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Abstract

Object oriented languages can be easily extended with new data types, which facilitate prototyping new
language extensions. A very challenging problem is the development of data types encapsulating data parallel
operations, which could improve parallel programming productivity. However, the use of class libraries to
implement data types, particularly when they encapsulate parallelism, comes at the expense of performance
overhead.

This paper describes our experience with the implementation of a C++ data type called Hierarchically
Tiled Array (HTA). This object includes data parallel operations and allows the manipulation of tiles to
facilitate developing efficient parallel codes and codes with high degree of locality. The initial performance
of the HTA programs we wrote was lower than that of their conventional MPI-based counterparts. The
overhead was due to factors such as the creation of temporary HTAs and the inability of the compiler
to properly inline index computations, among others. We describe the performance problems and the
optimizations applied to overcome them as well as their impact on programmability. After the optimization
process, our HTA-based implementations run only slightly slower than the MPI-based codes while having
much better programmability metrics.

Keywords: Parallel programming, optimization, programmability, libraries, data-parallel, tiling, locality,
runtime overheads

1. Introduction

Parallelism can be introduced with new languages, language extensions, compiler directives or libraries.
The main benefit of using libraries instead of compilers is that libraries are typically easier to implement and
port. Their main drawbacks are verbosity and their potential performance overhead. Much of the verbosity
can be avoided if the libraries are implemented in object oriented languages with polymorphism and operator
overloading. Measuring, characterizing and proposing techniques to mitigate this overhead is an essential
task to explore the usage of libraries as a vehicle for bringing parallelism into applications. In this paper we
discuss our efforts to address the overhead of the initial implementation in C++ of the Hierarchically Tiled
Array (HTA) [1, 2], a class that allows direct control of locality and parallelism by means of tiles. HTAs
have three important features that facilitate parallel programming (1) they provide a single-threaded view
of the parallel execution by following a data-parallel approach (2) present the programmer with a global
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Figure 2: Pictorial view of a hierarchically tiled array.

view of distributed data and (3) they serve as a common mechanism to represent parallel operations across
classes of parallel machines: shared-memory multiprocessors, multicomputers, and SIMD processors. While
the impact of HTAs to ease parallel programming has been discussed in previous publications, a study of
performance and the techniques needed to improve it as well as their impact on programmability is presented
for the first time in this paper.

The rest of this paper is organized as follows. Section 2 introduces HTAs. Then, Section 3 discusses
implementation details of the class, including the optimizations that could be implemented in it and which are
completely transparent to the programmer. Section 4 discusses the optimizations that the programmer has
to manually apply in the programs to achieve high performance. The applications used for the evaluation
(NAS benchmarks [3]) and the results obtained are discussed in Section 5, followed by related work in
Section 6. Finally Section 7 presents our conclusions.

2. Hierarchically Tiled Arrays

This Section outlines the semantics of the Hierarchically Tiled Arrays (HTA) (Section 2.1), their con-
struction (Section 2.2), access mechanisms (Section 2.3), assignment statements and binary operations (Sec-
tion 2.4) and HTA methods (Section 2.5). HTA usage is also illustrated with small codes in Section 2.6.
More details can be found in [1, 4, 2]. We use a MATLAB-like syntax.

2.1. Semantics
Hierarchically tiled arrays (HTAs) are arrays partitioned into tiles. These tiles can be either conventional

arrays or lower level hierarchically tiled arrays. Tiles can be distributed across processors in a distributed-
memory machine or be stored in a single machine according to a user specified layout. In distributed-memory
machines the outermost tiles are often distributed across processors for parallelism and the inner tiles are
used to improve locality within a processor. Figure 2-(a) shows an example HTA with two levels of tiling.

2.2. Construction of HTAs
HTAs are typically created by providing the number of tiles per dimension, and the size of each tile.

Figure 1-(a) defines a 3 × 3 HTA H with tiles of size 2 × 2. In general, one can create an HTA with l
levels of tiling, using the HTA constructor H = hta({[s0, s1, . . . , sd−1]0, . . . , [s0, s1, . . . , sd−1]l}), where d is
the number of dimensions of the HTA, and each argument i, where i ∈ {0..l} specifies the dimensions of the
HTAs at level i.

The tiles of an HTA can be local or distributed across processors. To map tiles to processors, the
topology of the mesh of processors and the type of distribution (block, cyclic, block cyclic, or a user-defined
distribution) must be provided. Figure 1-(b) shows an example where a 6 × 6 matrix is distributed on a
2 × 2 mesh of processors. The last parameter of the HTA constructor specifies the processor topology. In
the current implementation, the default distribution is block cyclic.
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V{2:3,:}(1,:)=
V{1:2,:}(n,:)

Figure 3: Assignment of the elements in the last row of the tiles in rows 1:2 to the first row in the tiles in the rows 2:3

2.3. Accessing the Components of an HTA
Figure 2-(b) shows examples of how to access HTA components. The expression C{2,1} refers to the

lower left tile. The scalar element in the fifth row and fourth column can be referenced as C(5,4) just as
if C were an unpartitioned array. This element can also be accessed by selecting the bottom-level tile that
contains it and its relative position within this tile: C{2,1}{1,2}(1,2). A third expression representing
C(5,4) selects the top-level tile C{2,1} that contains the element and then flattens or disregards its internal
tiled structure: C{2,1}(1,4). Flattening is particularly useful when transforming a sequential program
onto a tiled form for locality/parallelism or both. During the intermediate steps of the transformation, some
regions of the program can remain unmodified because conventional array accesses always have the same
semantics even when the array has been transformed into HTA.

In any kind of indexing, a range of components may be chosen in each dimension using triplets of the
form begin:step:end, where begin, step and end are optional. The default values when none is provided are
the first element for begin, 1 for step, and the last element for end. Also, the : notation can be used in any
index to refer to the whole range of possible values for that index. For example, C{2,:}(1:2:4,:) refers
to the the odd rows of the two lower outer-level tiles of C.

2.4. Assignments and Binary Operations
HTAs generalize the notion of conformability of Fortran 90. When two HTAs are used in an expression,

they must be conformable. Specifically, they are conformable if they have the same topology (number of
levels and shape of each level), and the corresponding tiles in the topology must have sizes that allow to
operate them. The operation is executed tile by tile, and the output HTA has the same topology as the
operands.

Also, an HTA can be conformable to an untiled array and it is always conformable to a scalar. In the
first case, the array must be conformable with each one of the innermost tiles of the HTA. When an untiled
array is operated with an HTA, each leaf tile of the HTA is operated with the array. Also, when one of the
operands is a scalar, it is operated with each scalar component of the HTA. Again, the output HTA has the
same topology as the input HTA.

Assignments to HTAs are governed by the same rules of binary operators. When a scalar is assigned to
a range of positions within an HTA, the scalar is replicated in all of them. When an array is assigned to a
range of tiles of an HTA, the array is replicated to create tiles. Finally, an HTA can be assigned to another
HTA (or a range of tiles of it).

In a distributed memory machine references to local HTAs do not involve communication. However,
distributed HTAs have their outer tiles distributed on a mesh of processors and assignments between tiles
which are in different processors involve communication. Consider a distributed HTA V of 3 × 3 tiles of
n× n elements. The assignment V{2:3,:}(1,:) = V{1:2,:}(n,:) copies all the elements in the last row
of the rows 1:2 of tiles to the first row in the rows 2:3 of tiles as shown in Figure 3. When the tiles of V are
distributed across processors, this assignment involves communication.

2.5. Methods
Table 1 lists the main HTA operations, categorized as point-wise, collective, higher-order or dynamic

partitioning. The point-wise operations include the standard arithmetic operations, such as addition, that
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Table 1: Summary of HTA operations.

Class Type Shape of output Input Operator (if any)

Unary shape is unchanged nil
point-wise Binary depends on the inputs nil

Assignment shape is unchanged nil
permute permuted shape of the input HTA permutation of the dimensions
dpermute shape is unchanged permutation of the dimensions

collective transpose transposed 2D input HTA nil
htranspose output tile {i}{j} ⇐ input tile {j}{i} nil

repmat depends on the dimension replications per dimension
reduce depends on the dimension and level associative operation and dimension

higher-order scan depends on the dimension and level associative operation and dimension
hmap shape is unchanged any scalar, array or HTA operation

dynamic part change tiling structure partition and offset
partitioning rmPart change tiling structure partition

affect each of the scalar values of an HTA, but are applied at the tile level when applied to an HTA. Point-wise
operators are classified as unary or binary, based on the number of arguments; assignment operations also
belong to this category. These operations need to follow the conformability rules that have been described
in the previous Section.

Collective operations are those that do not change the values of the scalar elements of the HTA, but their
positions in the HTA. Thus, the output HTA of these operations often does not have the same structure
as the input HTA. This is the case of the methods that permute or transpose the elements in an HTA.
For example, Figure 4 illustrates the difference between methods permute and dpermute. While the former
permutes the dimensions of an HTA at every tiling level, exchanging the dimensions specified as input,
dpermute permutes only the data in an HTA, without changing the tiling structure. dpermute achieves this
by working on an HTA with N top level tiles that are subtiled in N two-level tiles (N = 2 in Figure 4)
and copying a permuted version of tile {i}{j} of its input HTA to tile {j}{i} of the output. Another
example of collective method is repmat, which replicates the tiles of an HTA. For the repmat method the
programmer provides as input a vector with as many elements as dimensions the HTA has, where the i-th
element indicates the number of replicas of the HTA for the i-th dimension.

Higher order operators are parametrized with primitive operators and define the strategy and result
format resulting from the application of their input operator to the tiles or scalar values of an HTA or of
several HTAs in the case of hmap. This way, reduce is a generalized reduction method that operates on HTA
tiles, where the user needs to specify the reduction operation, an associative operation such as addition. For
HTAs with more than one dimension, the programmer can specify optional parameters such as along which
dimension the reduction needs to be performed. By default the reduction is performed all the way to the
scalar level, but the programmer can use an optional parameter to indicate the level where the recursion
level of the reduction needs to stop. The scan method computes the reductions of all the prefixes of an
HTA, and uses similar parameters to reduce. Finally, hmap applies in parallel the same function to each
tile of an HTA, or to the corresponding tiles of different HTAs when it is applied to more than one HTA.

Another feature of HTAs is dynamic partitioning [2], that can be used to modify the HTA tiling structure
on the fly. Dynamic partitioning is based on partition lines, the lines that separate tiles in an HTA. These
lines are numbered starting with 0 in each dimension, with line 0 being the one that implicitly exists before

R=H.dpermute([2,1])
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Figure 4: HTA permute versus dpermute
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Y.hmap(fft,1);

X=hta({[1,1,nprocs],

[1,1,nprocs]);
[s1,s2,s3/nprocs]},

Figure 5: FT benchmark kernel

A = hta({[m, n], [s1/m, s2/n]}, [m, n]);

V = hta({[1, n], [1, s2/n]}, [m, n]);

B = V.repmat(m, 1);

B.hmap(transpose);

C = A * B;

C = C.reduce(plus-operator, 2, true);

Figure 6: Matrix-vector multiplication example

the first element in a dimension. A partition is a set of partition lines with 0 or 1 lines per dimension. It is
represented by a tuple that for each dimension contains a partition line number or the special value NONE
when there is no partition line for a given dimension. We provide the methods part operation to add a
partition and rmPart to remove a partition.

Although the next section contains several examples illustrating the usage of HTAs, the reader can refer
to [5] for a more detailed explanation of the HTA operations, including syntax and examples. Dynamic
partitioning is described in [2, 6].

2.6. Examples of usage
NAS benchmark FT operates on a 3-D array that is partitioned into tiles which are distributed along the

third dimension, as shown in Figure 5-(a). To compute the Fourier Transform (FT) of a 3-D array, FT needs
to be applied along each of the dimensions. However, to perform the FT along the third dimension the blocks
from the distributed dimension need to be brought from the distributed dimension to an undistributed one,
so that FT can be locally applied. Figure 5-(b) shows an outline of the NAS FT code using HTAs. The
FT is applied along the first and the second dimension of an HTA using the hmap operator, which applies in
parallel function fft to all the tiles of the HTA X. To apply the FT along the third dimension, we use the
dpermute operator to make the third dimension local to a processor.

The second example is the matrix-vector multiplication in Figure 6. This computation is the core of the
NAS benchmark CG. HTA A is made up of m×n tiles (of s1/m×s2/n elements each) distributed on a mesh
of m×n processors. HTA V contains the vector for the product, distributed in blocks of s2/n elements only
on the first row of processors of the mesh, as it has a single row of tiles. HTA B is obtained by replicating
V m times in the dimension of the rows as specified by the operator repmat to create a copy on each row of
processors. The matrix-vector multiplication C = A * B takes place locally, that is, each processor multiplies
its portion of the matrix A by its portion of the vector in B. Notice that each row tile of B has been first
transposed within each processor into a column by hmap(transpose). After the multiplication, a reduction
along the second dimension of C (i.e. adding the portions of C in the same row of processors), as specified in
the second parameter of reduce, generates the final result. HTA C is a column vector distributed across the
m rows of our m× n mesh and replicated along its n columns of processors. The reason for this replication
is that the usage of true as last parameter for reduce requests an all-to-all reduction.

Finally, Figure 7 applies dynamic partitioning to merge two HTAs in1 and in2 containing a sequence of
sorted values into a single sorted sequence in HTA out. The three HTAs are unidimensional and initially
have a single tile. If in1 is larger than threshold GRAINSIZE the HTAs are partitioned into two tiles, so that
the merging of the first tiles of in1 and in2 can proceed in parallel with the merging of the second tiles.
Otherwise, the operation is performed sequentially. After determining where to partition in1 and in2, HTA
out is also partitioned to accommodate the result of the merge of the corresponding input tiles. The part
method receives as parameters a partition ([0] in this case) and an offset from that partition where the new
partition should be created. Function hmap applies a functor in parallel to the corresponding tiles of a set
of HTAs. In our case, it generates two parallel invocations of the PMerge function: one on out(1), in1(1)
and in2(1); and another one on out(2), in1(2) and in2(2). Both can run in different threads in a shared
memory multiprocessor/multicore, while communication of tiles would be needed in a distributed memory
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void PMerge (HTA out, HTA in1, HTA in2) {

int in1_size = in1.size(0);

if (in1_size > GRAINSIZE) { /* parallel merge */

int midpos_in1 = in1_size / 2 ;

int cutpos_in2 = in2.lowerBoundPos(in1[midpos_in1]);

in1.part( [0], [midpos_in1] );

in2.part( [0], [cutpos_in2] );

out.part( [0], [midpos_in1 + cutpos_in2] );

hmap(PMerge, out, in1, in2);

in1.rmPart();

in2.rmPart();

out.rmPart();

} else { /* sequential merge */ }

}

hmap(PMerge, out, in1, in2);

Figure 7: Parallel merge using HTA dynamic partitioning

environment. Function hmap returns when both parallel merges have finished. Then the partitions are
removed from the HTAs with method rmPart, which can be invoked with a tuple identifying the partition
to be removed or without arguments, in which case all the partitions are removed.

3. Library Implementation

The C++ implementation of the HTA class is a library with ∼18000 lines of code, excluding comments
and empty lines. It only contains header files, as most classes in the library are C++ templates to achieve
generality in the data types of tiles and to enable compile-time polymorphism [7]. The library has been
designed in a modular way to allow flexibility in the choice of the underlying communication and threading
mechanisms. There are a series of classes implementing abstract functionalities on the data type, some of
which must be specialized to enable execution on an specific runtime and communication system. The stable
implementation has sequential, multi-threaded (SMP) and distributed runtime systems, the two latter ones
being implemented on top of Intel Threading Building Blocks [8] and MPI [9], respectively. The runtime
system is selected at compile time by means of a user-defined constant. Programs that use the HTA library
do not need to be modified when using a different runtime system or machine class [10].

In this paper, we focus on the experimental results obtained when using the MPI-based runtime system,
although many of the issues affect all of them. For the MPI-based one the execution model chosen is the
Thread Private or Single Program Multiple Data (SPMD). Shared data such as scalars, arrays and non-
distributed HTAs are replicated across all processors. Information about distributed HTAs is created in
all the processors, so that they all know the structure of the HTAs. However, processors only store the
data of the tiles in the distributed HTAs that they own. Every processor executes the whole program.
When operating on distributed HTAs, each processor applies locally the operation on the tiles of the HTA it
owns. In this case explicit synchronization between processors is not necessary. Our run time library uses a
two-sided communication model where the synchronization is always implicit because communication takes
place from the producer to the consumer, so an eager consumer always has to wait for a delayed producer
to send the data before it can proceed with the computation. Thus, it is not necessary to synchronize the
processors before or after a parallel computation; synchronization will take place on demand when data
from other processor is needed. With this execution model it is possible to execute two or more statements
concurrently, without affecting the sequential deterministic semantics. Consider the example below where
H is the HTA of Figure 1 distributed using block-cyclic distribution, as shown in Figure 1. Thus, tiles 1,1,
1,2, 2,1 and 2,2 are owned by processors 1, 2, 3 and 4 respectively, and mtrx1 and mtrx2 are two matrices.

(1) H{1:2, 1} = mtrx1;

(2) H{1:2, 2} = mtrx2;
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hmap(assign−operator,  D,  tmpHTA2)                  /* D = tmpHTA2 */

for i=1 to n

tmpHTA1[i] = B[i] + C[i]

for i=1 to n

tmpHTA2[i] = A[i] + tmpHTA1[i]

for i=1 to n

D[i] = tmpHTA2[i]

{
{
{

(a) (b)

hmap(plus−operator,  tmpHTA1,  B,  C)                /* tmpHTA1 = B + C */

hmap(plus−operator,  tmpHTA2,  A,  tmpHTA1)  /* tmpHTA2 = A + tmpHTA1 */

Figure 8: Evaluation of HTA expression D=A+B+C without optimizations

All the processors try to execute statement (1) but since only processors 1 and 2 own the tiles involved
in this assignment, processors 3 and 4 can skip it and proceed to execute statement 2, while processors 1
and 2 perform the assignment. In this second statement, processors 3 and 4 are the ones that will perform
the assignment. Thus, in this case, statement 1 and 2 execute concurrently on different processors.

The rest of this section describes some of the potential overheads in a library implementation for the HTA
and discusses the approach taken to optimize the library and reduce these overheads in a way transparent
to the user. That is, the optimizations described next are provided automatically by our library to any HTA
program, requiring no effort from the programmer.

3.1. Avoidance of creation of temporary HTAs in the library
In expressions operating with HTAs such as D=A+B+C a function call is performed on each overloaded

arithmetic operation (that returns a temporary HTA) and assignment operation. The reason is that HTA
is a C++ class and ”+” is just a method. Thus, the previous expression represents three function calls
to the hmap function, as seen in Figure 8(a). The hmap operator applies the function specified in the first
parameter to the input HTAs. Thus, the expression D=A+B+C is in effect implemented as the three loops in
Figure 8(b), where the reference x{i} stands for a complete tile. Unfortunately, this implementation can
degrade performance significantly due to the overheads of creating temporary HTAs, the loop overheads and
the additional cache and TLB misses.

This problem can be solved by using expression templates [11] delaying the evaluation of the right hand
side of the expression until the target of the assignment is determined. This way, the three previous loops are
fused in a single loop D{i} = A{i}+B{i}+C{i}. Our current implementation only addresses the case where
there are two operands on the right hand side. The reason is that this design point maximizes the balance
between the performance improvement achieved and the complexity introduced in the library. Thus, C=A+B
is fully optimized, but the example above with three operands results in two loops, one that adds B and C
in a temporary, and another one that adds A and the temporary HTA into D. When necessary, the user can
avoid manually the overheads due to temporaries using the solution presented in Section 4.1.

We have also used expression templates to eliminate temporaries in other situations, such as assignments
of the kind B=OP(A). The execution of OP is delayed until the point of the assignment. Then the result is
generated directly in the destination instead of in a temporary HTA which is to be copied to the destination.

Another case when temporary HTAs could appear is when indexing some tiles of an already existing
HTA. To avoid them, this library does not create deep copies of the data; instead it creates structures and
masks that point to the original data.

3.2. Reuse of dead HTAs
The cost of creating new HTAs is high. Thus, our library tries to reuse previously created HTAs when a

new HTA is necessary. Our implementation contains a pool of HTAs that went out of scope, i.e., which are
no longer in use. An HTA from this pool is recycled when it is conformable (has same dimensions and size
in each dimension) with the one that needs to be created. The size of the pool can be adjusted dynamically
as memory becomes available. It can also release the space of those HTAs that are found not to be used
frequently.
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3.3. HPF-like optimizations
Tile ownership must be examined by each parallel processor or thread to (a) determine which tiles it

is responsible for and thus operate on them (owner’s compute rule) and (b) know with which processor to
communicate in distributed memory environments. This test process is more costly the more tiles the HTA
has, particularly because the initial implementation used an array to map each tile to its owner. To reduce
overheads, we first moved to the usage of symbolic formulae for the canonical distributions such as cyclic or
block cyclic. These canonical mappings suffice for all the applications we studied. Our second improvement
was to add a vector to the representation of the HTA in each processor that stores the indexes of the owned
tiles. This vector is used by operations that only work on local tiles, such as hmap, in order to iterate directly
only on those tiles instead of inspecting the ownership of every tile.

4. User Level Optimizations

The optimizations applied inside the library play a very important role in its performance. However, they
are insufficient for the HTA version of the NAS benchmarks to perform as well as their FORTRAN+MPI
counterpart. Below we describe some of the optimizations that the programmer has to apply when writing
the applications including an estimation of their programmability cost in SLOCs (Source Lines Of Code).

4.1. Avoidance of creation of temporaries in the user code
4.1.1. Temporaries resulting from intermediate computations

As discussed in Section 3.1, our library automatically eliminates temporaries in operations with up to
two operands on the right hand side. For those cases where more than two operands are required, we used
the hmap function described in Section 2.5. This way, our example D=A+B+C is actually written as hmap (f,
D, A, B, C), where f is a function or C++ functor that in each invocation receives as input a corresponding
tile of its input HTAs and performs the computation with a loop, avoiding the generation of temporaries.
A typical implementation looks like

function f(HTA D, HTA A, HTA B, HTA C) {

for i=1 to size(D)

D(i) = A(i) + B(i) + C(i);

}

As we see this technique requires that the output HTA is built in advance, which implies that the user
must be able to infer its dimensions and tiling. Also, due to the semantics of hmap, the computation must be
applicable at tile level, on the corresponding tiles of the input HTAs, and it must not involve communications.

This optimization is very important for scientific codes, as expressions with multiple operators appear in
many computations. This way, other libraries [12, 13] that provide array-based expressions have also had to
cope with this problem, usually resorting to expression templates [11]. Still, this technique introduces other
problems, like obfuscating the code presented to the compiler, and thus potentially missing optimization
opportunities [14]. For this reason these libraries add special classes, like stencils, which optimize typical
computational patterns inside the library. We have preferred a more general solution which allows the user
to perform further optimizations that will be discussed in Section 4.2.

Compilers for array-based languages have to deal with this problem too, as intermediate arrays are
introduced both at the source level and during the compilation process. Most compilers have addressed
the problem by scalarizing [15] the array language before performing loop fusion, which requires additional
considerations in distributed-memory environments [16], followed by the removal of unneeded temporary
arrays through array contraction [17]. Some compilers [18] perform array-level analysis to determine the best
scalarization and fusion strategy for the purpose of array contraction before applying any transformation.
Either way, one of the reasons why the compiler may fail is the presence of array-valued functions that are
not inlined, thus inhibiting loop fusion [19]. As Section 3 explains, the HTA library is composed only of
headers, and in our codes all the user defined functions were fully specified in header files, thus nothing
precludes inlining.
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for(i=0; i < N; i++) {

a = b + c; /* builds a */

/* use temporary a*/

}

optimize
=⇒

a = hta(/*size like b and c*/);

for(i=0; i < N; i++) {

a = b + c;

/* use temporary a*/

}

Figure 9: Avoidance of creation and destruction overheads by building temporary HTAs in outer scopes

The programming overhead for this optimization on D-dimensional HTAs are two lines for the header
and closing curly bracket of the function to apply, D lines for the for loops that control the indexing of the
D dimensions involved in the operation, and the line with the hmap invocation. Sometimes D additional
lines are needed to extract the sizes of the loops. In other situations these sizes can be obtained directly
from global variables in the loop statements.

The lambda functions approved in the recent C++0x standard, which are already available in many com-
pilers, instead of the traditional functions, permit an even more succinct syntax to express this optimization.
It is also important to notice that this optimization is seldom used isolatedly for a single assignment. That
is, the function used in an hmap invocation often includes several loop nests associated to consecutive oper-
ations on the corresponding local tiles of the input HTAs. This allows to reuse the function definition and
the sizes extracted for several operations in sequence, thereby diminishing considerably the programming
effort required by the optimization.

4.1.2. Avoid the construction and destruction of temporary HTAs
As with regular arrays, the programmer can reduce the memory requirements of an application using

only the minimum number of HTAs in the algorithm. In addition, building and destroying them as seldom as
possible also helps to increase performance. A typical example of this would be building a temporary HTA
used inside each iteration of a loop before a loop, rather than creating and destroying it in each iteration.
The optimization in Section 3.2 often reduces this overhead, but the number of HTAs in use could be larger
than the pool size, making it ineffective, and even if that is not the case, some time is needed to verify the
conformability of the requested HTA with one of the HTAs in the pool. The optimization proposed here
requires a single line for building the temporary HTA in an outer scope, as the example in Figure 9 shows,
and it only requires identifying the HTA as a temporary which is repetitively built and destroyed with the
same dimensions and structure.

4.1.3. Using the storage of dead HTAs for other purposes
The situation when an HTA goes out of scope can be detected by the library, as described in Section 3.2.

However, knowing in advance that the contents of an HTA are not going to be used in the future requires
user information. We have noticed that this knowledge is specially useful in the implementation of HTA
primitive operations that involve communication such as transpose or permute (explained in Section 2.5)
that require the internal use of intermediate buffers for the communication and copy of data. If the input
HTA to these functions is known to be dead, its storage can be used to provide these buffers. Thus, we
have extended these functions so that the programmer can provide this information through an additional
boolean parameter, which informs whether the input HTA can be used as internal buffer or not. For
example, if the contents of HTA X are no longer needed after the execution of the code in Figure 5(b),
the permutation operation can be written as Y=X.dpermute([3,2,1], true). This overwrites the contents
of X with temporary data instead of using additional buffers for the communications, resulting in memory
savings and performance improvement. Of course, the programmer can still use the basic implementation
of these primitive operations where this information is not provided, forcing to allocate and deallocate the
temporary. This technique just involves specifying a boolean flag in the interface of some function, therefore
its overhead is 0 SLOC.

4.2. Aggressive inlining and simplification of HTA operations
This optimization is particularly important for the indexing operations. This problem is similar to that

of optimizing the computation of the address from a typical array index, with the difference that computing
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function f(HTA D, HTA A, HTA B, HTA C) {

pd = .. // pointer to the beginning of D

pa = .. // pointer to the beginning of A

pb = .. // pointer to the beginning of B

pc = .. // pointer to the beginning of C

N = size(D)

sd = stride(D)

sa = stride(A)

sb = stride(B)

sc = stride(C)

for i=1 to N

pd[sd * i] = pa[sa * i] + pb[sb * i] + pc[sc * i]

}

Figure 10: Implementation of functions requiring index computation to avoid overheads

the address from the index space of HTAs is more complicated.
We typically wrote assignment operations using the array notation, as shown in the example in Figure 3.

As explained in Section 4.1.1, computations such as D = A + B + C were written using hmap and a function
that iterates on the elements of each tile performing the corresponding computation in order to avoid the
creation of temporaries. This function uses the HTA operator () in order to access each individual scalar
element of a tile. This is expensive since the operator has to retrieve in each invocation the pointer to
the data stored in the HTA and the data about the mapping of the raw data on memory, perform the
computation, and return the desired element. An aggressive compiler could be able to inline the code of
this method in the different invocations in the main loop of the function, perform common subexpression
elimination, and move out of the loop the retrieval of the internal structure of the HTA the computations
use. Unfortunately none of the compilers we tried were able to do this, so we had to write our functions
applying this process manually, as Figure 10 shows with an optimized version of the function f used in
Section 4.1.1.

Another solution, used by other libraries that suffer this problem, is to detect common situations (e.g.
that all the arrays in the expression have a unit stride in every dimension), and use code optimized for these
cases inside the library [13]. This alternative is elegant, but not general, and it can lead to missing several
optimizations that the library cannot apply on its own and that the compiler cannot detect because of the
code obfuscation involved [14].

This technique is very mechanical, as it consists in applying inlining manually, so the only knowledge
needed is the interface for the functions that supply the data involved, which we discuss now. Namely, for
each D-dimensional HTA whose indexing is going to be inlined and simplified, this optimization requires
D + 2 SLOCs in general. One line would get the pointer to the raw data; another one would retrieve the
object that holds the information on the mapping of the tile elements on memory, and D lines would be
required to store in different variables the stride for each dimension. In practice the stride for the least
significant dimension is almost never retrieved because it is known to be 1. Also, while the example in
Figure 10 is a very generic code in which each HTA used may require different strides for its indexing,
the most common situation by far is that the HTAs that are processed together have the same sizes, and
therefore access strides. This way, the optimization requires D+2 lines (normally D+1, dismissing the least
significant dimension) only for the first HTA, while only the line that retrieves the pointer to the raw data
is needed for the other ones. Finally, as we said when discussing the programming cost of the elimination of
temporaries by using hmap, a hmap function very often comprises several loops nests in sequence operating
on the input tiles. This way, the cost just discussed is only paid for the first loop nest, and the subsequent
ones just reuse the information gathered for the first one. Also, although it does not involve additional lines,
applying the linearized indexing to a native pointer involves more work than the straightforward indexing of
an array. This can be solved in two ways. One is defining a macro to apply the indexing. The other one is
defining the native pointer as a pointer to an array with the sizes extracted from the HTA mapping object.
The indexing of this pointer is then identical in syntax and therefore complexity to indexing a native array.
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B = allocShell([n]);

for i=1 to n

B{i} = hta({[w(i) - v(i) + 1]});

(a)

optimize
=⇒

hi = HTAIndex(n)

for i=1 to n

hi(i) = v(i):w(i)

B = A(hi)

(b)

Figure 11: Optimization using hierarchical indexing

4.3. Programming techniques for irregular HTAs
Many algorithms are best expressed with irregular HTAs, that is, HTAs with tiles that have different sizes.

Examples of such algorithms are the NAS benchmark IS we study in Section 5.2 or several of the algorithms
described in [2]. In these applications an HTA has to be partitioned repetitively in different irregular ways,
or an irregular HTA must be built from scratch several times, potentially with a different tiling each time. A
solution for these situations, particularly for the latter, is to define the irregular HTAs initially with empty
tiles and later, once the irregular partitioning is known, fill them in dynamically allocating the corresponding
tiles of different sizes. Figure 11(a) illustrates a situation of this kind, in which allocShell builds an HTA
with n empty tiles. The tiles are later created so that the i-th tile has a variable size depending on the
values v(i) and w(i). If the process needs to be performed several times, these HTAs must be deallocated
before proceeding to allocate the tiles for the next partitioning, which can be a very expensive process.

The HTA library provides two techniques to avoid these overheads. The first one is dynamic partition-
ing [2], which has been explained in Section 2.5 and illustrated in Section 2.6. The programming effort of
this technique can be even a single SLOC to apply part or rmPart as we have seen.

The second technique is hierarchical indexing, which consists in choosing different indices in different
tiles in an already existing HTA. This requires indexing an HTA with an object of a special class called
HTAIndex which allows to store a different set of indices to select for each tile. For example the instructions
in Figure 11(b), where A is an already existing HTA with n tiles, allow to select a different range of elements
v(i) to w(i) for each one of the i= 1, . . . ,n tiles of A as contents for the corresponding n tiles of the
resulting irregular HTA B. B only requires memory to allocate its metadata, since its low level tiles actually
correspond to data in A. This way this mechanism allows to create irregular sized HTAs at runtime that
actually point to data provided by another HTA as long as both HTAs have the same number of tiles in
every dimension and the requested sizes are not larger than those of the indexed HTA. This mechanism is
more appropriate than dynamic partitioning when what is needed is to choose different ranges of elements
from already existing tiles. Also, with this technique the resulting HTA need not (and, in general, will not)
keep the same total size as the indexed one.

As seen in the example, building a D-dimensional irregular HTA from another HTA by applying hier-
archical indexing typically requires D + 3 SLOCs. One is the definition of the HTAIndex object that stores
the hierarchical index. This object can be filled in with D for loops that iterate on the tiles that are going
to be indexed. The body of the innermost loop stores in this object the set of indices to retrieve from each
tile, which requires a single line. Finally, the HTA is built indexing the existing HTA with the HTAIndex
object.

4.4. Synchronization
Sometimes applications provide opportunities to overlap different communications or communications

with computation. As we explained in Section 2, in HTA programs communication occurs either inside a
method or in an assignment statement of tiles that map to different processors. Our implementation provides
the programmer with two kinds of assignments: the regular (represented in this paper with a = operator)
and the split-phase assignment (represented here with operator ← [20]). During an HTA assignment (A =
B), if A and B have different processor mappings, the tiles from B are sent to the processors that own the
corresponding tiles of A. The home nodes of the elements of A wait (block) until they receive the message
from the home nodes of the elements of B. However, with an HTA assignment A ← B the communication is
asynchronous and no processor needs to wait for the assignment operation to complete.
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B{1:n}(0) = B{0:n-1}(d);

B{0:n-1}(d+1) = B{1:n}(1);

(a)

optimize
=⇒

HTA::async();

B{1:n}(0) = B{0:n-1}(d);

B{0:n-1}(d+1) = B{1:n}(1);

HTA::sync();

(b)

Figure 12: Optimization using synchronous communication

By default assignments are of the type =. Assignments of type ← can be specified by the programmer
using the call function async. A sync statement should be explicitly invoked at a later point to indicate
that all the assignments in progress must be finished after the sync instruction. If the assignment statements
between the async and sync function calls have aliases, the result will be undefined. An example extracted
from the Jacobi stencil computation is shown in Figure 12, where each of the processors that own tiles 1:n-1
will have two communication operations executing concurrently. Thus, the processor that owns tile i will
communicate with the processor that owns tile i+1 and with the processor that owns tile i-1. As seen in the
example, this optimization requires two SLOCs: one for indicating the beginning of the region that allows
split-phase assignments, and another one marking the synchronization point where such assignments must
have completed.

4.5. Fusion of representation of tiles and management overhead
Each HTA needs metadata about its logical structure, physical layout (addresses) and distribution. This

metadata is a memory overhead which additionally needs to be accessed on every HTA access. As a result,
algorithms that would benefit from using many small tiles (matrix products, transpositions, etc.) result in
performance degradation when those tiles are expressed as HTAs because the added overhead to access the
metadata that keeps tile structure cannot be amortized by the small amount of computation performed.
Also the larger memory footprint of the program increases the cache miss rates. As a result, we advocate
manual tiling for small tile sizes below a certain threshold.

Tiling is a widely known optimization whose semantics, requirements and implementation are well doc-
umented (e.g. [21]). This way, the programming cost of manually tiling the N dimensions of a computation
requires N SLOCs for the loops that control the blocking of each dimension. If buffering is going to be used
to store a tile of a read-only HTA for the blocked computation, in which D of its dimensions lie within the
blocked region of the computation, then D + 2 more SLOCs are needed. One defines the temporary array
to store the data in the tile, D manage the loops to perform the copy, and another line makes the copy
itself. If the data tiled is read as well as written in the computation, then another D + 1 lines are needed to
perform the copy the data out of the temporary buffer to the HTA.

4.6. Overlapped tiling
The parallelization of stencils requires the exchange of boundary values between different tiles. This

requires shadow or overlap regions [22] in each chunk to hold them. Although these regions can be defined and
handled manually, the HTA library provides a new language construct, overlapped tiling, to automatically
handle them [2, 23]. Using the overlapped tiling construct results in faster codes, because the explicit
indexing and assignments to perform the updates are not needed. The performance improvement tends to
grow with the number of processors involved, as we will see in Section 5. Figure 13 illustrates the application
of overlapped tiling to a stencil. The code in Figure 13(a) uses HTAs with tiles of d+2 elements, where
only the positions 1 to d contain actual data of the tile. The elements 0 and d+1 are ghost regions that
store a copy of the last actual element of the preceding tile, and the first actual element of the next tile,
respectively. The user has to explicitly update these ghost regions whenever necessary with appropriate
assignments, resulting in a code like the one in Figure 13(a). Care must also be taken to index correctly the
tiles when the computation is performed, as we see in the last line. The code in Figure 13(b) builds HTAs
with overlapped tiling of one element in each direction, initially filled in with zeros. These HTAs update
automatically their ghost regions without user intervention. Two facts simplify the indexing of these HTAs
when performing computations. First, by default, i.e., if no index is applied, only the actual elements of the
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A = HTA({[n], [d + 2]}, dist);

B = HTA({[n], [d + 2]}, dist);

...

B{1:n}(0) = B{0:n-1}(d);

B{0:n-1}(d+1) = B{1:n}(1);

A{:}(1:d) = B{:}(0:d-1) + B{:}(2:d+1);

(a)

optimize
=⇒

ol = Overlap([1], [1], zero);

A = hta({[n], [d]}, dist, ol);

B = hta({[n], [d]}, dist, ol);

...

A = B{:}(All-1) + B{:}(All+1);

(b)

Figure 13: Overlapped tiling example to implement the stencil A[i]=(b[i-1]+b[i+1])

Overhead Techniques
Creation and destruction time and memory usage 4.1.1(+), 4.1.2, 4.3, 4.5
Allocation of temporary buffers for communication 4.1.3
Indexing operations 4.2(+), 4.6
Serialization of parallel communications 4.4, 4.6

Table 2: Types of overheads introduced by HTAs and appropriate user-level techniques to avoid them labeled by the section
number where they are discussed. Optimizations are marked with a plus sign when they are particularly general.

tile are selected, that is, the tile without the ghost regions. Second, the keyword All allows to select the
actual regions of each tile, and it supports the arithmetic operators + and - to shift the indexed region, as
shown in the figure.

While this optimization is described here because the programmer needs to explicitly use overlapped
tiles, its usage also increases the programmer’s productivity, since manipulating the shadow regions of
stencil computations manually is more cumbersome than using the overlapped tiling construct provided in
the HTA library. Typically in a D-dimensional HTA the exchange involves all its dimensions. Thus there are
2D assignments (in both directions in the D dimensions). Additionally the 2D corners of the D-dimensional
tile could need to be updated in the corresponding neighbors, resulting in 2D more assignments. Finally,
the exchanges could typically be made in parallel, so the user would have tried to optimize them using the
optimization for synchronization, which involves two more lines of code. This is all replaced in overlapped
tiling by a line to specify the overlapping when the HTA is created, and another line to request the update
of the shadow regions when it is needed.

Support for this optimization is already available in some compilers such as dHPF [24], particularly since
the inclusion of the SHADOW directive in HPF2 [25].

4.7. Summary
As seen along this section, the user-level optimizations we have identified remove those overheads in-

troduced by HTAs that could not be removed at library level. Table 2 summarizes these overheads and
the techniques that are suitable to avoid them indicated by the numbering of the section where they are
described. While all the techniques are very general, those marked with a plus sign in the table have been
found to be applicable to all the codes analyzed.

5. Experimental results

This section evaluates the performance of the HTA library, the impact of the optimizations discussed
in the previous sections and the programmability in three stages. In the first one, a microbenchmark is
used to illustrate the performance impact of the basic optimizations that apply to all the applications: the
avoidance of temporary HTAs (described in Sections 3.1 and 4.1.1) and the simplification of the indexing
operations (described in Section 4.2). Second, the NAS benchmarks [3] are used to compare the performance
of the original FORTRAN+MPI application with that of the C++ based HTA ones we wrote. Third, a
programmability study on these benchmarks is performed.
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Proc. Freq. # of # Cores Memory Network
Type Nodes per Node per Node
G5 2 GHz 128 21 4 GB Myrinet

Itanium 142 Integrity 128 (max of Infiniband 4x
Montvale 1.6GHz rx7640 16 8GB per core) DDR, 20Gbps

x86 Infiniband 4x
Xeon 2.3 GHz 16 8 8 GB DDR, 16 Gbps

Table 3: Hardware characteristics of the machines used for the experiments.1 only one core per node was used.

Proc. FORTRAN HTA MPI
Type Compiler Compiler library
G5 g77 -O3 (v. 3.3) g++ -O3 (v. 3.3) MPICH
Itanium ifort -O3 (v. 10.1) icpc -O3 (v. 10.1) HP MPI
x86 gfortran -O3 (v. 4.3) g++ -O3 (v. 4.3) Open MPI

Table 4: Compilers, flags and MPI libraries used for the experiments.

The characteristics of the machines used to run the experiments are shown in Table 3. The G5 cluster
was used for the development and optimization process of the HTA library and benchmarks. After the
optimization process, the library was tested in an Itanium and an x86-based cluster. The network interfaces
of the x86 cluster suffer high contention when the eight cores of a node are used. For this reason the
experiments with this system maximize the number of nodes used. This way, we use one core per node in
the configurations for 1 to 16 processes, and 2, 4 and 8 cores per node for the configurations with 32, 64
and 128 processes, respectively. Table 4 shows the compiler and optimization levels used to compile the
NAS benchmarks when using the native FORTRAN+MPI implementation or the HTA library, and the MPI
version used in the three cases.

5.1. Performance impact of the common optimizations
Array-based computations produce an output array from the operations performed on one or more input

arrays. As a result, the most important optimizations are the avoidance of unnecessary temporaries that
will be generated when using a library-based approach (see Sections 3.1 and 4.1.1) and the simplification of
indexing operations (see Section 4.2).

To illustrate the importance of these optimizations, we measured the time to execute the expression A =
d * (A + B + C), where d is a scalar and the other variables are HTAs with 4× 4 tiles of 300× 300 double
precision floating point elements each, in our G5-based machine. The expression required 0.13 seconds
without any expression template implemented. With the expression template implemented in our library
(Section 3.1), which saves the temporary only for the last arithmetic operation before the assignment (in
this case, the product by the scalar d), the time went down to 0.115 seconds. The approach explained
in Section 4.1.1 of encapsulating the whole operation in an hmap operation reduced the execution time
to 0.05 seconds. Finally, applying the optimization shown in Figure 10 and described in Section 4.2, the
execution time further reduced to 0.025 seconds, totaling a speedup of 5.2 with respect to the original näıve
implementation. The total speedup achieved by these combined techniques was of similar magnitude in the
Itanium and x86 systems, 7.1 and 4.3 respectively.

Due to the high performance impact of these optimizations, we never implemented the NAS benchmarks
without them. However, to quantify their impact for a real application, we have implemented an HTA
version of the NAS benchmark MG without them and we evaluate it in the nex Section.

5.2. NAS benchmarks
This Section compares the performance of the FORTRAN+MPI NAS benchmarks with that of their

HTA-based counterparts and evaluates the performance impact of the optimizations described in Section 4.
However, the impact of the optimizations described in Sections 4.1.1 and 4.2 is only evaluated for benchmark
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MG, because we never implemented HTA versions of the other NAS benchmarks without them due to the
high performance impact of these optimizations on array-based codes, as shown in the previous Section.
Similarly, all the optimizations described in Section 3 were part of the HTA library from the beginning.

Figures 14 to 19 show the running time of the NAS benchmarks EP, FT, CG, IS, MG and LU for problem
size C on the machines described in Table 3, using from 1 to 128 processors. For each benchmark the plots
show the execution times of the original FORTRAN+MPI code (labeled as NAS), and the fully optimized
HTA version (labeled as HTA). A few runs on 1 or 2 processors are missing because the applications break
due to lack of enough memory. For MG we also show the runtime of the version without the common
optimizations (HTA nohmap) in the Itanium and the x86 cluster, where it is one order of magnitude slower
than the optimized version. The slowdown in the G5 system was similar. IS is a very communication-
intensive benchmark that overloads the network of the x86 cluster for both the NAS and the HTA versions
when we use 128 processors. The delay happens inside the same MPI library call in both codes, which are
exactly the same used in the other platforms.

The performance of the optimized HTA version is in most cases similar to that of the FORTRAN+MPI
version in the three machines. The expected performance degradation due to the manipulation of the HTA
metadata is usually more noticeable in relative terms as the number of processors increases.

The compiler plays also an important role in the difference in the performance between the FORTRAN
and the C++ HTA implementation. This way, while for FT the overhead of the HTA with respect to the
FORTRAN+MPI version in the G5-based computer (in which we developed and tuned both the library and
the applications) and the x86 cluster is quite small, it goes up to about 50% for every number of processors
in the Itanium-based computer. This is in fact the combination of benchmark and machine where the HTA
gets further from the original NAS application. We have noticed that when the compilation of both versions
of FT in the Itanium system uses gfortran/g++ 4.1.2 (also with O3 optimization level) instead of ifort/icpc,
the average overhead drops to just 10%, as Figure 20 shows. This occurs because there are important
optimizations, apparently not implemented in the GNU compiler, that the FORTRAN code exposes to the
ifort compiler, while the C++ code seems to obfuscate the information the icpc compiler needs.

5.2.1. Impact of user-level optimizations
This section analyzes the most important non-common user-level optimizations, i.e., those not covered in

Section 5.1, applied in the HTA versions of the NAS benchmarks. Figure 21 represents the impact of each one
of them as the average slowdown the corresponding HTA application would experience if such optimization
had not been applied. EP, an embarrassingly parallel program that tabulates pairs of uniformly distributed
pseudo-random numbers, only benefits from the most common optimizations evaluated in Section 5.1, so
there are no separate optimizations for it.

The FT application solves partial differential equations (PDE) using forward and inverse Fast Fourier
Transform on a 3D array. The user can apply two specific optimizations in this code, represented as FT tiling
and FT mxr in Figure 21. The first one is manual tiling. To compute the 1-D FFTs along each dimension
of the array, the FT code uses tiles of 16 by D elements, where D is the size of one of the dimensions of the
3D array in the FORTRAN+MPI version. This way for example, for the class C of the problem considered
in our experiments, in which a 512×512×512 array is used, a total of 512×512/16 = 16384 identical HTAs
(but with different content) are needed. However, preliminary tests declaring these HTAs showed that their
storage and management resulted in a crippling overhead. Thus, no tiling was applied for the FFTs in our
initial implementation. To achieve a performance more similar to that of the FORTRAN+MPI version for
this code we had to implement the tiling manually instead of through HTAs, as discussed in Section 4.5. Our
results show that this tiling is very helpful for FT for the G5 and the Itanium, but it is counterproductive
for the x86, probably due to differences in the memory hierarchy and hardware prefetchers. It is possible
that a different tile size would have improved the performance of FT tiling for the x86 architecture, but to
make a fair comparison we have used the same parameters in the HTA as in the original NAS code.

The second user-level optimization was the reuse of an input HTA. This optimization involves the use
of the dpermute method that allows the user to specify that the input HTA can be used as communication
buffer to reduce the memory footprint, as explained in Section 4.1.3. This optimization, which reduces the
memory footprint of FT by 20%, is more effective in the G5, where each core has available only 4GB, than
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Figure 14: Performance of EP
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Figure 15: Performance of FT
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Figure 16: Performance of CG
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Figure 17: Performance of IS
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Figure 18: Performance of MG
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Figure 19: Performance of LU
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Figure 20: Performance of FT compiled with
gfortran/g++ in the Itanium system
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Figure 21: Slowdown with respect to the optimized version due to
the omission of each non-common user-level optimization

in the other two machines, which provide a minimum of 8GB/core in the runs with up to 16 processors. In
the runs with N > 16 processors the Itanium continues to provide 8GB/core, while in the x86 cluster the
memory of each 8GB node is shared by N/16 processors, but at that point the data to fit in each node is
also 16 times smaller. If FT is run in this x86 cluster minimizing the number of nodes used, i.e., solving
the whole problem with up to 8 processors in the same node, this optimization becomes critical. We have
measured that with that configuration the HTA FT version without this optimization does not fit in memory
and its frequent use of the disk swap makes its runtime two orders of magnitude longer than that of the
optimized version.

CG with the standard optimizations is already very competitive. Still, we found two extra opportunities
for further optimization, named CG async and CG temps in Figure 21. The first one consists in overlapping
the communications in two consecutive statements by applying the policy described in Section 4.4. We do
not have data of the impact of this optimization in the G5 system. The global impact of this optimization in
this code is small because the statements affected represent a small portion of the runtime, and they are only
executed when the number of processors used is an odd power of 2. The second optimization is the reduction
of the number of HTA temporaries, and thus the memory footprint, by reusing dead temporary HTAs to
hold new temporary values. Again the G5 is more sensitive to memory-related optimizations because it has
less memory. In the Itanium system we maximized the number of cores used per node in the runs, while in
the x86 we maximized the number of different nodes used. This way the Itanium system is more sensitive
than the x86 cluster to memory optimizations, as for runs with N ≤ 16 processors, the N processors are
sharing memory bandwidth, while for runs with more than 16 processors, each group of 16 processors is
sharing the bandwidth provided by the main memory. In the x86 for runs with 32, 64 and 128 processors,
2, 4, and 8 cores, respectively, access the same main memory.

Benchmark IS sorts a series of integer keys in 4 steps: local classification in buckets, determination of
how many buckets must each processor receive in order to balance work, an all to all exchange of buckets,
and a local ranking of the keys received. The rank of a key is the number of keys smaller than it, thus a
sorting is implied.

We find this benchmark of particular interest because it is the only one that (a) needs to generate
irregular HTAs, i.e., HTAs with tiles with different sizes and (b) these sizes can only be determined at
runtime. The first irregular HTA appears in the preparation of the all-to-all exchange. This stage uses an
HTA with NPROC tiles, each assigned to each processor, which is subtiled in NPROC second level tiles so that
tile {i}{j} contains the keys that processor i must send to processor j. The exchange itself is performed by
the HTA function htranspose, which sends tile {i}{j} of its input HTA to tile {j}{i} of the output HTA.
Notice that both the size of the local buckets in each processor as well as the number of buckets that each
processor must process are only known at runtime. Thus, our implementation uses a 2 level HTA whose
second level tiles are initially empty, and which are filled with the appropriate portions of the HTA where
the local buckets are stored once the distribution is calculated. The second irregular HTA is the output of
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the htranspose operation. The third (and last) one is the one in which the rank is computed for each key
assigned to the processor.

The first irregular HTA is lightweight because its tiles come from indexing another HTA, which means
they only need memory for their metadata, as the data itself are stored by the indexed HTA. The other
two irregular HTAs of our initial implementation were fully allocated in the heap and had to be deallocated
later. We avoided this by applying the techniques explained in Section 4.3.

First we removed the need to allocate and deallocate dynamically the output HTA of htranspose in
each usage. Instead we create it at the beginning of the program with enough size to hold the results of
the exchange, just as the C+MPI version does with its buffer. Then when htranspose is invoked, instead
of allocating new tiles, dynamic partitioning is used to partition the existing tile associated to the running
processor into the different output tiles needed. This is optimization IS dp in Figure 21.

The optimization for the third irregular HTA, IS mxr in Figure 21, emulates the same behavior as the
C+MPI IS for the corresponding array. The C+MPI version does not use a new array; it just reuses the
one where the local keys had been classified in buckets before the global exchange. So we built our third
irregular HTA also from the original HTA used for the local classification in buckets, which is regular, by
applying hierarchical indexing.

We have already reasoned on why these optimizations that reduce memory usage are more effective in
the G5, then the Itanium, and finally the x86 cluster.

The main computation of MG are stencils which involve 27 neighbors. As with CG, the basic common
optimizations already bring this benchmark to a performance comparable to that of FORTRAN+MPI. Two
user-level optimizations applicable in the code are the usage of asynchronous communications (Section 4.4),
labelled MG async in Figure 21, and the use of overlapped tiling to automate the allocation and management
of the shadow regions required by the stencils (Section 4.6), labelled as MG ovl. We do not have data for the
first one in the G5 cluster. While asynchronous communication is beneficial in the x86 cluster, this is not the
case for overlapped tiling in this code. The reason is that our overlapped tiling feature automatically updates
all the dimensions of the HTAs at once (three in MG), while in our MG implementation with asynchronous
communications we synchronize after the set of assignments that update each one of the dimensions, that
is, the assignments for each one of the dimensions are enclosed between HTA::async and HTA::sync, in the
style of Figure 12. The larger number of simultaneous messages in flight generated by overlapped tiling is
counterproductive for the network of our x86 cluster, which gets easily congested.

The LU benchmark applies a Symmetric Successive Over Relaxation (SSOR) algorithm, which is a
stencil with loop-carried dependences, what involves processor communication when it is parallelized in a
distributed memory machine. Thus, this stencil is pipelined [26]. Our implementation uses a wavefront that
processes the tiles along the diagonal (or hyperplane for high dimensions) carrying the dependences in the
appropriate order. As in any stencil, shadow regions are needed to keep copies of the data from neighboring
tiles, and as in MG, in our library this management can be either manual or completely automated using
overlapped tiling (Section 4.6). The comparison between the HTA LU version that manages the shadow
regions manually and the automated one in the G5 for problem size B yields an speedup that goes from 1%
for one processor to 450% for 64, averaging 100%, as shown in [2]; while class C could not be run without
overlapped tiling in that system. The slowdown derived from not using overlapped tiling for class C in the
Itanium and the x86 clusters, shown in Figure 21, was 58% and 3%, respectively. In LU the performance
benefit of automated overlapped tiling is larger than in MG. A reason is that in wavefront computations
the update of the shadow regions is more complex, since the tiles must update different shadow regions and
from different neighbors depending on their location. The version of LU that manages manually the shadow
regions uses 54 indexing operations to perform this update in each iteration, which is very expensive. The
automatic update removes all these operations sending all the required updates at once. We have already
discussed in MG why this is a handicap for the subpar network of the x86 cluster.

Overall, the average impact of the positive optimizations (as the programmer would discard those that
turn out to be counterproductive) is 10.6%. Since there are large variations among them, the median value,
5.8%, can be more representative. These values are measured on the total execution runtime, rather than
on the specific portion where they have been applied.
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5.3. Programmability
We finally evaluate the programmability of HTAs versus the traditional MPI-based implementation as

well as the programming overhead of the user-level optimizations. The best productivity metric for this
evaluation would be the time needed to develop and tune the codes. We did not gather this metric during
the development of the HTA versions, and even if we had done it, we have no information on the time
needed to develop the optimized MPI applications of the NPB benchmarks, which makes the comparison
impossible. This way we have to resort to metrics that can be extracted from the codes. Figure 22 counts the
SLOCs of the FORTRAN+MPI benchmarks, the optimized HTA implementation, and an implementation
that only contains the common optimizations evaluated in Section 5.1. Figure 23 compares the cyclomatic
number [27] for these three versions of the algorithm. This value is P +1, where P is the number of decision
points or predicates in a program. The smaller it is, the simpler the program is. An HTA version with
no optimizations at all is of no practical interest, as its runtime would typically be one order of magnitude
longer than that of the original benchmark. Still we can report that the totally unoptimized HTA version
of MG we have used in the preceding section has 781 SLOCs versus the 885 of the fully optimized one and
the 1715 of the MPI-based code, and a cyclomatic number of 57, compared to the 88 of the optimal HTA
version and the 331 of the MPI code.

Figure 22 shows how overlapped tiling reduced the SLOCs of MG and LU. It increased the cyclomatic
number of the LU in Figure 23 mostly due to the inclusion of conditionals to adjust the processing size of
tiles in the corners of the HTA. The other non-common user level optimizations have some programming
impact, but it is small, as one would expect from the additional code that we estimated for each one of them
in Section 4.

Overall, optimized HTA codes are between 12% (LU) and 54% (CG) shorter than their FORTRAN+MPI
counterparts, with an average of 33%. The degree of reduction to expect depends mainly on two factors.
The first one is the correspondence of algorithm steps to standard matrix operations. When this is the case,
the operations can be typically expressed with a single line with HTAs; otherwise hmap invocations and
user-defined functions are needed. The second factor are the number and type of communications. HTA
operators such as dpermute (see Section 2.5) provide functionalities that require dozens or hundreds of lines
of FORTRAN+MPI code, while a reduction on a single element across all the processors can be expressed
with a single line in both environments.

6. Related Work

HTAs are one of many proposals to improve the programmability of parallel applications. Other library-
based projects that provide a global view of the data structures are Global Arrays [28] and POET [29],

19



although their SPMD programming style and the requirement of explicit synchronizations complicates their
usage. The POOMA library [12] offers a single-threaded view of the program execution, but it does not
provide mechanisms to refer to tiles or to decompose them hierarchically in a natural way. From the language
side, there has been an emergence of the PGAS approach (Partitioned Global Address Space) [30, 31, 32],
which offers a global view of data as well as information on the locality of the accesses to those data by the
different processors. All these languages follow an SPMD paradigm and do not have tiles and hierarchical
decomposition as a first-class concept.

Most research on the implementation and optimization of libraries has been focused on low level libraries
such as MPI [9], as they are largely used for parallel programming. Top level libraries [29, 12] have received
less attention, probably because traditionally their performance has not been competitive with that of
other approaches [14], which has led to less widespread usage. Research in this area has given place to
active libraries [33]. These are metaprogrammed self-optimizing libraries that play an active role in the
compilation process to improve performance by means such as expression templates [11], programmable
syntax macros [34] and meta-object protocols [35]. For example, the MTL [36] and QUAFF [37] have
in common with the HTA that they rely on C++ template-based metaprogramming, which enables among
other optimizations, the usage of static polymorphism, thus avoiding the costly overhad of dynamic dispatch.
As illustration of the importance of this optimization, the C++ skeleton library MUESLI reports in [38] an
overhead due to dynamic polymorphism between 20 and 110 percent for simple applications.

As seen along this paper, cross-component optimization is essential to attain reasonable performance
while keeping the modularity and encapsulation obtained by writing programs based in the composition of
components provided by these libraries. The cross-component optimizations we have found to be of most
interest for the HTA library are the loop transformations, particularly emphasizing loop fusion and array
contraction [39, 40, 41]. Active libraries can rely on advanced techniques such as delayed evaluation [42],
runtime code generation [43], and even incorporate liveness analysis [41] or combine at runtime dependence
metadata to build polytope representations [40] to support these optimizations. A further step in library-
level optimization is the usage of compilers that rely on user provided annotations and a better dataflow
analysis than the one a pure active library approach can achieve [44].

Finally, as we have discussed along the paper, some optimizations in the HTA build on techniques used to
compile data parallel languages [26]. This way, for languages like HPF and Fortran-D, compilers synthesize
message passing communication operations and manage local buffers. Interprocedural analysis can reduce
the frequency and volume of communication significantly [45] over a näıve approach. In many situations, a
compiler can even identify collective communication patterns that can be implemented very efficiently [46].
In the HTA library, such communication optimization largely results from the way programmers express
operations on arrays. If a programmer follows the idiom of using the hmap operator, the generic implementa-
tion of that operator avoids temporaries, guarantees that buffers are reused and communication is coarsened
or optimized using collectives (Section 3). The effectiveness of these optimizations is not in the hands of a
complex static program analysis but in the hands of the programmer who conceives the application. Hence
the process of optimization is not fully automated but we feel that it is effective and transparent to the
programmer. A possible concern is that the programmer may not use the functionality of the HTA library
efficiently such that all optimization can become effective at run time.

7. Conclusions

Libraries have several advantages over compile-time approaches as a means to express parallelism, their
main drawback being the reduced performance coming from the need to perform all their operations at
runtime and the lack of dataflow analysis. In this paper we have described two kinds of techniques to make
competitive the HTA library with the fastest implementation available of typical parallel applications such
as the NAS benchmarks. First, many techniques were applied at the library level, some being general mech-
anisms that can benefit other libraries such as templates; others being specific, such as reusing temporary
HTAs. Second, there are the HTA specific user-level optimizations. We indicate which are the appropriate
ones to address each kind of overhead introduced by HTAs as well as an indication of their programming
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cost and a measurement of the performance improvement we saw when applying each one of them, therefore
providing very useful guidelines to programmers.

After the optimizations, the HTA programs were still 33% shorter in terms of lines of code than their
FORTRAN+MPI counterparts and had a 48% smaller cyclomatic number, which measures the number
of conditions in a code. As for performance, they were on average only 4.4% slower than the MPI-based
codes in the cluster where the optimization process took place, and 18.1% and 14.2% in an Itanium-based
supercomputer and an x86-based cluster, respectively, in which the role of the backend compiler and the
differences between the ease of analysis of FORTRAN and C++ proved to be much more crucial. This
supports the view that an HTA-aware compiler is the way to achieve better performance. Exploring this
possibility is our future work.
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