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Abstract

There are several frameworks that, while providing functional portability of
code across different platforms, do not automatically provide performance
portability. As a consequence, programmers have to hand-tune the kernel
codes for each device. The Heterogeneous Programming Library (HPL) is
one of these libraries, but it has the interesting feature that the kernel codes,
which implement the computation to be performed, are generated at run-
time. This run-time code generation (RTCG) capability can be used, in
conjunction with generic parameterized algorithms, to write performance-
portable codes. In this paper we explain how these techniques can be applied
to a matrix multiplication algorithm. The performance of our implementa-
tion is compared to two state-of-the-art adaptive implementations, cIBLAS
and ViennaCL, on four different platforms, achieving average speedups with
respect to them of 1.74 and 1.44, respectively.

Keywords: GPGPU, Heterogeneous Systems, OpenCL, Performance
portability, Embedded languages

1. Introduction

Performance portability is an open problem in heterogeneous systems. As
a consequence, programmers usually have to hand-tune the code of a given
algorithm for each platform where it will be executed in order to maximize its
performance [1, 2, 3]. The Heterogeneous Programming Library (HPL) [4] is
a C++ framework that simplifies the portable programming of heterogeneous
systems. This library puts emphasis on improving the programmability of
these systems by providing an interface that is noticeably simpler than other
alternatives like OpenCL [5].

The library provides a programming model similar to OpenCL, where
a kernel, which expresses the parallel computation, is spawned to a given
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device generating several threads. In fact, the current backend of this library
is built on top of OpenCL. An interesting characteristic of the library is
that the kernel code is translated into OpenCL at run-time. This run-time
code generation (RTCG) capability can be used to adapt the code to the
properties of the computing device where the code is going to be executed,
since they are known at run-time.

This work illustrates the creation of performance-portable HPL kernels.
These kernels receive a set of optimization parameters that are used inside
the kernel to guide RTCG and generic optimization techniques. For example,
RTCG can be used to unroll a loop, being the input optimization parame-
ter the unroll factor. Another example would be a tiling transformation, a
generic tile size being the input parameter of this optimization. Our approach
complements these RTCG kernels with a a genetic algorithm that chooses
the values of the input optimization parameters guided by the execution time
of the versions generated at run-time.

The usage of some of these techniques has been shown and evaluated in [6].
The current work focuses on the matrix multiplication code, improving [6] in
several points: (1) two new techniques, vectorization and instruction schedul-
ing, are applied to generate performance-portable kernels, which generates
a best-kernel 12 times faster than in [6] (2) the illegal combinations of pa-
rameters are discarded during the generation phase of the genetic algorithm,
which reduces the search time on average 2.57 times with respect to [6], and
(3) the performance of our kernels is compared to two state-of-the-art adap-
tive implementations, cIBLAS and ViennaCL. These two implementations
were chosen because (a) they use OpenCL, and thus, they target the same
range of platforms as HPL, and (b) they provide adaptive mechanisms to
enable performance portability. Our study also covers the OpenCL-based
cIMAGMA library [7], as it relies on cIBLAS for its OpenCL BLAS routines.

Our matrix multiplication implementation is based on existing implemen-
tations for NVIDIA GPUs [8], AMD GPUs [9], and any kind of devices sup-
porting OpenCL [10]. This latter implementation also enables performance
portability. Our implementation uses not only similar techniques to those
introduced in these previous works but also new ones. As a consequence, our
implementation turns out to be more effective than those previous ones.

The rest of this paper is organized as follows. Section 2 introduces the
basic concepts of the Heterogeneous Programming Library (HPL). Then,
Section 3 summarizes the new optimization techniques introduced in this
paper with respect to [6]. Section 4 explains the implementation details



of our matrix multiplication, and how a genetic search is used to tune its
parameters. This is followed by the experimental results in Section 5 and a
discussion of related work in Section 6. Finally, Section 7 is devoted to our
conclusions and future work.

2. The Heterogeneous Programming Library library

The Heterogeneous Programming Library (HPL), available for download
under GPL license at http://hpl.des.udc.es, improves the programma-
bility of heterogeneous systems. Codes written using HPL can be executed
across a wide range of devices. In addition, programmers can exploit perfor-
mance portability on top of HPL using its run-time code generation (RTCG)
mechanism. This mechanism is present in HPL kernels, which are written
using a language embedded in C++. This code is executed at run-time
and it translates the HPL computational kernel into the HPL’s intermediate
representation (IR), currently OpenCL.

The HPL library supports the same programming model as CUDA and
OpenCL. The hardware model is composed of a standard CPU host with a
number of computing devices attached. The host runs the sequential parts
of the code and it dispatches the parallel parts, which are codified as HPL
kernels, to the devices. The CPU of the host can be itself a computing device.
Devices are composed of a number of processors that execute SPMD parallel
code on data present in the memory of their device. As kernels can only
work with data available in the devices, data must be transferred between
host and devices, but this process is totally automated by the library.

Several instances of each kernel are executed as threads and they are uni-
vocally identified using a tuple of non-negative integers, called global iden-
tifiers. These identifiers, and their associated threads, form a global domain
with up to 3 dimensions. In turn, these threads can be associated in groups.
With this purpose, local domains can be defined as equal portions of the
global domain. Threads inside a group are also identified using tuples of
local identifiers and they can be synchronized through barriers and share a
small scratchpad memory.

The memory model distinguishes four types of memory regions in the de-
vices (from largest to smallest): (1) the global memory, which is read /written
and shared by all the processors, (2) the local memory, which is a read /write
scratchpad shared by all the processors in a group, (3) the constant memory,
which is a read-only memory for the device processors and can be set up by



the host, and (4) the private memory, which is only accessible within each
thread.

Programmers using HPL have to write a code to be executed in the host,
and one or several kernel codes, which will be dispatched to the devices.
To do that, the library provides three main components: the host API, the
template class Array and the kernels. They are now explained in its turn.

The host API. The most important component of this API is the eval func-
tion, which requests the execution of a kernel £ with the syntax eval (f) (argl,
arg?2, ...). The execution of the kernel can be parameterized by inserting
methods calls between eval and the argument list. For example, by default,
the global size is equal to the size of the first argument, whereas the local
size is automatically selected by the library. Yet, this default behavior can
be overridden by specifying alternative global and local sizes, using meth-
ods called global and local respectively. This way, if we want to define
a 200 x 400 global domain divided into 2 x 4 local domains, the function
eval should be invoked as follows eval(f).global(200, 400).local(2,
4) (a, b). Listing 1 contains an HPL implementation of a matrix-vector
product. The main procedure of this code contains an example host code
for a matrix-vector product, where a global domain of M threads and local
domains grouping 10 threads each are defined.

The template class Array. The variables used in a kernel must have type
Array<type, ndim [, memoryFlag]>. This type represents an n-dimensional
array of elements of a C++ type, or a scalar for ndim=0. Scalars and vectors
can also be defined with special data types like Int, Float, Int4, Float8,
etc. The Array optional memoryFlag either specifies one of the kinds of mem-
ory supported (Global, Local, Constant or Private). The default value of
the memoryFlag is Global, the exception being the Arrays declared inside
the body of kernels, which are placed by default in Private memory. The
elements that compose an array may be any of the usual C++ arithmetic
types or a struct. The arrays passed as parameters to the kernels must be
declared in the host using the same syntax. These variables are initially
stored in the host memory, but when they are used as kernel parameters
they are automatically transferred to the device. Similarly, the outputs are
automatically transferred back to the host when needed.

The kernels. HPL kernels use special control flow structures. They are sim-
ilar to those available in C++ but their name finishes with an underscore
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Listing 1: MxV code: original version

class MxV {
void operator () (Array<float, 2> a, Array<float, 1> x,
Array<float, 1> y)
{
Int k;
for_(i=0, i<(M/szx), i++)
for_(k=0, k<N, k++)
ylidx*x(M/szx)+i] += alidx*(M/szx)+i][k] * x[k];
}
3
int main(...) {
//Declare and initialize ax, xv and yv arrays
MxV matvec;
eval (matvec).global(M).local (10) (av, xv, yv);
}

(if_, for_, ...). Also, the arguments passed to for_ loops are separated
by commas instead of semicolons. In addition, the library provides an API
based on predefined variables to obtain the global, local and group identi-
fiers as well as the sizes of the domains and numbers of groups. For example,
idx provides the global identifier of the first dimension, while szx provides
the global size of that dimension. Adding the 1 prefix to this keywords al-
lows to obtain their local counterparts, whereas replacing the letter x with
y or z the same values are obtained for the second and the third dimensions
respectively.

Kernels are written as regular C++ functions or functor classes that use
these elements and whose parameters are passed by value if they are scalars,
and by reference otherwise. The MxV class at the top of the code of Listing 1
contains an example of an HPL kernel implementing a matrix-vector product
by means of a functor. In this kernel, each thread processes the multiplication
of M/szx consecutive rows of matrix a by vector x.

3. Performance portability on OpenCL

The HPL library can be used to provide performance portability across
different architectures. The work presented in [6] already showed how the
run-time code generation (RTCG) capabilities of the library, in combination




with generic programming techniques, can be used to perform loop unrolling,
to choose among different implementations of the same algorithm, to adjust
the granularity of the work to be performed by each thread and to decide
whether or not local memory is used. The algorithm presented in this paper
uses all these techniques to build a performance-portable matrix multipli-
cation. Moreover, it uses new methods to provide performance portability
in HPL: a technique that allows to reorder several loops at run-time, and
another technique that allows to dynamically change the vector length in
vectorized codes. The matrix-vector product (MxV) HPL kernel in Listing 1
will be used as starting point to introduce these two techniques.

Loop interchange and instructions scheduling. Loop interchange, whenever it
is legal, can have a big impact on the performance of a kernel. For example,
it changes the order in which kernels traverse n-dimensional structures. Some
traversal orders can reduce the number of required simultaneous registers or
favour locality or automatic vectorization detection. Traditionally, the best
loop order is selected by the programmer or optimized at compile-time. In
HPL, RTCG capabilities can be used to change the loop order at run-time.
The code in Listing 2 shows an example of how this technique is applied
to the matrix-vector product HPL kernel. In the original version presented
in Listing 1, each thread performs the multiplication of one row of matrix a
and the vector x. Let us recall that each thread processes the multiplication
of M/szx consecutive rows of matrix a by vector x. The product within each
thread can be done using the traditional order, where matrix a is accessed by
rows, or it can be done by traversing per columns the chunk of M/szx rows
of a processed by each thread. The order can be changed by swapping the
two loops in the kernel. In HPL, this code transformation can be done at
run-time using a new technique based on indirections. Arrays init, e and s
have one position per loop (2 in the example) containing the initialization,
limit and step of the counters of each one of the actual loops that we want
to reorder. This way, we call actual loop j the one whose data is stored in
the j-th position of these vectors. The loops with indices c[0] and c[1] are
just container loops where the real loops are placed. The loop order can be
changed modifying the contents of arrays o and p. This way, the number of
the actual loop j to be implemented by the container loop, i, with index c[i]
is stored in o[1]. Also, the references inside the loops have indexing functions
that depend on the indices of the container loops, c[i]. Each p[j] contains
the index of vector ¢ that implements the actual loop j, that is, whenever
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Listing 2: MxV code: version with interchangeable loops

class MxV { // Other portions of the class have been elided
int init[2]={0,0}; int e[2]={M/szx,N}; int s[2]={1,1};
int o[2], pl[2]; // initialized by set_order
void operator () (Array<float, 2> a, Array<float, 1> x,
Array<float, 1> y)
{

Array<int, 1, Private> c(2);
for_(c[0]l=init[o[0]],c[0]<elo[0]],c[0]+=s[o[0]1]) {
for_(cl[1l=init[o[1]1],c[1]1<elo[1]1],c[1]l+=slo[11]) {
ylidx*(M/szx)+c[p[0]]] +=
alidx*(M/szx)+c[p[0]]11[clp[11]1] * x[clpl[1111;

}
}
}s

int main(...) {

MxV matvec;

matvec.set_order(0,1); // sets o[0]=1 and plo[0]]l=p[1]=0
matvec.set_order(1,0); // sets o[1]=0 and plo[1]]l=p[0]=1
eval (matvec).global(szx)(av, xv, yv);

o[i]=j, then p[j]l=i. This way, any reference to the indexing variable of the
actual loop j in the original code can be systematically replaced by c[p[j]l],
ensuring that the appropriate loop index will be used no matter which the
loop ordering chosen. In this example, the instruction in line 21 requests
that the container loop 0 (c[0]) implements the actual loop 1 (o[0]=1).
Similarly, the instruction in line 22 configures the container loop 1 (c[1])
so that it implements the actual loop 0, (o[1]=0). Regarding the p array,
plLo[0]], which is p[1] in this order, points to the index of container c[0],
and p[lo[1]], which is p[0] in this order, points to the index of c[1]. These
values give place to the access per columns, while if arrays o and p are set
to their complementary values, they would give place to an access per rows.

This scheme can be generalized for any arbitrary number of loops. Notice
that some loop interchanges may be illegal. Thus, the programmer is respon-
sible for checking the legality of the orders tried or at least, for enumerating
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Listing 3: MxV code: vectorized version

template<typename vectype>
class MxV { // Other portions of the class have been elided
void operator () (Array<float,2> a, Array<float,1> x,
Array<float,1> y)
{
AliasArray<vectype, 2> a_vec(al[0][0]);
AliasArray<vectype, 1> x_vec(x[0]);
Array<vectype, 0> tmp;
Int k;

for_(i=0, i<(M/szx), i++) {
for_(k=0, k<=(N/vectype::veclen), k++){
tmp += (a_vec[idx*(M/szx)+i][k] * x_vecl[k]);
¥
for_(k=0, k<vectype::veclen, k++){
ylidx*(M/szx)+i] += tmp[k];
}
¥
}
};

int main(...) {

MxV<vectype> matvec;
eval (matvec).global (M) (av, xv, yv);
}

the set of legal orderings.

The loops interchanged in this example are HPL for_ loops (lines 9-10).
Thus, they will give place to for loops in the generated OpenCL kernel. If in
this example, for_ loops are transformed into for loops, these loops will be
executed during the HPL code generation process, which will give place to
a fully unrolled version of the original loop nest. In addition array c should
be transformed into a native C++ array. In this case, the loop interchange
technique turns into a instruction scheduling technique, as different loop
orders will give place to a different order of the same sequence of instructions.
This instruction scheduling technique is applied to our matrix multiplication
implementation.

Vectorization. Vectorization is another usually applied optimization tech-
nique. When heterogeneous systems are considered, selecting the appropri-
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ate vector size for each architecture is very relevant in terms of performance.
HPL allows to rewrite at run-time a vectorized kernel using arbitrary vector
sizes. This feature is accomplished by combining C++ templating and the
AliasArray HPL data type, which allows to access vectorially an existing
HPL Array made up of scalars.

The code in Listing 3 is a vectorized version of the original matrix-vector
product of Listing 1 that uses a generic vector type vectype. With this
purpose, the HPL kernel in lines 1-20 is templated for this vectype. On the
host side, the MxV class is properly instantiated using the desired vector type
(line 23).

On the kernel side, matrix a and vector x are wrapped in lines 6-7 using
the AliasArray class provided by HPL which allows to access them vectori-
ally with a given vector size.

The loop in lines 12-14 is a vectorized version of the inner loop of the
original version of the algorithm. This loop generates a resulting vector tmp
with vectype: :veclen positions. Finally, the values of tmp are accumulated
in y[idx* (M/szx)+i] by the loop in lines 15-17. This vectorization technique
is applied to our matrix multiplication implementation.

4. Case Study: Matrix Multiplication

Matrix multiplication is a time-consuming operation that is implemented
by a wide range of parallel libraries. As it is an extensively studied and im-
portant problem, we have generated a highly optimized HPL implementation
of this algorithm. Our implementation has several parameters that can be
tuned through a genetic search guided by the kernel execution time.

Our performance-portable HPL kernel implements the C' = A x B opera-
tion. The code has been written in such a generic way that either A or B or
both can be either directly loaded in private memory from global memory,
or previously copied to local memory to optimize these further loads into
private memory. Moreover, thanks to the aforementioned RTCG capabilities
of HPL, it is possible to select the most appropriate combination of usage
for both kinds of memory depending on the device selected at run-time. In
addition, the granularity of the work to be performed by each thread can be
adjusted by changing the global domain size. The size of the local domain
can be changed depending on the capabilities of the device, and, within each
thread, the tiling technique is applied. Also, the new techniques described
in Section 3 are applied. Firstly, the inner loops of the algorithm are fully



Name \ Explanation

Szy # of rows of global domain
SZX # of columns of global domain
Iszy # of rows of local domain

lszx # of columns of local domain

bszy # of rows of each block of C' calculated by one thread
bszx # of columns of each block of C' calculated by one thread
tW Tile width to distribute the work among work groups

uf Unroll factor to be applied over the tile width loop
copyA | Local memory copy flag for matrix A

copyB | Local memory copy flag for matrix B

vA Vector size for copying matrix A from global to local memory
vB Vector size for copying and/or manipulation of matrix B

vC Vector size for copying and/or manipulation of matrix C
order Order of the three innermost nested loops

Table 1: Parameters of the matrix multiplication algorithm

unrolled and the instructions are reordered using the instructions scheduling
technique. Secondly, this inner code is vectorized for a generic vector type
that can be configured at run-time. All these optimizations give place to a
set of parameters that can be tuned for each device at runtime.

Section 4.1 describes the details of the implementation of our HPL matrix
multiplication kernel. Next, Section 4.2 explains how a genetic search is used
to find the best values for the parameters of our algorithm in each device.

4.1. Kernel implementation

The implementation of our kernel relies on a number of tunable parame-
ters that will be introduced across the explanation and which are summarized
in Table 1 for ease of reference. As explained in Sect. 2, the first two ele-
ments in the table are the standard HPL variables that provide the size of
the global domain, which describes the total number of threads that execute
the kernel in parallel, in the second (szy) and the first dimension (szx). Sim-
ilarly, the next two ones describe the corresponding dimensions of the local
domain, which provide the size of the groups of threads, or work-groups fol-
lowing OpenCL terminology. In our kernel the domains are associated to the
dimensions of the destination matrix, and as we can see from the descrip-
tion in Table 1, its rows are distributed across the second dimension of the
domain, while the columns are mapped on the first dimension.
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Figure 1: Matrix multiplication generic algorithm
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Figure 1 shows how the work is partitioned in tiles across the threads
and how global, local and private memory regions are used. The top part,
Figure 1.a, shows that each thread calculates a tile of bszy x bszx elements
of the resulting matrix C by multiplying bszy rows of matrix A and bszx
columns of matrix B. The tiling technique is also applied to the work to be
performed in this computation. The shared dimension of matrices A and B
(the columns of A and the rows of B) is partitioned into tiles of size tW. The
local memory shared among the threads of the same group can be used to
accelerate data loading. Figure 1.b shows how a tile of 1szx X bszy rows
and tW columns of matrix A is loaded into local memory collaboratively by
the threads of the same group. Using the same method, a tile of tW rows
and 1lszy X bszx columns of matrix B can be loaded into local memory.
Let us notice that the dimensions of the block size and the local size are
crossed. This combination consistently delivers better performance than its
complementary, and more natural, alternative. The information of matrices
A and B is loaded vectorially using vectors of size vA and vB, respectively.
Once this information is loaded into local memory, each thread calculates its
tile of the resulting matrix C. This is a good point to introduce the parameters
in Table 1 related to vectorization. Values of vA, vB and vC are used to define
the vector size used to move data from A and B, and to C, respectively. The
two latter ones, vB and vC, are also used to define the lengths of vectors used
in the innermost loops that perform the computation. Figure 1.c.1 shows
that matrix A is loaded into private memory in tiles of bszy x uf elements
and B in tiles of uf x bszx elements. Figure 1.c.2 shows that these tiles are
multiplied vectorially. At tile level, the innermost loop iterates on the N/tW
tiles of size bszy x tW in which the set of bszy rows of A assigned to the
thread can be partitioned, multiplying each one of them by the same tile of
tW X bszx elements of B. Similarly, the product of bszy complete rows of
A and bszx complete columns of B that is required to calculate a complete
tile of bszy x bszx elements of C is processed across different iterations of
another outer loop.

Notice that each input matrix can be loaded first into local memory, and
then into private memory. The usage of local memory theoretically accel-
erates the loading of the matrices. However, in some architectures there
may not be enough local memory or its usage can slow down the applica-
tion [3, 11]. For this reason, the local memory can be bypassed, in which
case data will be directly loaded from global to private memory. For each
architecture, local memory can be used for loading both, none or one of the
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input matrices. This is selected using copyA and copyB parameters in Ta-
ble 1. These parameters are used to determine whether matrices A and/or B
have to be copied first to local memory or directly to private memory. For
each matrix, the corresponding flag can take values either of 0, when no data
is going to be copied to local memory, or 1 or 2, otherwise. In this latter case,
when the flag takes the value 1 our kernel implementation will try to allocate
exactly the local memory space needed to store tiles of A of size (1szx X
bszy) X tW or tiles of B of size tW x (1szy X bszx). If the flag takes a value
of 2, it tries to allocate space for an additional column for each tile, to avoid
possible bank conflicts.

The pseudo-code in Figure 2 shows a simplified version of the algorithm
followed by each thread to calculate a complete bszy x bszx tile of C. For
simplicity, this algorithm assumes that the local memory is used as a gateway
between global and private memory and that vector lengths vB and vC are
equal. The local variables to load a (1szx X bszy) X tW tile of A and a tW x
(1szy x bszx) tile of B are declared in lines 3 and 6. Lines 9 and 11 declare
the private variables to load bszy x uf elements of A and uf x bszx elements
of B. Finally, the private variable ¢ where the resulting bszy x bszx tile of
C is stored is declared in line 13. Notice that each element of arrays b and c
are vectors of size vB and vC respectively. This enables vectorization when
the multiplication is done.

Lines from 15 to 18 calculate the first position in A and B accessed for
a given group, and the first position in localA and localB accessed by
a given thread, respectively. Here it is important to explain that the tuple
(gidx,gidy) corresponds to HPL predefined variables that provide the iden-
tifier of the thread group to which the current thread belongs in the first and
the second dimensions of the domain, respectively. The loop between lines
20 and 36 iterates on each tile of size tW in the common dimension of A and B.
Inside this loop, the corresponding slices of A and B are copied collaboratively
by the members of the same group into their local counterparts, localA and
localB (see lines 22 and 23). The local barrier in line 24 waits until every
member of the group has completed its part of this copy. Then, the inner
loop between lines 25 and 34 iterates on subtiles of size uf within each tile
of width tW. Lines 26 and 27 transfer the appropriate subtiles from localA
and localB to their private counterparts, a and b, respectively.

The three innermost nested loops in lines 29 to 33 perform vectorially the
multiplication of a subtile of bszy x uf elements of a by another subtile of
bszy X bszx elements of b. The result is stored in a private matrix c. These

13
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// Local submatriz of A

1A_sz = l1lszx*bszy; // Rows of local submatriz of A
local float localA[lA_sz][tW];

// Local submatriz of B

1B_sz = lszy*bszx; // Columns of local submatriz of B
local float localB[tW][1B_sz];

// Private submatriz of A

private float al[bszy][uf];

// Private submatriz of B

private float<vB> b[uf][bszx/vB];
// Private submatriz of C

private float<vC> c[bszy][bszx/vC];

A _gp gidx*1A_sz; // First row in A for group (gidz,gidy)
B_gp = gidy*1B_sz; // First column in B for group (gidz,gidy)
1A_pos = lidx*bszy; // First row in locald

1B_pos = lidy*bszx; // First column in localB

for_(t=0, t<N, t+=tW){ // foreach tile of width tW in N
// Collaborative copies of A and B to local memory
localA[0:1A_sz][0:tW] <- A[A_gp:A_gp+1A_sz][t:t+tW]
localB[0:tW][0:1B_sz] <- B[t:t+tW][B_gp:B_gp+1B_sz]
barrier(); // Group barrier
for_(tt=0, tt<tW, tt+=uf){ // foreach tile of width uf in tW
b[0:uf] [0:bszx] <- localB[tt:tt+uf] [1B_pos:1B_pos+bszx]
al0:bszy][0:uf] <- localA[lA_pos:1A_pos+bszy][tt:tt+uf]
// Vectorized product of a and b private memory slices

for(i=0; i<bszy; i++){ // loop 0
for(j=0; j<bszx/vC; j++){ // loop 1
for (k=0; k<uf; k++){ // loop 2

clil[j] += alillk] * blk]1[j];
3}
}
barrier (); // Group barrier

}

C_row=gidx*1A_pos; // First row in C for a block
C_col=gidy*1B_pos; // First column in C for a block
C[C_row:C_row+bszy][C_col:C_col+bszx] <- c[0:bszy][0:bszx]

Figure 2: Calculation of a single block of C using local memory
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three loops are native C++ for loops, thus, they will be fully unrolled at
run-time. In our implementation, these loops can be dynamically reordered,
as we have applied the techniques described in Section 3. The selection is
made by the order parameter in Table 1, which is a vector of three elements
that encodes the selected order . Once a thread has completed the calculation
of its tile of C, the instruction in line 40 copies back the resulting matrix from
the private copy in ¢ to the appropriate positions of the global matrix C.

4.2. Genetic search

The values of the parameters summarized in Table 1 are tuned using
a genetic algorithm (GA) [12]. In order to implement this GA search we
have used the GAlib genetic algorithm package [13]. Genetic algorithms
initially create a population of individuals which are characterized by a set
of genes. If the current population meets the fitness criteria, the genetic
algorithm finishes, if not, the genetic algorithm generates a new population
by generation, crossing and/or mutation.

In our case, individuals are versions of the matrix multiplication and their
genes are each one of the parameters of Table 1. The initial population is
generated randomly. Individuals for the subsequent generations are gener-
ated using random values for each parameter (generation) or by combining
the genes of two individuals (crossing). Also, once these new individuals
have been generated, some of their genes can be mutated following some
rules (mutation). These mutations are not just random, as they intend to
generate combinations around the area of the search space where the best
solutions are usually found. The fitness criteria is that an individual with a
faster kernel execution time have not been found for the last five generations.
When the search concludes, such individual with the best kernel execution
time is selected.

The values taken by genes of one individual have to match certain condi-
tions. These conditions can be imposed by HPL, the matrix multiplication
algorithm, or the properties of the device where the generated kernel will be
executed. For example, HPL restricts the local size to be not greater than
the global size, whereas the algorithm used to implement the matrix multipli-
cation forces the tile width tW to be not greater than the common dimension
N of matrices A and B. In addition, the device must have free memory space
enough to perform the multiplication, and this restriction is directly related
to the selected sizes for the global and the local domains and tile width,
among other parameters.
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The default generation and combination operations of the GA are over-
loaded to check in advance if the parameters match these conditions. If not,
the individual is discarded. Notice, that the high number of parameters in-
crease the probability that a generated individual is invalid. This checking
mechanism discards these individuals before they are tested, thus, the effect
on the search time of these defective individuals is negligible.

| Condition | Explanation ‘
szy < P . .
szw < M Global workspace is not greater than C matrix
lszx < szx
- Local k fit i lobal ki
lszy < szy ocal workgroups fit into global workspace
tW < N Tile width for row-column product loop not greater than N
uf <tW Unroll factor over tile not greater than tW
vA <tW Vector size for row-column product loop not greater than tWW
<
vB < bszz Vectors used to manipulate B and C' are not greater than bszz
vC < bszx
sizeof(A)

+ sizeof(B)

+ sizeof(C)

< g_mem_avail
sizeof(local A)
+ sizeof(localB) | Enough space in local memory for slices localA and local B
< l_mem_avail

Free space enough in global memory for matrices A, B and C

Table 2: Minimum conditions of validity for GA individuals

Table 2 summarizes the conditions that must be matched by the values
taken by the genes of an individual. These conditions prevent things like: too
large workspaces that can generate too many idle threads, local workspaces
larger than the global ones, and vector sizes or unroll factors that are incom-
patible with the block size, the tile size or the problem size.

Despite the limitations imposed by the conditions included in Table 2, the
genetic algorithm still has a large range of possible values to explore for each
gene, which gives place to a large number of possible individuals. In order
to increase the effectiveness of the genetic search, additional conditions have
been imposed in order to keep the values of some parameters within ranges
that have heuristically shown to contain the optimal solutions to our problem.
This reduces the search time and it helps to reach a better solution. In detail,
both dimensions of the global domain have been limited to a minimum size
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of 128 when the algorithm is run in GPUs, and to a minimum size of 64
otherwise. These heuristic conditions are added to the mandatory conditions
shown in Table 2 and they are checked before an individual is qualified as
valid.

5. Experimental results

In this section the performance and the search time of our adaptive im-
plementation of the matrix multiplication is evaluated for different problem
sizes, and compared with other approaches, in four very different platforms:

e CPU: A dual-socket system with two Intel Xeon E5-2660 Sandy Bridge
with eight 2.2Ghz cores and Hyper-Threading (8 x 2 threads per pro-
cessor, for a total of 32) and 64 GB of RAM. Intel OpenCL driver
version 1.2-4.5.0.8. Single-precision theoretical peak performance of

563 GFLOPS.

e Nvidia: An NVIDIA Tesla K20m with Kepler GPU architecture and 5
GB GDDR5. NVIDIA OpenCL driver version 340.58. Single-precision
theoretical peak performance of 3524 GFLOPS.

e AMD: An AMD FirePro S9150 with Hawaii GPU architecture and 16
GB GDDR5. AMD OpenCL driver version 1702.3. Single-precision
theoretical peak performance of 5070 GFLOPS.

e Accelerator: An Intel Xeon Phi 5110P with sixty 1.053GHz cores with
8 GB of RAM. Intel OpenCL driver version 1.2-4.5.0.8. Single-precision
theoretical peak performance of 2022 GFLOPS.

The test performs the multiplication of two square matrices of single-
precision floating point values taking into account four different matrix sizes,
1024 x 1024, 2048 x 2048, 4096 x 4096 and 8192 x 8192. All test programs
were compiled using g++-4.7.2. Also, in order to assess the quality of our
approach, the performance of our HPL implementation tuned by means of a
genetic search process is compared to the performance of two OpenCL state-
of-the-art implementations, namely cIBLAS 2.4 [14] and ViennaCL 1.5.1 [10].
We have selected these implementations because HPL is also currently based
on OpenCL, they can be executed in the same range of platforms as our
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HPL adaptive code, and they also support some kind of adaptive behav-
ior depending on the underlying hardware. We now briefly describe these
libraries.

First, cIBLAS is the implementation used by AMD in its cIMath suite
and thus it is the official BLAS library in the AMD platform. It includes a
profiling tool that queries some of the properties of the platform where the
matrix multiplication will be run. This information is used to select some
candidate values for parameters such as the granularity of the work, both
group and thread-level tile widths, and vector lengths, and to decide whether
or not local memory is used. Using these ranges of values, the tool generates
a set of representative kernels, which are run for different problem sizes and
it chooses the best one as the single optimized version for the platform.
Originally, the tool only supports GPU profiling. We have modified it to be
able to profile also the hardware of the rest of our testing platforms.

The ViennaCL implementation has several parameters that can be tuned
for each platform. The latest distributions of ViennaCL, from 1.6.2 on, pro-
vide heuristically tuned values of these parameters for some of these plat-
forms, but they deliver bad performance compared to our implementation.
Previous versions of ViennaCL, such as 1.5.1, contained an auto-tuning tool
that performs an exhaustive search for the values of these parameters, within
a heuristically defined vast range, guided also by kernel execution time. On
average, the performance of ViennaCL using this auto-tuner is 5 times the
performance using the heuristically selected values, but on exchange, it re-
quires a very large search time. The performance results reported in this
work for ViennaCL are those resulting of this exhaustive search.

Table 3 shows the performance results for the three implementations on
the four tested platforms. The third column contains the execution time in
milliseconds and the performance measured in GFLOPS of the best kernel
found by our genetically tuned HPL implementation. The fourth and fifth
columns shows the speedup achieved with respect to the cIBLAS and Vi-
ennaCL implementations. Figures 3.a) to 3.d) compare the performance in
GFLOPS of cIBLAS and ViennaCL to that of our implementation for each
problem size and platform. Let us recall that the kernels of all the implemen-
tations have been previously adapted to the underlying hardware by means
of their respective profiling and tuning procedures. The results show that our
implementation outperforms these two implementations for all matrix sizes
and on the four platforms with the sole exception of matrix multiplication
of size 4096 in the AMD platform. In this case, our HPL implementation is
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Platform | Size Best kernel performance Speedup

Execution time (GFLOPS) | cIBLAS ViennaCL

1024 6.75 ms (318.00) 2.12 1.34

CPU 2048 56.45 ms (304.33) 1.92 1.33

4096 568.52 ms (241.75) 2.35 1.11

8192 4768.57 ms (230.57) 2.57 1.13

1024 2.22 ms (969.52) 1.53 1.05

- 2048 17.19 ms (999.64) 1.47 1.00
Nvidia

4096 133.89 ms (1026.54) 1.55 1.02

8192 1069.18 ms (1028.37) 1.55 1.03

1024 1.01 ms (2126.22) 2.50 2.07

AMD 2048 6.53 ms (2630.91) 1.35 1.28

4096 63.49 ms (2164.73) 0.93 1.06

8192 839.19 ms (1310.21) 1.19 1.10

1024 7.43 ms (288.91) 1.81 2.08

ACC 2048 44.38 ms (387.11) 1.70 2.22

4096 350.95 ms (391.62) 1.54 2.17

8192 3213.56 ms (342.15) 1.82 2.02

Table 3: Speedups achieved by best versions found

beaten narrowly by the cIBLAS implementation. The average speedup of our
approach is 1.74 with respect to cIBLAS and 1.44 with respect to ViennaCL.
Compared to cIBLAS, our implementation achieves a peak speedup of 2.57
in the CPU platform for the 8192 size. The peak speedup with respect to
ViennaCL is 2.22 and it is achieved in the ACC platform for the 2048 size.
All the comparisons were made against the corresponding optimized ver-
sions generated by both cIBLAS and ViennaCL. Let us notice that cIBLAS
and ViennaCL also tunes the code for each different problem size. These
best-kernels are, on average, 12 times faster than those found in [6]. This
improvement is a consequence of the application of new techniques to gener-
ate a performance-portable code and some generic optimizations applied to
the matrix multiplication algorithm.

Table 4 shows the best values of the parameters of the HPL generic matrix
multiplication kernel found by the genetic algorithm. These parameters have
been explained in Table 1. The Table shows that the values selected for each
platform and for each problem size are different, and they are difficult to
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Figure 3: Performance in GFLOPS of cIBLAS, ViennaCL and HPL best versions

predict using a single general heuristic. A pattern can be observed in the
values taken by some parameters within the same platform, but they cannot
be easily found a priori.

Table 5 contains the time consumed by the tuning procedures conducted
by our genetic algorithm, the cIBLAS profiler and the ViennaCL auto-tuner.
On average, our genetic search is 1.18 times faster than the cIBLAS profiler.
For the CPU and ACC platforms, the sum of times consumed by our genetic
search for each matrix size is competitive in relation to that consumed by
the cIBLAS profiler. In the Nvidia and AMD platforms, both composed of
GPUs, the cIBLAS search procedure is quite faster, which is understandable
taking into account that it is specifically directed to this kind of devices. The
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Device | Size (szx,32y) (Iszx,lszy) | (bszx,bszy) | (tW,uf) | (vA,vB,vC) | copy (A,B) | order
1024 | (256,64) (8,64) (16,4) (32.1) (3,8.,8) (2,0) 201
cpu | 2048 | (512,128) | (8,128) (16,4) (32,1) (8,8,8) (2,0) 201
4096 | (1024,256) (2,256) (16,4) (256,8) | (16,16,16) (1,0) 012
8192 | (2048,512) | (32,32) (16,4) (32,4) | (16,16,16) (2,0) 201
1024 | (128,256) (2,64) (4,8) (32,2) (2,4.4) (2,0) 210
Nvidia| 2048 | (512,256) (4,64) (8,4) (256,4) | (2,4,4) (2,0) 102
4096 | (512,512) | (16,16) (8.8) (32,2) (2,2,2) (2,0) 102
8192 | (1024,1024) | (2,128) (8,8) (32,2) (4,8,8) (2,0) 210
1024 | (256,128) (4,32) (8.4) (1281) | (4,898) (2,0) 102
AMD | 2048 (256,256) (1,128) (8,8) (256,2) (4,8,8) (2,0) 120
4096 | (512,512) (4,16) (8,8) (32,2) (4,8,8) (2,0) 012
8192 | (1024,1024) | (1,128) (8.,8) (32,4) (4,8,8) (2,0) 012
1024 | (256,64) (1,16) (16,4) (8,2) (1,16,16) (0,0) 120
ACC 2048 | (256,128) (1,8) (16,8) (512,8) (8,16,16) (0,0) 120
4096 | (2048,256) (16,32) (16,2) (32,1) (8,16,16) (2,0) 201
8192 | (4096,512) | (16,16) (16,2) (32,1) | (16,2,2) (2,0) 021

Table 4: Configuration of the best versions found using our approach

results also show that the ViennaCL auto-tuner is 160 times slower than our
genetic search procedure. This large difference is undoubtedly due to the
time-consuming exhaustive search it conducts. As for the search times of our
tool, despite covering much more optimization parameters and techniques
than [6], they are 2.57 times shorter than those reported in [6]. This is
a consequence of the improvements in the search process that have been
explained in Section 4.2.

6. Related work

Matrix multiplication is an algorithm extensively studied in the bibliog-
raphy for multiple kinds of devices, including Nvidia [8] and AMD [9] GPUs.
Some of these works focus on the study of several linear algebra operations.
For example, ViennaCL [10] provides an OpenCL implementation of several
linear algebra routines, including the matrix multiplication. Their approach
is based in a generic version of the matrix multiplication where the param-
eters are either fixed heuristically or using an auto-tuner driven by the exe-
cution time. ViennaCL is, to the best of our knowledge, the best-performing
OpenCL implementation of the matrix multiplication. Their auto-tuner ob-
tains worse performance results than our implementation and, in addition,
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. : Total tuning time (s)
Device | Size GA clBLAS | ViennaCL
1024 120.57 32428.25
2048 339.99 60438.13
CPU 4096 1729.80 42047.26 500775.18
8192 | 19286.90 4186086.80
1024 242.04 18836.30
L. 2048 331.40 38292.62
Nvidia | 1006 | 442057 | 122593 | 186041.36
8192 | 17127.50 1394675.71
1024 1579.74 1911.00
2048 2422.34 6221.00
AMD 4096 4587.55 D425.97 60595.37
8192 5792.07 > 3 days
1024 260.32 121891.58
2048 915.69 211610.18
ACC 4096 4401.47 86501.20 1145630.97
8192 | 31973.30 > 3 days

Table 5: Total times for tuning procedures

the search times are several orders of magnitude larger than ours. The reason
is that they run an exhaustive search process, instead of an informed one like
our HPL implementation does by means of a genetic algorithm.

cIMAGMA [7] introduces an OpenCL version of the MAGMA library [15].
They use cIBLAS to implement BLAS routines, including the matrix multi-
plication operation. Thus, our comparison to cIBLAS is valid for this library.

There are more approaches that try to achieve performance portability
of linear algebra problems through iterative processes. For example, [16]
uses iterative compilation to select the optimal parameters for GPU codes
according to a set of pre-defined parameterized templates. They have 10
parameters, while we tune 14 parameters. They do not report the execution
times of their autotuner. We obtain a better performance, but obviously we
are using newer architectures.

Matsumoto et al [17] automatically generate and tune several parametrized
OpenCL versions of the AT B variant of GEMM routine. These versions are
implemented following different algorithms devoted to exploit specific fea-
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tures of different kinds of devices. Moreover, the search process conducted
consisted on an exhaustive search of the fastest kernels among tens of thou-
sands of heuristically previously chosen versions. Notice that the execution
time measured for each kernel included the time consumed by the transposi-
tion of matrix A.

Other approaches are more general and they focus on a wider range of
applications. For example, a simple model based on both hardware and appli-
cation parameters is used in [18] to build an OpenCL performance-portable
implementation of data streams clustering and generate tuned versions of it
for several NVIDIA and AMD GPUs.

The OCLoptimizer [19] source-to-source optimization tool searches opti-
mal unroll factors for OpenCL kernels based on compiler directives and a
configuration file. It also selects the optimal global and local workspaces.

The Periscope Tuning Framework [20] provides an automated evaluation
of the search space to tune performance and energy efficiency. In GPGPUs it
targets applications written in the pipeline patterns framework, and it tries
to increase the throughput of the pipeline.

Orio [21] is an open-source extensible framework for the generation and
autotuning of code for several hardware architectures. It targets code writ-
ten in programming languages such as C or Fortran. Functions to be tuned
by Orio must be implemented in a parametrized way similar to that of our
HPL kernels, and then annotated with complex directives in order to pro-
vide the framework with the information needed to conduct the autotuning
process. Both OrCUDA [22] and OrCL [23] are built on top of Orio, expand-
ing its functionalities in order to generate respectively CUDA and OpenCL
optimized code. OrCUDA [22] is used to tune some stencil-based compu-
tations for different NVIDIA GPUs, whereas OrCL [23] produces OpenCL
optimized codes for several NVIDIA and AMD GPUs, and an Intel Xeon
Phi accelerator. It targets several numerical kernels used in iterative sparse
linear systems solution and in parallel simulations of solid fuel ignition

Complex computations are usually tuned by selecting the best implemen-
tations for the different numerical routines of which they are composed. Ni-
tro [24] is a framework that provides programmers with a mechanism to
manage collections of these building blocks and also information related to
their performance in different platforms and for different applications. This
information is used to train the framework about how to select optimal com-
binations of variants of those routines in order to solve different kinds of prob-
lems, such as sparse matrix operations, conjugate gradient solvers, breadth-
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first search algorithms, histogram calculations, and sorting operations.

Another relevant topic is the study of the interest of performance porta-
bility. In this vein, Dolbeau et al [25] discuss the variations in the obtained
performance using the same OpenCL code on different platforms. They also
use the CAPS compiler to generate auto-tuned OpenCL code.

7. Conclusions

We have presented a generic implementation of the matrix multiplication
based on RTCG techniques exploited thanks to the use of the HPL embedded
language for kernels. As a result, a dozen of parameters allow to tune this
implementation for the different platforms and problem sizes. The search
of the best values for these parameters is guided by a genetic algorithm
where each individual is evaluated using its execution time. This implemen-
tation illustrates and proves the effectiveness of a set of techniques to build
a performance-portable implementation of any algorithm in HPL. They offer
an alternative to complex auto-tuning libraries or complex source-to-source
compilation tools.

The performance of this implementation has been compared to two state-
of-the-art OpenCL adaptive implementations of the matrix product, namely,
cIBLAS and ViennaCL. The kernels used by cIBLAS can be adapted to the
platform where they are going to be run by means of a prior profiling. The
ViennaCL implementation can be tuned through a set of parameters, but
their values are selected through an exhaustive search. Except in a single test,
where cIBLAS takes the lead for a single matrix size in an AMD GPU, our
implementation systematically outperforms the other adaptive libraries in
four platforms: an NVIDIA GPU, an AMD GPU, a multicore Intel CPU and
an Intel Xeon Phi accelerator. The average speedup of our implementation
respect to cIBLAS and ViennaCL is 1.74 and 1.44, respectively. Compared
to cIBLAS, our implementation achieves a peak speedup of 2.57 in the CPU
platform for the 8192 size. The peak speedup with respect to ViennaCL is
2.22 and it is achieved in the ACC platform for the 2048 size. In addition,
on average our genetic search is 1.18 times faster than the cIBLAS profiling
and 160 times faster than the exhaustive search implemented by ViennaCL,
and it finds faster versions of the matrix multiplication.

As future work, we are planning to implement mechanisms that allow
to automatically apply these techniques to any HPL code with a minimal
intervention by the programmer.
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