. It can be observed that

in CPU /OpenMP the relative cost of the stages is independent of the mesh size.

Thus, the cost of Stage À b© is very low (about 5%) and the cost of Stage Á

is negligible (about 1%). Most work is done by Stage À a© (about 75%), the

remaining 19% being consumed by volume update of Stage Â. In the case of

GPU /Brook+, the relative cost is more dependent on the problem size. Stage

À consumes between 70% and 76% of the total time, even though we are using

the recomputation strategy. The cost of the reduction operation of Stage Á

decreases as the mesh size grows, initially consuming nearly 15% of the exe-

cution time, but being negligible for the biggest mesh size 4000 × 2666. For

GPU /OpenCL, the relative cost of each kernel is even more dependent on the

problem size. In particular, the reduction of Stage Á consumes around 35% of

the execution time for the smaller meshes, while it consumes only 4% for the

largest mesh size. Some kernel optimizations may be still be possible in Stage

35

(a) CPU/OpenMP (b) GPU/Brook+ (c) GPU/OpenCL

Figure 12: Relative computational cost of each stage of the algorithm.

Á. Nonetheless, let us observe that for the 4000 × 2666 mesh the distributions

of the relative cost of the kernels of GPU /Brook+ and GPU /OpenCL are very

similar.

7 Conclusions and future work

This paper describes a numerical scheme of a shallow water simulator that

is able to handle wet-dry zones as well as the transport of inert substances

such as a pollutant on a river. These simulations have great interest in many

industrial and environmental projects, but unfortunately they have a very high

computational cost. This motivates our proposal of e�cient and cost e�ective

parallel implementations of this scheme in multicore and manycore systems.

The development of the parallel shallow water simulator was driven by an

analysis based on domain-independent kernels, which is a useful tool that pro-

vides valuable information to the programmer to �nd con�ictive structures and

adopt the best parallelization strategy. Several parallelization strategies were

described to take advantage of current multi-threaded systems and to make an

e�cient processing of complex simulations in a fraction of the time required by

the sequential algorithm. A speedup of up to 4.6x was obtained using OpenMP

on four cores with hyper-threading. An impressive 238.3x speedup was obtained

using a GPU with Brook+ with respect to the sequential version (52.1x if com-

pared to the OpenMP CPU version), and an excellent 215.5x was obtained using

the same GPU with OpenCL (47.1x if compared to the OpenMP CPU version).

This work also demonstrates how streaming code developed to be executed

in a general purpose processor using platform independent optimizations can

36

be modi�ed to run in GPUs, reducing simulation time by more than two orders

of magnitude. Using the same programming model and algorithms on both

architectures facilitates fast application portability.

There are many interesting topics as future work, such as the use of higher

order models to improve simulation accuracy or the modi�cation of the appli-

cation to support two �ow layers in order to enable the simulation of other

complex problems, such as oceanic currents.

Acknowledgments

We would like to thank the G-HPC network for promoting interdisciplinary col-

laborations between groups of the network. This research has been supported

by the Galician Government (Consolidation of Competitive Research Groups,

Xunta de Galicia ref. 2010/6) under projects INCITE08PXIB105161PR and

08TIC001206PR, the Ministry of Science and Innovation, cofunded by the FEDER

funds of the European Union under the grant TIN2010-16735, and the projects

MTM2009-11923 and MTM2010-21135. Finally, we also thank the Consellería

do Mar of Xunta de Galicia (local government of Galicia, Spain) and the Centro

Tecnolóxico do Mar (CETMAR) for providing the ocean currents and topo-

graphic data of Ría de Arousa.

References

A. Kurganov and G. Petrova. A Second-Order Well-Balanced Positivity Preserv-

ing Central-Upwind Scheme for the Saint-Venant System. Commun. Math.

Sci., 5(1):133�160, 2007.

AMD Stream Computing User Guide. AMD, 2009. v1.4.0a.

A.R. Brodtkorb, M.L. Sætra, and M. Altinakar. E�cient Shallow Water Simu-

lations on GPUs: Implementation, Visualization, Veri�cation and Validation.

Computer and Fluids, 55:1�12, 2012.

D. Ribbrock, M. Geveler, D. G oddeke, and S. Turek. Performance and Accuracy

of Lattice-Boltzmann Kernels on Multi- and Manycore Architectures. Inter-

national Conference on Computational Science. Procedia Computer Science,

1(1):239�247, 2010.

D. van Dyk, M. Geveler, S. Mallach, D. Ribbrock, D. Göddeke, and C.

Gutwenger. HONEI: A Collection of Libraries for Numerical Computations

37

Targeting Multiple Processor Architectures. Computer Physics Communica-

tions, 180(12):2534�2543, 2009.

E.F. Toro. Shock-Capturing Methods for Free-Surface Shallow Flows. John

Wiley & Sons, 2001.

J. Setoain, C. Tenllado, J.I. Gómez, M. Arenaz, M. Prieto, and J. Touriño. To-

wards Automatic Code Generation for GPU Architecture. In Proc. of the 9th

International Workshop on State-of-the-Art in Scienti�c and Parallel Com-

puting, 2008.

J.M. Gallardo, S. Ortega, M. de la Asunción, and J.M. Mantas. Two-

Dimensional Compact Third-Order Polynomial Reconstructions. Solving

Nonconservative Hyperbolic Systems Using GPUs. Journal of Scienti�c Com-

puting, pages 1�23, 2011.

The OpenCL Speci�cation, version 1.2. Khronos OpenCLWorking Group, 2011.

M. Arenaz, J. Touriño, and R. Doallo. Compiler Support for Parallel Code

Generation through Kernel Recognition. In Proc. of the 18th IEEE Interna-

tional Parallel and Distributed Processing Symposium, pages 79b (CD�ROM,

10 pages), 2004.

M. Arenaz, J. Touriño, and R. Doallo. XARK: An EXtensible Framework for

Automatic Recognition of Computational Kernels. ACM Transactions on

Programming Languages and Systems, 30(6):1�56, 2008.

M. de la Asunción, J.M. Mantas, and M.J. Castro. Simulation of One-Layer

Shallow Water Systems on Multicore and CUDA Architectures. Journal of

Supercomputing, pages 1�9, 2010.

M. Geveler, D. Ribbrock, D. G oddeke, and S. Turek. Lattice-Boltzmann Sim-

ulation of the Shallow-Water Equations with Fluid-Structure Interaction on

Multi- and Manycore Processors. Lecture Notes in Computer Science: Facing

the Multicore Challenge, 6310:92�104, 2010.

M. Lastra, J.M. Mantas, C. Ureña, M.J. Castro, and J.A García-Rodríguez.

Simulation of Shallow Water Systems using Graphics Processing Units. Math-

ematics and Computers in Simulation, 80(3):598�618, 2009.

M. Viñas, J. Lobeiras, B.B. Fraguela, M. Arenaz, M. Amor, and R. Doallo.

Simulation of Pollutant Transport in Shallow Water on a CUDA Architecture.

In Proc. of Workshop on Exploitation of Hardware Accelerators (WEHA 2011)

38

As part of the 2011 International Conf. on High Performance Computing and

Simulation, HPCS2011, pages 664�670, 2011.

M.J. Castro, J.A. García-Rodríguez, J.M. González-Vida, and C. Parés. A

Parallel 2D Finite Volume Scheme for Solving Systems of Balance Laws with

Nonconservative Products: Application to Shallow Flows. Computer Methods

in Applied Mechanics and Engineering, 195(19-22):2788�2815, 2006.

M.J. Castro, J.A. García-Rodríguez, J.M. González-Vida, and C. Parés. Solving

Shallow-Water Systems in 2D Domains using Finite Volume Methods and

Multimedia SSE Instructions. J. Comput. Appl. Math., 221(1):16�32, 2008a.

M.J. Castro, T. Chacón, E.D. Fernández-Nieto, J.M. González-Vida, and C.

Parés. Well-Balanced Finite Volume Schemes for 2D non-Homogeneous Hy-

perbolic Systems. Application to the dam break of Aznalcóllar. Computer

Methods in Applied Mechanics and Engineering, 197:3932�3950, 2008b.

M.J. Castro, E.D. Fernández-Nieto, A.M. Ferreiro, J.A. García-Rodríguez, and

C. Parés. High Order Extensions of Roe Schemes for Two Dimensional Non-

conservative Hyperbolic Systems. Journal of Scienti�c Computing, 39(1):

67�114, 2009.

M.L. Sætra and A.R. Brodtkorb. Shallow Water Simulations on Multiple GPUs.

In Applied Parallel and Scienti�c Computing, volume 7134 of Lecture Notes

in Computer Science, pages 56�66. Springer, 2012.

R. Chandra, L. Dagum., D. Kohr., D. Maydan, J. McDonald, and R. Menon.

Parallel Programming in OpenMP. Morgan Kaufmann Publishers Inc., 2001.

R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge

University Press, 2002.

T. Morales de Luna, M.J. Castro, C. Parés, and E. Fernández Nieto. On a Shal-

low Water Model for the Simulation of Turbidity Currents. Communications

in Computational Physics, 6:848�882, 2009.

T. Runar, K.-A. Lie, and J. R. Natvig. Solving the Euler Equations on Graph-

ics Processing Units. In Proceedings of the 6th International Conference on

Computational Science, volume 3994 of Lecture Notes in Computer Science,

pages 220�227, 2006.

T.R. Hagen, M.O. Henriksen, J.M. Hjelmervik, and K.-A. Lie. How to Solve

Systems of Conservation Laws Numerically Using the Graphics Processor as a

39

High-Performance Computational Engine. In Geir Hasle, Knut-Andreas Lie,

and Ewald Quak, editors, Geometric Modelling, Numerical Simulation, and

Optimization, pages 211�264. Springer Berlin Heidelberg, 2007.

40

