
Hierarchically Tiled Array Vs. Intel Thread

Building Blocks for Multicore Systems

Programming

Diego Andrade
Universidade da Coruña

James Brodman
University of Illinois Urbana-Champaign

Basilio B. Fraguela
Universidade da Coruña

David Padua
University of Illinois Urbana-Champaign

Abstract

Multicore systems are becoming common, while programmers cannot
rely on growing clock rate to speed up their application. Thus, software
developers are increasingly exposed to the complexity associated with pro-
gramming parallel shared memory environments. Intel Threading Build-
ing Blocks (TBBs) is a library which facilitates the programming of this
kind of system. The key notion is to separate logical task patterns, which
are easy to understand, from physical threads, and delegate the schedul-
ing of the tasks to the system. On the other hand, Hierarchically Tiled
Arrays (HTAs) are data structures that facilitate locality and parallelism
of array intensive computations with block-recursive nature. The model
underlying HTAs provides programmers with a single-threaded view of the
execution. The HTA implementation in C++ has been recently extended
to support multicore machines. In this work we implement several algo-
rithms using both libraries in order to compare the ease of programming
and the relative performance of both approaches.

1 Introduction

Processor manufacturers are building systems with an increasing number of
cores. These cores usually share the higher levels of the memory hierarchy.
Many language extensions and libraries have tried to ease the programming of
this kind of system. Some approach the problem from the point of view of task
parallelism. The key notion is that the programmer has to divide the work into

Figure 1: Creation of a HTA example Figure 2: Overlapped tiling example

several tasks which are mapped automatically onto physical threads that are
scheduled by the system. The Intel Thread Building Blocks (TBBs) library [5]
enables the writing of programs that make use of this form of parallelism.

Task-parallelism can be implemented alternatively using libraries such as
POSIX Threads [3] which provide minimal functionality and for this reason some
consider this approach the assembly language of parallelism. A third strategy
to implement task-parallel programs is to use the OpenMP [4] set of compiler
directives. OpenMP, however, is not as powerful as TBB, and it is mainly suitable
for regular computations.

On the other hand, the Hierarchically Tiled Array (HTA) library [1, 2] en-
ables the implementation of data parallel programs. An HTA is an array whose
elements are either HTAs or standard arrays. HTAs adopt tiling as a first class
construct for array-based computations and empower programmers to control
data distribution and the granularity of computation explicitly through the
specification of tiling. Contrary to the approaches mentioned above, HTAs are
suitable for shared, distributed and hybrid memory systems. The HTA library
implementation for shared memory is implemented using the TBB library.

In this work, we compare the implementation of some algorithms using both
the TBB and HTA libraries. Sections 2 and 3 summarize the main features of
the HTA and TBB libraries, respectively. In Section 4 a high-level description of
each implemented algorithm is presented and its implementation in both TBBs
and HTAs is discussed briefly. Section 5 describes the main differences between
the TBBs and HTAs libraries. We will illustrate how data and task parallelism
face the same problems using different approaches. Section 6 discusses some
validations results, and Section 7 presents the conclusions.

2 The HTA library

The Hierarchically Tiled Array (HTA) is an array data type which can be par-
titioned into tiles. Each tile can be either a conventional array or a lower level
HTA. HTAs facilitate parallel programming, as operations on them are defined
to process so that their tiles may be processed concurrently.

Figure 1 shows the creation of an HTA with 3 tiles of 4 elements each.
The tiling, defined in line 1, specifies the number of elements or tiles for each
dimension and level of the HTA, from the bottom to the top of its hierarchy
of tiles. The second line creates the HTA. The number of levels of tiling is
passed as the first parameter, the tiling is specified by the second parameter,

2

and the third selects the data layout (ROW in this case). The data layout, which
specifies how data will be stored in memory, can be row mayor (ROW), column
major (COLUMN) or TILE. TILE specifies that the elements within a tile should
be stored by rows and in consecutive memory locations. The data type and the
number of dimensions of the HTA are template parameters of the HTA class.

HTA indices in the C++ library are zero-based. Individual tiles or scalars
can be selected using lists of integers and Ranges of the form low:step:high.
The list of integers and ranges can be enclosed by the () operator, which selects
tiles, or by the [] operator, which selects scalar elements of the HTA. For example
h(1)[2] yields element [2] within tile (1).

There are three main constructs in data-parallel computations:

• Element-by-element operation: Values are assigned to different elements
of one or more arrays, and each element is assigned at most once.

• Reduction: It applies reduction functions such as sum,maximum,minimum
or logical and across all the members of an array.

• Scan: It computes a prefix operation across all the elements of an array.

These operations take the form of three instance methods in the HTA library:
hmap (which implements the element-by-element operation), reduce and scan.

Each of these three constructs receive at least one argument, a function
object whose operator() encapsulates the operation to be performed. In the
case of hmap, the function may accept several additional HTAs parameters which
must have the same tiling structure as the HTA instance on which the hmap is
invoked. Hmap targets each tile separately so that the indexing of the elements
inside the operation is relative to the first position of the processed tile. Hmap
is executed concurrently across the tiles of the HTA to which it is applied.

2.1 Overlapped tiling

Stencil codes compute new values based on their neighbors. When this type of
operation is applied to tiled arrays, elements of the neighboring tiles must be
accessed during the processing of each tile. This can be achieved using shadow
or ghost regions containing a copy of the elements of the neighboring tiles that
are needed for the computation. The HTA library allows the automatic creation
and update of these regions. This feature is called overlapped tiling.

Figure 2 shows the creation of an HTA similar to the one created in Figure 1
but with overlapped regions. The overlapping is specified in the second state-
ment. The Tuple passed as the first argument specifies the amount of overlap
for each tile in each dimension in the negative direction (decreasing index value).
The second Tuple specifies the same but in the positive direction (increasing in-
dex value). Thus these parameters define the size of the overlap and the size of
the boundary region that is built around the array. The third argument specifies
the nature of this boundary region and its value can be zero or periodic. In
the first case, the boundary region is filled with constants, while in the second

3

Figure 3: Dynamic partitioning example

case the boundary is periodic, i.e., it will replicate the values of the array on the
opposite side. The HTA is created in the third statement, in this case we pass
an additional argument the ol object, which specifies the desired overlapping.
In this example, a shadow region of size one is created both in the positive
and negative direction and the boundary is periodic. The shadow regions are
highlighted in the figure.

2.2 Dynamic partitioning

The tiling structure of an HTA is specified at creation time. The dynamic
partitioning feature enables the modification of the structure of an HTA after
its creation. We call the abstract lines that separate the tiles of an HTA partition
lines. These lines include two implicit ones along each dimension, one before
the first element and the other after the last element of the HTA, as well as
the explicit partition lines specified by the user. Partition lines are numbered
in ascending order starting at 0. A set of partition lines, containing no more
than one line in each dimension, defines a partition. It is represented by a
Tuple which for each dimension contains either partition number or the special
symbol NONE. The dynamic partitioning feature allows the modification of the
tiling structure of an HTA by removing partitions or adding new ones.

Figure 3 shows an example of the use of dynamic partitioning. First, we
add a new partition to the HTA created in Figure 1 using the part method
which accepts two parameters: the source partition and the offset. Part inserts
a new partition line along the ith dimension, offseti elements to the right of the
location of partitioni. In the example, a new partition is created with an offset
of (2) from partition line (1).

In the second step, a partition is deleted using method rmPart. It receives
as an argument the Tuple which specifies the partition to be deleted. In the
case of the example of Figure 3, partition line (1) is removed.

3 The Intel TBB library

The Intel Threading Building Blocks (TBB) library was developed by Intel for
the programming of multithreaded applications. As mentioned above, the TBB
library enables the implementation of task-parallel programs.

4

3.1 TBB operations

The element-by-element operation, reduction, and scan constructs are imple-
mented in the TBB library using the parallel for, reduce and scan algo-
rithm templates respectively. The TBB library has two additional interesting
algorithm templates: parallel while, which is used for unstructured work-
loads where the bounds are not clearly defined, and pipeline which is used
when there is a sequence of stages that can operate in parallel on a data stream.

The parallel for, reduce and scan algorithm templates accept two pa-
rameters: a range and a function object. This object overloads the operator()
and defines the operation to be performed on the range assigned.

The range identifies either (1) the set of index values to be used in the
evaluation of each execution of the loop body, or (2) the number of times an the
loop body must be executed. The range is split recursively into subranges by the
task scheduler and mapped onto physical threads. A TBB Range is defined as a
template, parameterized with a data type. The TBB library provides standard
ranges, such as blocked range, which expresses in terms of a lower bound, an
upper bound, and optionally, a grain size, a linear range of values of the type
specified by the template. The grain size is a guide for the workload size that
the scheduler will use for the parallel tasks. The optimality of this value affects
the performance and load balance of the parallel operation.

An interesting feature of the TBB library is the possibility of creating ad-hoc
ranges. That is, the user can define its own range classes implementing specific
policies to decide when and how to split them, how to represent the range, etc.
An example of usage of ad-hoc range will be shown in Section 4.3.

4 Implementation of Some Algorithms

The codes used in this comparison were taken from the chapter 11 of [5], which
contains examples of parallel implementations of algorithms using TBBs1. This
section describes some of them and it highlights the key differences between the
TBB and HTA implementations using some snippets of code.

4.1 Average

This algorithm calculates, for each element in a vector, the average of the pre-
vious element, the next element and itself. It can be parallelized using the TBB
library using the parallel for construct. The TBB code that implements this
algorithm is shown in Figure 4. In this code, the first and the last element of
the array are special cases, since they don’t have previous and next elements,
respectively. This is solved by adding elements at the beginning and the end of
the array which are filled with zeros as shown in lines 22-25 of the code. Lines
27-29 contain the initialization of the array with random values. In line 31 the

1These codes are in public domain and the can be downloaded from
http://softwarecommunity.intel.com/articles/eng/1359.htm

5

1 #include ”tbb/parallel for.h”
2 #include ”tbb/blocked range.h”
3 #include ”tbb/task scheduler init.h”
4
5 using namespace tbb;
6
7 class Average {
8 public:
9 float∗ input;

10 float∗ output;
11 void operator()(const blocked range<int>& range) const {
12 for(int i=range.begin(); i!=range.end(); ++i)
13 output[i] = (input[i−1]+input[i]+input[i+1])∗(1/3.0f);
14 }
15 ...
16 };
17
18 const int N = 100000;
19 static int nThreads = 4;
20
21 int main(int argc, char∗ argv[]) {
22 float raw input[N+2];
23 raw input[0] = 0;
24 raw input[N+1] = 0;
25 float∗ padded input = raw input+1;
26
27 for (size t i = 0; i < N; ++i) {
28 padded input[i] = (float)(rand() % 1000);
29 }
30
31 task scheduler init init (nThreads);
32
33 Average avg(padded input,output);
34 parallel for (blocked range<int>(0, n, 1000), avg);
35
36 return 0;
37 }

Figure 4: TBB implementation of the Average algorithm

task scheduler object is created and initialized with n threads, in the example
4. The task scheduler is the engine in charge of the automatic mapping from
tasks to physical threads and of the thread scheduling. It must be initialized
before any TBB library capability is used.

The first argument of the parallel for in line 34 is a range which includes
the whole vector. The TBB code selected a grain size of 1000. The second
argument is an object of the class Average which encapsulates the operation
to be executed by the parallel for. This class is defined in lines 7 thru 16.
The operator() method in this class defines the operation that will be applied
on each subrange. The low and high values of the indices for each subrange
are directly extracted from the range parameter using the begin() and end()
methods (line 12). In what follows, most of the lines of the initialization and of
the declaration of the structures involved in the code will be omitted.

The HTA implementation of this algorithm is shown in Figure 5. The data
structures are created and initialized between lines 18 and 22. input and output
in lines 20 and 21 are one-dimensional HTAs of floats. Line 19 defines an object
that describes an overlapping region. Shadows have size one in both the positive
and negative direction and those in the external boundaries of the HTA are filled
with zeros. In line 20 this overlapping specification is used to create an input
HTA with n values distributed in nT tiles. The padding values are automatically
generated and filled in this HTA thanks to overlapped tiling. Line 21 allocates
the HTA where the result will be stored which has the same topology as those

6

1 #include ”htalib serial .h”
2 typedef HTA<float,1> HTA 1;
3 #define T1(i) Tuple<1>(i);
4
5 struct Average {
6 void operator()(HTA 1 input , HTA 1 output) const {
7 for(int i=0; i!=input .shape().size () [0]; ++i)
8 output [i] = (input [i−1]+input [i]+input [i+1])∗(1/3.0f);
9 }

10 };
11
12 const int N = 100000;
13 static int nTiles = 4;
14
15 int main(int argc, char∗ argv[]) {
16 Traits::Default::init (argc,argv);
17
18 Seq< Tuple<1> > tiling(T1(N/nTiles),T1(nTiles));
19 Overlap ol(T1(1),T1(1));
20 HTA 1 input=HTA 1::alloc(1,tiling,ol,NULL,ROW);
21 HTA 1 output=HTA 1::alloc(1,tiling,NULL,ROW);
22 ... /∗ Initialization not shown ∗/
23
24 input.hmap(Average(),output);
25
26 return 0;
27 }

Figure 5: HTA implementation of the Average algorithm

1 for(int i=1; i<UH−1; ++i) {
2 value t = (value)i/UH;
3 Material Type m = SANDSTONE;
4 M[i] = 1.0/8;
5 if (t<0.3f) {
6 m = WATER;
7 M[i] = 1.0/32;
8 } else if (0.5<=t && t<=0.7) {
9 m = SHALE;

10 M[i] = 1.0/2;
11 }
12 Material[i] = m;
13 }

(a) TBB version

1 M[1:0.3∗UH] = 1.0/32;
2 Material[1: 0.3∗UH] = WATER;
3 M[0.3∗UH+1: 0.5∗UH] = 1.0/8;
4 Material[0.3∗UH+1: 0.5∗UH] = SANDSTONE;
5 M[0.5∗UH+1: 0.7∗UH] = 1.0/2;
6 Material[0.5∗UH+1:0.7∗UH] = SHALE;
7 M[0.7∗UH+1:UH−1] = 1.0/8;
8 Material[0.7∗UH+1:UH−1] = SANDSTONE;

(b) HTA version

Figure 6: Terrain initialization

used as an input but with no overlapped regions.
In line 24, the hmap method is invoked. Its first argument is the operation

to perform on each tile of the HTAs. This operation, Average, is defined as a
struct in lines 5-10. hmap calls this operation for each tile of the HTA. The for
loop of line 7 goes from 0 to input.shape().size()[0], the size of the current
tile. The HTA method shape returns a structure which defines the topology
of an HTA. Its method size returns a Tuple with the size of each dimension
of the tile. In the reminded of this paper, we will use (1,2,. . .) instead of
Tuple<n>(1,2,...) to specify n-dimensional tuples. This notation cannot be
used in our current HTA implementation, but we plan to add it. In this example
the notation Tuple<1> was abbreviated using the T1 constant.

4.2 Seismic

This code performs a simple seismic wave simulation (wave propagation). The
main steps of the program correspond to the simulation of a seismic wave in a

7

1 struct UpdateStressBody {
2 void operator()(const tbb::blocked range<int>& range) const {
3 drawing area drawing(0, range.begin(), UniverseWidth, range.end()−range.begin());
4 int i end = range.end();
5 for(int y = 0, i=range.begin(); i!=i end; ++i,y++) {
6 color t∗ c = ColorMap[Material[i]];
7 drawing.set pos(1, y);
8 for(int j=1; j<UniverseWidth−1; ++j) {
9 S[i][j] += (V[i][j+1]−V[i][j]) ;

10 T[i][j] += (V[i+1][j]−V[i][j]) ;
11 int index = (int)(V[i][j]∗(ColorMapSize/2)) + ColorMapSize/2;
12 if (index<0) index = 0;
13 if (index>=ColorMapSize) index = ColorMapSize−1;
14 drawing.put pixel(c[index]) ;
15 }
16 }
17 }
18 };
19 ...
20 tbb::parallel for (
21 tbb::blocked range<int>(1, UniverseHeight−1, GrainSize),
22 UpdateStressBody());
23 ...

(a) TBB version

1 struct UpdateStressOp {
2 void operator() (HTA<value,2> S tile, HTA<value,2> T tile, HTA<value,2> V tile){
3 int size 0 = S tile .shape(). size () [0];
4 int lower bound 0=S tile.memMap().leafPos()[0];
5 int index;
6
7 S tile [0 :size 0−1][1:UniverseWidth−1] += V tile[0:size 0−1][2:UniverseWidth]−V tile[0:size 0−1][1—

:UniverseWidth−1];
8 T tile [0 :size 0−1][1:UniverseWidth−1] += V tile[1:size 0][1:UniverseWidth−1]−V tile[0:size 0−1][1—

:UniverseWidth−1];
9

10 drawing area drawing(0, lower bound 0, UniverseWidth, size 0−1);
11
12 for(int i=0; (i!=(size 0)); ++i) {
13 color t∗ c = ColorMap[Material[i+lower bound 0]];
14 drawing.set pos(1,i) ;
15 for(int j=1; j<(UniverseWidth−1); ++j) {
16 index=(int)(V tile[i][j]∗(ColorMapSize/2)) + ColorMapSize/2;
17 if (index<0) index = 0;
18 if (index>=ColorMapSize) index = ColorMapSize−1;
19 drawing.put pixel(c[index]) ;
20 }
21 }
22 }
23 };
24 ...
25 S inner=S[1:MAX HEIGHT−2][0:MAX WIDTH−1];
26 ...
27 S inner.hmap(UpdateStressOp(),T inner,V inner);
28 ...
29 }

(b) HTA version

Figure 7: Update Stress

8

loop which sets the impulse from the source of the disturbance, does the two time
consuming computations of update stress and velocity, and finally cleans up the
edges of the simulation. The algorithm has two main parts: the initialization
and the main loop, which is composed itself of four steps: set impulse, update
stress, update velocity and clean the edges.

The initialization of the data structures involved in the code is sequential
both in the TBB and the HTA versions, but in the HTA version it has been
rewritten using array notation, which allows to remove some loops and con-
ditional statements. Figure 6(a) shows this initialization in the TBB version.
Arrays Material and M contain the characteristics and composition of each
band of the terrain. This code fills one band of the terrain with WATER, two
with SANDSTONE and another one with SHALE. The HTA implementation
is shown in Figure 6(b). In typical simulation the terrain characteristics would
be passed as an input of the simulation. As this code is a benchmark they are
initialized inside the code.

The function which updates the stress can be parallelized. It calculates
the new values for the two matrices which contain the stress component of the
simulation, S and T. The algorithm is an stencil computation which also used as
an input the values of the matrix which contain the velocity, V. In this stage, it
creates a pixel by pixel representation of the actual state of the wave simulation
using the current values of matrix V. In the TBB version, shown in Figure 7(a),
the outermost loop of the stencil is parallelized using a parallel for. In the
HTA version, shown in Figure 7(b), the same loop is parallelized using a hmap of
the function defined between lines 2 and 22. Only the respective first dimensions
of the involved HTAs are tiled. Lines 3 and 4 extract the size of the current tile
and the absolute position of the lower element of the current tile, respectively.
The stencil computation of the new values of matrices S and T is performed
separately from the drawing and it has been rewritten using array notation.
The drawing loop (lines 12-21), is similar to the TBB one, but the indexing
of each tile considers relative positions inside that tile rather than absolute
positions in the HTA, as it happened in the case of the average algorithm. As the
stencil computation considers shifted values V[i+1][j] in the tiled dimension
(first dimension), an overlapped region of size 1 in the positive direction of this
dimension must be added when building this HTA (not shown in the figures).
Besides, in three matrices S,V and T, dimension i will be only transversed from
the second element to the penultimate element of that dimension. So we have
to exclude the first position of the HTA in the first tile, and the last position
in the last tile. This is achieved by applying the hmap operation in the area of
interest of the HTAs. An example of how this is performed is in line 25. This
problem is solved in the TBB version applying the operator on a Range of the
indexes to be used, which excludes the first and the last point of the dimension
(see line 21 in Figure 7(a)).

The function which updates the velocity is also an stencil computation, im-
plemented in the TBB case using a parallel for and a hmap in the HTA case.
The implementation of both the TBB and HTA cases are very similar to those
proposed for the implementation of the stencil computation inside the function

9

which updates the stress. The remaining parts of the code are sequential in
both versions.

4.3 Parallel Merge

This code merges two sorted sequences. The algorithm operates recursively as
follows:

1. If the sequences are shorter than a given threshold, they are merged se-
quentially. Otherwise, Steps 2-5 are performed.

2. The sequences are swapped if necessary so that the first sequence, [begin1, end1)
(the notation [a, b) indicates a partially opened interval), is at least as long
as the second sequence [begin2, end2).

3. m1 is set to the middle point in the first sequence. The item at that
location is called key.

4. m2 is set to the point where key would fall in the second sequence.

5. Subsequences [begin1,m1) and [begin2, m2) are merged to create the first
part of the merged sequence and subsequences [m1, end1) and [m2, end2)
are merged to create the second part. The two operations may be executed
in parallel.

The TBB implementation of this algorithm, shown in Figure 8(a), imple-
ments the operation using a parallel for (see lines 32-34). The subdivi-
sion of the sequences is implemented using an object of the ad-hoc range class
ParallelMergeRange, defined in lines 1-23. The predicate is divisible per-
forms the test in step 1. The ParallelMergeRange class has two constructors.
The first one, shown in lines 7-21, contains the dummy variable split. This
argument is used by the TBB library to differentiate a Range constructor that
is used to split an input Range in two. The constructor builds a new range that
stores one of the halves of the original Range and modifies the original Range,
received as first parameter, to hold the other half. This constructor performs
the steps described in steps 2-5 of the algorithm. The other constructor is a
conventional constructor. The basic operation, lines 25-29, simply performs the
merge sequentially by means of a std :: merge.

The HTA version of this algorithm, shown in Figure 8(b), is based on hmap.
In the function applied by hmap, if the sequences are bigger than a given thresh-
old, steps 2-5 are implemented. This part of the algorithm, lines 6-27, is imple-
mented using the dynamic partitioning feature. Lines 21-23 add new partitions
to the two input HTAs and the output HTA in the points selected as described
in the step 3 of the algorithm. Line 25 calls recursively hmap with the reparti-
tioned structures. In this call, hmap applies its functor argument on each chunk
in parallel. After this call these partitions are removed using rmPart. The re-
cursion finishes when the sequences to merge are smaller than a given threshold,
then step 1 is performed, see lines 27-35.

10

1 template<typename Iterator> struct ParallelMergeRange {
2 ...
3 bool empty() const {return (end1−begin1)+(end2−begin2)==0;}
4 bool is divisible () const {
5 return std::min(end1−begin1, end2−begin2) > grainsize;
6 }
7 ParallelMergeRange(ParallelMergeRange& r, split) {
8 if (r .end1−r.begin1 < r.end2−r.begin2) {
9 std::swap(r.begin1,r.begin2);

10 std::swap(r.end1,r.end2);
11 }
12 Iterator m1 = r.begin1 + (r.end1−r.begin1)/2;
13 Iterator m2 = std::lower bound(r.begin2, r.end2, ∗m1);
14 begin1 = m1;
15 begin2 = m2;
16 end1 = r.end1;
17 end2 = r.end2;
18 out = r.out + (m1−r.begin1) + (m2−r.begin2);
19 r.end1 = m1;
20 r.end2 = m2;
21 }
22 ...
23 };
24
25 template<typename Iterator> struct ParallelMergeBody {
26 void operator()(ParallelMergeRange<Iterator>& r) const {
27 std::merge(r.begin1, r.end1, r.begin2, r.end2, r.out);
28 }
29 };
30
31 ...
32 parallel for (
33 ParallelMergeRange<Iterator>(begin1,end1,begin2,end2,out),
34 ParallelMergeBody<Iterator>()
35);
36 ...

(a) TBB version

1 struct Merging {
2 void operator() (HTA<float,1> output , HTA<float,1> input1 , HTA<float,1> input2) {
3 ...
4 size1=input1 .shape().size() [0];
5 size2=input2 .shape().size() [0];
6 if (input1 size>GRAINSIZE) {
7
8 if (input1 size < input2 size) {
9 h2=input1 ;h1=input2 ;

10 std::swap(size1 , size2);
11 } else {
12 h1=input1 ;h2=input2 ;
13 }
14
15 begin2 ptr=h2.raw();
16 end2 ptr=begin2 ptr+size2;
17
18 float ∗m2 = std::lower bound(begin2 ptr, end2 ptr, h1[(size1−1)/2]);
19 int pos=m2−begin2 ptr;
20
21 h1.part((0) ,((size1−1)/2));
22 h2.part((0) ,(pos));
23 output .part((0) ,(pos+((size1−1)/2)));
24
25 output .hmap(Merging(),h1,h2,0);
26 ...
27 } else {
28 float ∗begin1 ptr=input1 .raw();
29 float ∗end1 ptr=begin1 ptr+size1;
30 begin2 ptr=input2 .raw();
31 end2 ptr=begin2 ptr+size2;
32 float ∗begin3 ptr=output .raw();
33
34 std::merge(begin1 ptr, end1 ptr, begin2 ptr, end2 ptr, begin3 ptr);
35 }//end of else
36 }
37 };
38 ...
39 output.hmap(Merging(),input1,input2);
40 ...

(b) HTA version

Figure 8: Parallel Merge

11

4.4 Substring Finder

In this code, given a string, for each position in the string, the program finds the
length and location of the largest matching substring elsewhere in the string.
For instance, take the string flowersflows. Starting the scan at the first char-
acter at position 0, the largest match is flow at position 7 with a length of
4 characters. The position and length of those matches are stored for each
position of the string.

The parallelization strategy consits of searching the largest matching string
for each position of the scanned string in parallel. The TBB version uses a
parallel for, while the HTA version uses a hmap.

The codes, shown in Figures 9(a) and 9(b) are very similar. The operation
performed in parallel is the same in both cases, the only difference is the indexing
of the data structures, as it happened in previous codes. In the HTA version,
the max and pos arrays, where the result will be stored, are divided in tiles, and
the hmap operation is applied separately on each tile, so the indexing will be
relative to the first position of the current tile.

4.5 Game of Life

The Game of Life is played in a two-dimensional orthogonal grid of square cells,
each of which is in one of two possible states: live or dead. Every cell interacts
with its eight neighbors, which are next to each cell horizontally, vertically or
diagonally. In every step of this evolution, each cell lives, dies, stays empty or
is born based on a simple decision depending on the surrounding population
(number of neighbors). The rules which determine the evolution of life are:

1. Life persists in any cell where it is also present in two or three of their
eight neighboring cells and otherwise disappears (from loneliness or over-
crowding).

2. Life is born in any empty cell for which there is life in exactly three of the
eight neighboring cells.

The decisions about each generation are taken based on the state of the cells in
the previous generation, so the problem is fully parallel and since the computa-
tion depends on the value of an element in am array and its neighbors, it is an
stencil computation.

The parallel version decomposes the two-dimnesional space of cells in a num-
ber of regions, and the decisions for the next generation are taken in parallel in
the different regions. This is implemented in the TBB and HTA versions using
a parallel for and a hmap respectively. Both implementations can be seen in
Figures 10(a) and 10(b). Besides the differences in the implementation between
a parallel for and a hmap that we have seen in previous examples, in this
code, as the decisions for each cell depend on the state of its eight neighbors,
when the new state of a cell in an edge of a tile is computed a shadow region
of size 1 is required in order to access the state of the neighbors that belong to

12

1 class SubStringFinder {
2 ...
3 void operator() (const blocked range<size t>& r) const {
4 for (size t i = r.begin(); i != r.end(); ++i) {
5 size t max size = 0, max pos = 0;
6 for (size t j = 0; j < str. size () ; ++j)
7 if (j != i) {
8 size t limit = str. size ()−(i > j ? i : j) ;
9 for (size t k = 0; k < limit; ++k) {

10 if (str [i + k] != str [j + k]) break;
11 if (k > max size) {
12 max size = k;
13 max pos = j;
14 }
15 }
16 }
17
18 max array[i] = max size;
19 pos array[i] = max pos;
20 }
21 }
22 ...
23 };
24 ...
25 parallel for (blocked range<size t>(0, to scan.size() , 100),
26 SubStringFinder(to scan, max, pos));
27 ...

(a) TBB version

1 struct SubStringFinderOp {
2 void operator() (HTA<int,1> max , HTA<int,1> pos) {
3 ...
4 init i = max .memMap().leafPos()[0];;
5 end i=init i+max .shape().size()[0];
6
7 int pos=0;
8 for (size t i = init i ; i != end i; ++i) {
9 int max size = 0, max pos = 0;

10 for (size t j = 0; j < str. size () ; j++) {
11 if (j != i) {
12 int limit = str. size ()−(i > j ? i : j) ;
13 for (int k = 0; k < limit; ++k) {
14 if (str [i + k] != str [j + k]) break;
15 if (k > max size) {
16 max size = k;
17 max pos = j;
18 }
19 }
20 }
21 }
22 max [pos] = max size;
23 pos [pos] = max pos;
24 pos++;
25 }
26 }
27 };
28 ...
29 max.hmap(SubStringFinderOp(),pos);
30 ...

(b) HTA version

Figure 9: Substring Finder

13

1 ...
2 class tbb parallel task
3 {
4 ...
5 void operator()(const blocked range<size t>& r) const
6 {
7
8 begin=(int)r.begin();
9 end=(int)r.end();

10 Cell cell ;
11
12 for (int i=begin; i<=end; i++)
13 {
14 ∗(m dest+i) = cell.CalculateState(
15 m source−>data,
16 m source−>width,
17 m source−>height,
18 i
19);
20 }
21 }
22 ...
23 };
24 ...
25 for(int counter=1;counter<NSTAGES;counter++)
26 parallel for (blocked range<size t> (begin, end, grainSize),
27 tbb parallel task ());
28 ...

(a) TBB version

1 struct EvolutionOp {
2 void operator() (HTA<int,2> data source,HTA<int,2> data dest) {
3 ...
4 CellHTA cell;
5 size=data dest.shape().size() ;
6
7 for(int i=0;i<size [0]; i++) {
8 for(int j=0;j<size[1]; j++) {
9 data dest[i][j]=cell .CalculateState(data source,(i , j)) ;

10 }
11 }
12 }
13 };
14 ...
15 Overlap<2> ∗ ol= new Overlap<2>(Tuple<2>(1,1),Tuple<2>(1,1),PERIODIC);
16 data= HTA<int,2>::alloc(1,((SIZEX/NTILESX,SIZEY/NTILESY),(NTILESX,NTILESY)),ol,NULL,ROW);
17 ...
18 for(int counter=1;counter<NSTAGES;counter++)
19 data.hmap(EvolutionOp(),data);
20 ...

(b) HTA version

Figure 10: Game of Life

14

another tile. The shadow region is created in lines 15 and 16, the HTA which
represents the board of cells is created with a shadow region of size one in both
positive and negative direction of each dimension of the board. The last argu-
ment of the constructor of the overlap region in line 15, PERIODIC, determines
which values will contain the shadow cells in the edge regions of the board.
PERIODIC means that they contain the value located in the opposite side of
the matrix. For example, the upper cell of position (0, 0) would be (N − 1, 0)
where N − 1 is the size of the first dimension.

The need of an overlapped region in the HTA implementation can be seen
as an special need of the HTA library but it greatly eases the implementation
of another part of the code with respect to the TBB version. The class Cell
is used to model the behavior of an isolated cell of the board. The function
calculateState of the class Cell has to compute the new state for each cell.
In the TBB version, most of the time, the state of cell (i, i) depends on the state
of its neighbors located in positions: (i + 1, i),(i + 1, i),(i, i − 1),(i, i − 1),(i −
1, i−1),(i+1, i+1),(i+1, i−1) and (i−1, i+1). But, as we said before, in the
edge region, the neighbor values must be searched in the opposite side of the
matrix because is handled by means of a series of conditionals that choose the
data to read in each direction from the cell of interest depending on its location.
This complicates the implementation of the calculateState function. But in
the case of the HTA version, as we have shadow regions around each tile as well
as around the whole matrix filled using the PERIODIC criteria, the indexing of
the neighbors can be always be performed using standard HTA indexing. Both
versions of the CalculateState function are included in the A

5 Comparison of TBB and HTA capabilities

Both Hierarchically Tiled Arrays (HTAs) and Threading Building Blocks (TBBs)
are libraries devoted to facilitate the expression of parallelism.

HTAs are a special type of arrays which may be organized into one ore
more levels of tiles. When an operation is applied to this data structure, the
different tiles can be processed concurrently. An interesting characteristic of the
HTA library is that its programming model is useful both in serial or parallel
scenarios. In the serial case, the array notation usually improves readability and
the tiled structure can be used for locality enhancement. More importantly,
HTAs can be equally well executed in both shared and distributed memory
environments although some operations such as dynamic partitioning can be
more costly in the distributed memory environment.

The approach of TBBs is to parallelize loops by specifying tasks using ranges
which will be recursively subdivided. The distribution of the work is performed
automatically by the task scheduler.

Much parallelism found in programs can be expressed as one of these three
types of operations: element-by-element operation, reduction, and scan, already
described in Section 2. The TBB library implements these operations using
parallel for, reduce, and scan operations respectively. The HTA library

15

uses alternatively hmap, reduce, and scan operations, respectively.
The manipulation of HTAs benefits from array-oriented notation. Some

computations can be expressed in a more readable form using this notation
instead of the alternative implementations using nested loops (see Figure 6)
thi argument is supported by the measurement of the number of lines of code
presented in next section. However, the advantage of the array notation goes
beyond the lines of code. Array notation is intrinsically deterministic when only
pure function are used, and should for all practical purposes completely avoid
the possibly of race conditions.

One important feature of the TBB library is the ability to create ad-hoc
ranges which divide the iteration space using special rules. Similar capabilities
are supported in the HTA library by means of dynamic partitioning. One in-
teresting property of the TBBs which could also be implemented for the HTA
library is the ability to subdivide the range to process depending on the number
of available processors. Besides, if one of the processors finishes very soon, the
amount of remaining work in another processor can be recursively divided to
generate a new subrange assigned to the idle processor.

The HTA library can define overlapped regions during the definition of an
HTA. However, programs based on the TBB library have to resort to the use of
padding regions managed by the programmer, or to implement special treatment
for the edge regions of the array, which complicates the programming. An
example of this can be seen in Section 4.1

Some of the facilities implemented in the TBB library are not implemented
by any HTA construct such as software pipeline, some STL-like concurrent con-
tainers, mutual exclusion structures for explicit thread synchronization, support
for atomic operations on primitive data types, and thread-aware timing utilities.
Still, the TBB library can be used in codes which use the HTA library, since
both libraries can be used in the same program.

6 Evaluation

Code Lines (HTA) Lines (TBB) HTA reduction
Average 28 39 +28%
Seismic 304 295 -3%

Parallel merge 70 74 +5.4%
Game of life 97 428 +77%

Substring finder 49 49 0%
Average value 109 177 +26.85

Table 1: Number of lines for the five codes parallelized in the HTA and TBB
version

16

Code HTA TBB
1 2 3 4 8 1 2 3 4 8

Average 490 403 381 260 253 536 193 189 190 196
Seismic 1993 1060 1010 778 503 1500 802 832 670 483

Parallel merge 8783 4704 4591 4665 3365 11823 5543 5144 3968 3793
Game of life 18761 9357 6785 5193 3915 63304 32491 22546 17740 12763

Substring finder 6180 3130 2350 1570 810 6413 3200 2130 1605 810

Table 2: Times, measured in milliseconds, for both the TBB and HTA versions
using 1,2,3,4 and 8 processors respectively

The measurement of the impact of a library on the ease of programming is
difficult to quantify. There is no formula to calculate exactly the readability of a
program although experienced programmers can usually easy determine which
implementation and notation are easier for development and maintenance. We
have chosen the source lines of code as an objective method to compare the
implementation of the algorithms using the TBB and HTA libraries. This metric
counts all the source lines in the code ignoring the comments and empty lines.
This metric has been measured for the five algorithms covered by this work
for both the TBB and HTA version in Table 1. The fourth column stands
for the percentage decrease of the source number of lines of code. As can
be seen from the table, in some cases HTA codes are sinificantly shorter that
the corresponding TBB codes and never meaningfully larger. This supports
our claim that HTAs provide typically an easier implementation and better
readability than the TBB library without extensions. The codes used in this
comparison are those introduced in Section 4.

Table 2 shows the times in milliseconds for the execution of both the HTA
and TBB versions of the codes. The machine used for the tests had two Quad
core 2.66 Ghz Xeon processors. The experiments were run using 1,2,3,4 and 8
of the processors available on this machine. For each case, the average time of 5
different executions is shown. The results show that the average times obtained
using the TBB version of the code is slightly lower for the Seismic code. In
this code there much computation devoted to adapt the HTA structures layout
involved to the code to its special requirements, however, this is solved more
efficiently in the TBB version. However, the execution of the HTA version per-
formance improves in the case of the Average, Substring Finder, Parallel Merge
and Game of Life. It seems that the dynamic partitioning is a more efficient way
to express the Parallel Merge code than the ad-hoc TBB Ranges. The Game of
Life HTA version is better because this code takes a great advantage of using
an overlapped region with PERIODIC boundaries, which allows it to remove a
costly case statement in the main core of the computation. Another reason
why the HTA version is faster is the statical partitioning of task before the par-
allel work begins (except in Parallel Merge), while the TBB version cannot do
this; it is forced to do the partitioning dynamically only once the parallel task
execution has been requested, and each time the execution is requested. One

17

can observe that both approaches take advantage of an increasing number of
cores. The times for the sequential versions of the codes are not shown since the
serial implementation of some of them was not available in the TBB repository
of codes. However, both the TBB and HTA versions of the codes obtain big
speedups with respect to the serial implementations available. For example both
the HTA and TBB parallel versions of the Substring finder code ran ≈ 8 times
faster than the serial version using the 8 processors available in the machine.

7 Conclusions

We have compared Intel TBBs and HTAs, two libraries devoted to facilitating
the programming of multicore machines. For this purpose several algorithms
were implemented using both libraries. The evaluation shows that the HTAs
codes are usually shorter than the TBB ones. This is because array notation of
some computations simplifies TBB codes with loops and conditional statements,
dynamic partitioning is easier to use than ad-hoc TBB Ranges and overlapped
regions avoids the programmer managing of padding regions. The performance
results shows that the times obtained for the HTA version are smaller or slightly
bigger than those obtained with the TBB one. Dynamic partitioning seems to
be more efficient than ad-hoc TBB Ranges and sometimes we can take a big
performance improving of using the HTA overlapped regions feature, like in the
case of the Game of Life code.

These two libraries can coexist in the same program. The HTA library seems
a more natural way to express data-parallelism which arises frequently in real
programs, while the TBB offers more flexibility and can be used to solve other
situations for which HTAs may not be suitable.

The study reported in this paper showed the convenience of enabling the
repartitioning of HTAs dynamically according to the number of idle processors
in a similar way to the behavior of ranges in the TBB library.

References

[1] Ganesh Bikshandi, Jia Guo, Dan Hoeflinger, Gheorghe Almasi, Basilio B.
Fraguela, Maŕıa J. Garzarán, David Padua, and Christoph von Praun. Pro-
gramming for parallelism and locality with hierarchically tiled arrays. In
Proc. of the ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming (PPoPP’06), pages 48–57, 2006.

[2] Ganesh Bikshandi, Jia Guo, Christoph von Praun, Gabriel Tanase, Basilio B.
Fraguela, Maŕıa J. Garzarán, David Padua, and Lawrence Rauchwerger.
Design and use of htalib - a library for hierarchically tiled arrays. In Proc.
of the Intl. Workshop on Languages and Compilers for Parallel Computing,
2006.

18

[3] David R. Butenhof. Programming with POSIX Threads. Addison Wesley,
1997.

[4] Robit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDon-
ald, and Ramesh Menon. Parallel programming in OpenMP. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2001.

[5] James Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-
core Processor Parallelism. O’Reilly, 1 edition, July 2007.

19

A CalculateState function of the Game of Life
code

A.1 TBB version

char Cell::GetAdjacentCellState(
char∗ source, // pointer to source data —
block
int x, // logical width of —
field
int y, // logical height of —
field
int cellNumber, // number of cell position to —
examine
cellPosition cp // which adjacent position

)
{

char cellState = 0; // return value

// set up boundary flags to trigger field−wrap logic
bool onTopRow = false;
bool onBottomRow = false;
bool onLeftColumn = false;
bool onRightColumn = false;

// check to see if cell is on top row
if (cellNumber < x)
{

onTopRow = true;
}

// check to see if cell is on bottom row
if ((x∗y)−cellNumber <= x)
{

onBottomRow = true;
}

// check to see if cell is on left column
if (cellNumber%x == 0)
{

onLeftColumn = true;
}

// check to see if cell is on right column
if ((cellNumber+1)%x == 0)
{

onRightColumn = true;
}

switch (cp)
{

case upperLeft:
if (onTopRow && onLeftColumn)
{

return ∗(source+((x∗y)−1));
}
if (onTopRow && !onLeftColumn)
{

return ∗(source+(((x∗y)−x)+(cellNumber−1)));
}
if (onLeftColumn && !onTopRow)
{

return ∗(source+(cellNumber−1));
}
return ∗((source+cellNumber)−(x+1));
break;

case upper:
if (onTopRow)
{

return ∗(source+(((x∗y)−x)+cellNumber));
}
return ∗((source+cellNumber)−x);
break;

...
// code for upperRight, left , right , bottomLeft and bottomRight cases
...

return cellState ;
}

char Cell::CalculateState (char∗ source, // pointer to source data block
int x, // logical width of field
int y, // logical height of field

20

int cellNumber // number of cell position to examine
)
{

char total = 0;

total += GetAdjacentCellState(source, x, y, cellNumber, upperLeft);
total += GetAdjacentCellState(source, x, y, cellNumber, upper);
total += GetAdjacentCellState(source, x, y, cellNumber, upperRight);
total += GetAdjacentCellState(source, x, y, cellNumber, right);
total += GetAdjacentCellState(source, x, y, cellNumber, lowerRight);
total += GetAdjacentCellState(source, x, y, cellNumber, lower);
total += GetAdjacentCellState(source, x, y, cellNumber, lowerLeft);
total += GetAdjacentCellState(source, x, y, cellNumber, left);

// if the number of adjacent live cells is < 2 or > 3, the result is a dead
// cell regardless of its current state . (A live cell dies of loneliness if it
// has less than 2 neighbors, and of overcrowding if it has more than 3; a new
// cell is born in an empty spot only if it has exactly 3 neighbors.
if (total < 2 || total > 3)
{

return 0;
}

// if we get here and the cell position holds a living cell , it stays alive
if (∗(source+cellNumber))
{

return 1;
}

// we have an empty position. If there are only 2 neighbors, the position stays
// empty.
if (total == 2)
{

return 0;
}

// we have an empty position and exactly 3 neighbors. A cell is born.
return 1;

}

21

A.2 HTA version

int CalculateState(HTA<int,2> data, // pointer to source data block
Tuple<2> cellCoordinates // coordinates of cell position to examine

)
{

int total = 0;

total += data[Tuple<2>(cellCoordinates[0]−1,cellCoordinates[1]−1)];
total += data[Tuple<2>(cellCoordinates[0],cellCoordinates[1]−1)];
total += data[Tuple<2>(cellCoordinates[0]+1,cellCoordinates[1]−1)];
total += data[Tuple<2>(cellCoordinates[0]+1,cellCoordinates[1])];
total += data[Tuple<2>(cellCoordinates[0]+1,cellCoordinates[1]+1)];
total += data[Tuple<2>(cellCoordinates[0],cellCoordinates[1]+1)];
total += data[Tuple<2>(cellCoordinates[0]−1,cellCoordinates[1]+1)];
total += data[Tuple<2>(cellCoordinates[0]−1,cellCoordinates[1])];

// if the number of adjacent live cells is < 2 or > 3, the result is a dead
// cell regardless of its current state . (A live cell dies of loneliness if it
// has less than 2 neighbors, and of overcrowding if it has more than 3; a new
// cell is born in an empty spot only if it has exactly 3 neighbors.
if (total < 2 || total > 3)
{

return 0;
}

// if we get here and the cell position holds a living cell , it stays alive
if (data[cellCoordinates])
{

return 1;
}

// we have an empty position. If there are only 2 neighbors, the position stays
// empty.
if (total == 2)
{

return 0;
}

// we have an empty position and exactly 3 neighbors. A cell is born.
return 1;

}

22

