
Writing self-adaptive codes for heterogeneous
systems

Jorge F. Fabeiro, Diego Andrade, Basilio B. Fraguela, and Ramón Doallo

Depto. de Electrónica e Sistemas, Universidade da Coruña, Spain
{jorge.fernandez.fabeiro,diego.andrade,basilio.fraguela,doallo}@udc.es

Abstract. Heterogeneous systems are becoming increasingly common.
Relatedly, the popularity of OpenCL is growing, as it provides a unified
mean to program a wide variety of devices including GPUs or multicore
CPUs. More recently, the Heterogeneous Programming Library (HPL)
targets the same variety of systems as OpenCL, intending to improve
their programmability. The main drawback of such unified approaches
is the lack of performance portability, as codes written using OpenCL
or HPL may obtain a good performance in a given device but a poor
performance in a different one. HPL allows to generate different versions
of kernels at run-time by combining C++ and the HPL embedded lan-
guage. This paper explores the development of self-adaptive kernels that
exploit this characteristic so that their code depends on configuration pa-
rameters that are tuned using a genetic algorithm through an iterative
optimization process. The results show that these self-adaptive kernels
are faster than those generated by hand following heuristics.

1 Introduction

One of the most important problems that hamper the wider use of heterogeneous
systems is the current poor portability of the codes for these devices. The truly
portable programming of heterogeneous system needs: (1) a unified program-
ming language for any kind of device and, (2) a method to achieve performance
portability. OpenCL [1] solves the first challenge as it enables the programming
of a wide variety of devices. The second requirement, performance portability,
has been widely addressed in the bibliography. For example, the framework [2]
separates functionality from implementation details using specialized functions
that allow to explore a great variety of implementations and to select the opti-
mal one for a certain platform. VForce [3] provides performance portability in a
transparent way across different kinds of accelerators to programs written in a
domain-specific language focused on image and signal processing.

Performance portability can also be achieved through iterative processes.
For example, [4] uses iterative compilation to select the optimal parameters for
GPU codes according to a set of pre-defined, parametrized templates for linear
algebra problems. An auto-tuning approach that selects the best execution plan
for the SkePU skeleton programming framework in multi-GPU systems based on
predictions is presented in [5]. The PARTANS framework [6], which is specifically

designed to express stencil computations in multi-GPU systems, includes auto-
tuning mechanisms to optimize this kind of computations.

Focusing on OpenCL, uCLbench [7] characterizes the properties of the de-
vice and the OpenCL implementation where the code is intended to run, seeking
to guide programmers in the hand-tuning of their codes. The main changes
required to port the performance of OpenCL codes that have been tuned for
GPUs to CPUs are discussed in [8][9]. GLOpenCL [10] is a development frame-
work consisting of a compiler and a runtime library that supports OpenCL on
different types of multicores. OCLoptimizer [11] searches optimal unroll factors
for OpenCL kernels based on compiler directives and a configuration file. Fi-
nally, Dolbeau et al [12] discuss the performance that the same OpenCL code
achieves on different platforms. They use the CAPS compiler to generate auto-
tuned OpenCL code.

The Heterogeneous Programming Library (HPL) [13] is a C++ framework
that improves the programmability of heterogeneous systems by combining spe-
cial data types and an embedded language to write kernels, which express the
parallelized computations to run in the devices. HPL is a unified approach for
programming heterogeneous systems as it uses as backend OpenCL, so that its
kernels can run on any device. It also provides appropriate tools to provide per-
formance portability, as the combination of its embedded language and C++ to
write the kernels enables run-time code generation (RTCG), which can be used
to write self-adaptive generic kernels. While other tools enable RTCG using sim-
ilar mechanisms [14][15], they only target regular CPUs, and therefore they have
sought other purposes. This way, this paper explores the development of kernels
with portable performance by combining C++ and the HPL embedded language
to generate parametrized generic kernels. The configuration parameters of each
kernel change certain aspects of how its code is optimized, and they are adjusted
using a genetic algorithm through an iterative process. The performance of the
kernel generated using each combination of values of its parameters is evaluated
by executing the code. The configuration parameters select the optimal unroll
factors for some loops, the optimal granularity for the work performed by each
instance of the kernel, the base version of the algorithm used, and which data
structures are stored in local memory. The performance results, focused on a
matrix product code, show that our approach generates kernels that can be up
to 4.67 times faster than kernels generated following heuristics.

The rest of the paper is organized as follows. Section 2 briefly introduces
the HPL library. Section 3 explains how RTCG can be used in HPL to write
parametrized generic kernels. Section 4 explains the method derived to select
the optimal values for the configuration parameters of the kernel using iterative
optimization. Section 5 shows the experimental results and Section 6 concludes.

2 The Heterogeneous Programming Library

The Heterogeneous Programming Library (HPL), which is publicly available
at http://hpl.des.udc.es, intends to improve the programmability of het-

erogeneous systems while providing portability through an approach where the
computational kernels that exploit heterogeneous parallelism are written in a
language embedded in C++. This characteristic enables run-time code genera-
tion (RTCG), which is a powerful tool to provide performance portability, as we
will see through this paper. HPL provides portability because OpenCL is the
intermediate representation (IR) it currently generates, thus this library targets
the same range of devices supported by OpenCL.

The HPL library supports the same programming model as CUDA and
OpenCL. Its hardware model is composed by a host equipped with a standard
CPU and memory, with a number of computing devices attached. The host runs
the sequential parts of the code, while the devices run the parallel parts. Each
device has processors that execute SPMD parallel code on data present in the
memory of their device. As in OpenCL or CUDA, we can create groups of threads
that can be synchronized through barriers and share a small scratchpad memory.

The memory model distinguishes the same kinds memory as OpenCL (global,
local, constant and private) and with the same properties. As kernels can only
work with data available in the devices, data must be transferred between host
and devices, but this process is totally automated by the library.

Several instances of each kernel, or work-items using OpenCL terminology,
can be executed in parallel, each instance being univocally identified. The num-
ber of instances of the kernels and their identifiers are defined by a global domain
of non-negative integers with up to 3 dimensions. This way, instances are identi-
fied inside this domain with tuples of global ids. In turn, these instances can be
associated in groups. With this purpose, we can define local domains as equal
portions of the global domain. Instances are identified inside its group using
tuples of local ids. Now, Section 2.1 explains how to program using HPL.

2.1 Programming using HPL

The library provides three main components to the programmers:

– A template class Array to define both the variables to be transferred between
the host and the devices, and the variables that are local to the kernels.

– The kernels, which are functions written in a language embedded in C++.
This embedded language is an API in C++ consisting of data types, func-
tions, macros and predefined variables.

– An API that will be used by the code to inspect the devices available in a
given platform and to order the execution of the kernels.

All the kernel variables must have type Array<type, n [, memFlag]>, which
represents an n-dimensional array of elements of a C++ type, or a scalar for
n=0. Scalars and vectors can also be defined with special data types like Int,
Float, Int4, Float8, etc. The optional memFlag can specify one of the kinds of
memory supported (Global, Local, Constant or Private). The arrays passed
as parameters to the kernels must be declared in the host using the same type.
These variables are initially stored in the host memory, but when they are used as

Listing 1.1: SAXPY HPL code
void saxpy (Array <float ,1> y, Array <float ,1> x, Float a) {

y[idx] = a * x[idx] + y[idx];
}

int main(int argc , char *argv) {
Float a;
Array <float , 1> x(1000) , y (1000);
//x, y and a are filled in with data (not shown)
eval(saxpy). global (1000). local (10)(y, x, a);

}

kernel parameters they are automatically transferred to the device. The outputs
are also automatically transferred to the host when needed.

HPL kernels also require that their control flow structures are written using
special keywords. The embedded language uses the same constructs as C++ but
their name finishes with an underscore (if , for , . . .). Also, the arguments to
for loops are separated by commas instead of semicolons. The library provides an
API based on predefined variables to obtain the global, local and group identifiers
as well as the sizes of the domains and numbers of groups. For example, idx
provides the global id of the first dimension, while szx provides the globalsize
of that dimension. If we add the l prefix to these keywords we obtain their local
counterparts and if we replace the letter x with y or z, we obtain the same values
for the second and the third dimensions respectively.

Kernels are written as regular functions or functors that use these elements
and whose parameters are passed by value if they are scalars, and by reference
otherwise. The saxpy routine in Listing 1.1 implements using this language the
SAXPY (Single-precision real Alpha X Plus Y) vector BLAS routine, which
computes Y = a × X + Y . In this kernel, each instance idx computes a different
position of the result y[idx].

Regarding the host interface, its most important component is the function
eval, which requests the execution of the kernel f with the syntax eval(f)(arg1,
arg2, ...). The execution of the kernel can be parametrized by inserting spec-
ifications, in the form of methods, between eval and the argument list. For ex-
ample, the global and the local sizes can be specified using methods called global
and local respectively. This way, the saxpy routine is invoked in Listing 1.1 with
a global domain of 1000 elements and a local domain of 10 elements.

3 Performance portability in HPL

HPL generates the internal representation (IR) of its kernels by running them as
regular code in the host when an eval requests their execution for the first time.
Subsequent requests just reuse the IR generated the first time, which is stored in
an internal cache, unless this cache is erased in order to force the regeneration of
the IR. The HPL macros and data types capture all the expressions in which they
are involved during the execution of the kernel in the host, allowing the runtime

to generate the associated IR. However, regular C++ sentences found within
the kernel are simply executed and they do not appear in the resulting IR. This
characteristic enables RTCG, which can be used, for example, to choose between
different versions of the same code, or to parametrize the generation of code. The
method proposed in this paper combines RTCG and generic kernels to generate
different versions of the same kernel based on different input parameters. In this
context, generic kernels are those written for generic values of some parameter,
such as the granularity, which can be adjusted at run-time.

First, we describe the strategy we have followed to parameterize the kernels.
We have defined the HPL kernels using functors, so that for each kernel we
define a class with the name of the kernel that defines the operator(). The
arguments and the body of this method are the arguments and the body of the
kernel, respectively. The parameters that will be used to parametrize the kernel
at runtime, are defined as properties of this class, thus, they can be accessed
from the operator() method. Besides, they can be set from the host before the
generation of the kernel code is initiated by an eval invocation.

Based on a set of parameters, we have used RTCG and generic kernels to
generate codes that at the same time: (1) apply the unrolling technique to one
or several loops using a given unroll factor, (2) select the best granularity of
the computation performed by each instance of the kernel, (3) select the most
suitable variant of an algorithm depending on the device that will be used and
(4) decide which data structures are stored in local memory. The methods used
to introduce these features in the kernels are now explained in turn.

Unrolling: Loop unrolling is a popular optimization technique whose main
benefits are that it unveils instruction level parallelism, minimizes branch penalty
and reduces the number of control instructions executed. Loop unrolling using
arbitrary unroll factors can be introduced in HPL kernels using RTCG. The C++
code will be used in conjunction with the embedded language to generate the
unrolled loops. Let us see an example starting from the matrix-vector product
(MxV) code shown in Listing 1.2. This code defines the HPL kernel in lines 2-6.
Each instance of the kernel processes one row from the input matrix, thus a
single loop is required to multiply each element of the row by the corresponding
element of the input vector.

Listing 1.3 shows an unrolled version of the kernel. The loop between lines
4-7 is an unrolled version of the original loop, thus, its stride is now the unroll
factor (uf). The body of the loop is replicated uf times by a native C++ loop
(lines 5-6). As the number of iterations of the loop N may not be a multiple of
uf, to prevent out of range array accesses, the loop limit is N-uf. If there are
some iterations left after that loop, they are processed without unrolling by the
code in lines 8-9. The value for the unroll factor is passed to the kernel from the
main procedure by setting the appropriate attribute of the class that defines the
kernel (line 15).

Granurality: HPL creates one instance (or thread in HPL terminology) of
the kernel for each point of the global domain. The optimal amount of work
performed by each thread must be tuned for each platform in order to maximize

Listing 1.2: MxV code: original version
1 class MxV {
2 void operator ()(Array <float ,2> a, Array <float ,1> x, Array <float ,1> y) {
3 Int k;
4 for_(k=0, k<N, k++)
5 y[idx] += (a[idx][k] * x[k]);
6 }
7 };
8 int main (...) {
9 // Declare and initialize ax ,xv and yv Arrays

10 MxV matvec
11 eval(matvec). global (M)(av , xv , yv);
12 }

Listing 1.3: MxV code: unrolled version
1 class MxV { // Other portions of the class have been elided
2 void operator ()(Array <float ,2> a, Array <float ,1> x, Array <float ,1> y) {
3 Int k;
4 for_(k=0, k <= (N - uf), k += uf) {
5 for(aux =0; aux <uf; aux ++)
6 y[idx] += (a[idx][k+aux] * x[k+aux]);
7 }
8 for_(k,k<N,k++)
9 y[idx] += (a[idx][k] * x[k]);

10 }
11 }
12 int main (...) {
13 ...
14 MxV matvec
15 matvec . set_uf (unrolling_factor);
16 eval(matvec). global (M)(av , xv , yv);
17 }

the performance. For example, CPUs tend to be more effective using threads with
larger workloads than GPUs. It is interesting to be able to tune that granularity
at run-time depending on the type of device we are using. We can do that in
HPL by changing the number of points in the global domain. For example, in
our MxV code, the number of threads created is equal to the number of rows
of the input matrix, thus, each thread processes one row of this matrix. If we
reduce the number of threads, each thread should process several rows from the
input matrix. This modification requires that the code is rewritten for a generic
grain size, the grain size being in this case the number of rows of the input
matrix processed by each thread. In our proposal, the rows are distributed using
a block-cyclic policy, thus, grains of bszx rows are assigned cyclically to the
threads available. The optimal value of bszx is found for each device. In the
MxV code, this block size will not have a big influence in the performance, but
in other problems some values of bszs may benefit locality or coalescing, so, they
will have a big impact in the performance.

In order to implement this distribution of the rows, the MxV kernel code must
be changed to add two outer loops that process the blocks of bszx rows assigned

Listing 1.4: MxV code: auto-adjustable granularity version
1 class MxV { // Other portions of the class have been elided
2 void operator ()(Array <float ,2> a, Array <float ,1> x, Array <float ,1> y) {
3 Int ii , i, ilim , k;
4 for_(ii = idx*bszx , ii < M, ii += szx*bszx)
5 for_(i = ii ,i < min(xx+bszx , M), i++)
6 for_(k = 0, k < N, k++)
7 y[i] += a[i][k] * x[k];
8 }
9 }

10 int main (...) {
11 ...
12 int szx = <# threads of the global domain >;
13 int bszx = <block size >;
14 ...
15 eval(matvec). device (dev). global (szx)(av , xv , yv);
16 }

Listing 1.5: MxV code: algorithm version selection
1 class MxV { // Other portions of the class have been elided
2 void operator ()(Array <float ,2> a, Array <float ,1> x, Array <float ,1> y) {
3 if (device == CPU) {
4 // Version better suited to CPUs
5 } else {
6 // Version better suited to other devices
7 }
8 }
9 }

to each thread. Loop headers in lines 4-5 of Code 1.4 select the appropriate set
of rows to be processed by each thread following the block-cyclic policy. The
resulting kernel does not use RTCG but it is written in a generic way, so that if
different values are provided for the size of the global domain and the block size,
the granularity of the work performed by each thread is automatically adjusted
at run-time.

Algorithm selection: The type of device used for a kernel execution is
known at run-time. HPL can use this information to choose between different
versions of the same algorithm, or portions of the algorithm, using RTCG. For
example, a version that exploits local memory is good for GPUs but it may
introduce unnecessary synchronization points in CPUs. The best strategy to
divide the work among the threads varies depending on the type of device.
RTCG can be used to select the appropriate base version or implementations of
portions of the algorithm at run-time. Figure 1.5 shows the skeleton of a MxV
vector kernel where a different variant of the algorithm is selected depending on
the type of device. In the same vein, the size of the problem can advise the usage
of different base versions of the algorithm.

Local memory: The usage of local memory is crucial for some devices like
GPUs. We propose a technique to dynamically adjust the usage of local memory
in HPL kernels. The idea is to write kernels where one or several data structures

Listing 1.6: MxV code: local memory usage
1 class MxV { // Other portions of the class have been elided
2 void operator ()(Array <float ,2> a, Array <float ,1> x, Array <float ,1> y,
3 Array <float ,1,Local > lx) {
4 Int k;
5 if(copyX) {
6 for_(k=lidx , k<N, k+= lszx)
7 lx[k] = x[k];
8 barrier (LOCAL);
9 }

10 for_(k=0, k<N, k++)
11 y[idx] += a[idx][k] * (copyX ? (Float)lx[k] : (Float)x[k]);
12 }
13 }
14 int main (...) {
15 ...
16 eval(matvec). device (dev). global (M). local (localsize_x)(av , xv , yv , lxv);
17 }

may optionally be stored in local memory or not. For example, in the MxV code,
we can choose vector x for this purpose. A boolean parameter copyX will be set
in the host to indicate whether we want to place that array in local memory.
Listing 1.6 contains the MxV kernel modified to implement this behavior. The
kernel uses RTCG to make the copy of x to local memory if copyX is activated,
see lines 5-9. When the computation is done, the global array x or its local copy
will be used depending on the value of the copyX parameter in line 11.

4 HPL portable kernels through iterative optimization

The search of the optimal parameters for the kernel is performed using an it-
erative optimization process guided by a Genetic Algorithm (GA). Concretely,
we have built the iterative search on top of the sequential version of the GAlib
genetic algorithm package [16]. The chromosomes of our GA, which are poten-
tial solutions to our problem, have one gene per configuration parameter of the
kernel. The initial population of the algorithm is composed of a configurable
number of individuals that have been fixed by experimentation. The individuals
and chromosomes of the initial population are randomly generated. Each indi-
vidual generates a different version of the kernel using the values selected for
each configuration parameter. These versions are evaluated using their fitness
function, which is its execution time.

The minimum execution time obtained by a member of the population is
used to decide whether the search must finish. The condition for this is that
the fitness function (the execution time) has not improved for five generations.
When this happens, the chromosomes that provided the best solution are used
to generate the optimal kernel. If the condition has not been reached, a new
generation of individuals is generated. This generation is created starting from
the best individuals of the previous generation, and using mechanisms such as

crossover and mutations. The process is repeated until the fitness function has
not improved for five generations.

5 Experimental results

The techniques just described have been applied to implement a self-adaptive
version of a matrix multiplication (C = A × B) that has been tested on a CPU
socket of two Intel Xeon E5-2660 Sandy Bridge with eight 2.2Ghz cores and
hyper-threading (8 × 2 threads per processor, for a total of 32) and 64 GB of
RAM, an Intel Xeon Phi 5110P Accelerator with sixty 1.053GHz cores with
8 GB of RAM, and an NVIDIA Tesla Kepler K20m GPU with 5 GB GDDR5.
The Intel OpenCL 2013 R3 was used for the CPU and the accelerator, and the
NVIDIA CUDA 5.0.35 toolkit for the GPU.

At the top level, our kernel chooses between two base versions of the algorithm
in which matrices are processed following a block-cyclic approach. One version
is more suitable for CPUs and the Xeon Phi, as it uses neither local memory nor
cooperation among threads and each thread works on blocks of sizes specified by
the user at runtime. The other version, where the work is distributed among the
threads in tiles of a given size, and the data of each one of the input matrices used
by each thread group can be copied or not to local memory, so that local domain
sizes play an important role, better fits GPUs for this algorithm. Both versions
also allow to adjust the size of the global domain of the execution as well as the
degree of unroll of the innermost loop at runtime. Table 1 lists the configuration
parameters of the kernel that are adjusted by the GA through the iterative
process, and their baseline values. The N/A labels indicate the combinations
in which the parameter is not applicable to the device, whose type is obtained
at run-time. The baseline of the experiments is the parametrized HPL code. In
this baseline, the global domain has been chosen following policies adequate to
each platform and the usage of local memory is disabled. This way, the CPU
baseline uses a global domain of (8,4) threads, as there are 32 threads available
in the socket, and a consecutive block distribution. The baseline of the Xeon Phi
and the GPU version has a global workspace with the shape of the destination
matrix (so each kernel instance computes a single item) and it directly reads the
input matrices from global memory. Furthermore, in all the baselines the size
of the local workspace was automatically selected by the OpenCL driver, and
no innermost loop unrolling was applied. The usage of an HPL baseline over an
OpenCL implementation allow us to measure the impact of the tuning of the
parameters.

Table 2 shows for each one of the platforms and for three matrix sizes the
execution time of the baseline HPL version of the kernel, the execution time of
the version tuned using our tool, the speedup of this version with respect to the
baseline, and the execution time of the tool itself. Although HPL has very small
overheads with respect to native OpenCL [13], we have exclusively measured
the runtime of the underlying OpenCL kernel generated to provide maximum
accuracy. We can see that speedups of between 1.01 and 4.67 were achieved in all

Table 1: Parameters adjusted by the genetic algorithm and their baseline values, where
c and r are the number of columns and rows of the destination matrix C, respectively.
N/A=not applicable.

Name(s) Description Baseline
CPU ACC GPU

uf Unroll factor 1
szx, szy Global size of both dimensions (8,4) (c,r) (c,r)
lszx, lszy Local size of both dimensions Auto
bszx, bszy Block size of the block-cyclic distribution (c/szx,r/szy) N/A
T Tile size for the copies of A and/or B N/A -
CopyA, CopyB Copy or not arrays A and B respectively N/A false

Table 2: Execution times and speedups achieved by generated kernels

Device Size Baseline time (s) Kernel time (s) Speedup Tool time (s)

CPU
1024 0.176 0.092 1.91 207
2048 1.252 0.706 1.77 627
4096 114.369 24.478 4.67 20651

ACC
1024 0.034 0.031 1.09 1534
2048 0.246 0.243 1.01 2598
4096 2.207 2.129 1.03 4479

GPU
1024 0.016 0.013 1.24 198
2048 0.167 0.108 1.54 490
4096 1.509 0.996 1.52 2241

the platforms over hand-tuned baselines, justifying the interest of this approach.
The high execution time of the tools is due to the fact that the search process is
guided by the execution time. This time could be reduced if the search is guided,
or at least pruned, using analytical models [17, 18].

Table 3 shows the optimal values found for each test case. The wide variety of
solutions indicates the difficulty of finding a priori heuristics to choose the best
parameters, making search necessary. In fact, some results are counterintuitive.
For example, large numbers of workitems, much larger than the number of cores
available, yielded always the best performance in the CPU and the Xeon Phi.
The reasons are probably that in these devices the OpenCL framework coarsens
multiple kernel instances into a single task ([19] indicates a work group is the
smallest task scheduled on a software thread in the Xeon Phi), and that it
may use several software threads per hardware thread in order to achieve the
best performance. In fact this selection matches for example the manufacturer
recommendation for the Xeon Phi [19], which was also followed to choose its
baseline parameters. Still, the tool is able to further tune the parameters to
increase the performance of the code in this platform. Similarly, copying the
input matrices to the local memory not always achieved the best performance in
the GPU, as we can see in the experiment with the 2048×2048 matrix. It is also
interesting that adjusting isolatedly some of the parameters to their optimum

Table 3: Optimal values selected for each generated kernel

Device Size Optimal values
szx, szy lszx, lszy bszx, bszy T CopyA, CopyB uf

CPU
1024 (1024,8) (8,4) (1,256) - - 2
2048 (1024,8) (8,8) (1,1024) - - 8
4096 (1024,256) (1024,1) (1,4) - - 4

ACC
1024 (1024,1024) (64,1) (1,1) - - 2
2048 (2048,2048) (64,1) (1,1) - - 1
4096 (4096,4096) (32,1) (1,1) - - 1

GPU
1024 (128,1024) (16,16) - 16 true, true 4
2048 (2048,256) (32,16) - 4 false, true 4
4096 (2048,1024) (16,32) - 4 true, true 1

value in the original kernels can actually generate slowdowns, which justifies
the need to take into account all the parameters simultaneously in the search
process.

6 Conclusions

Performance portability is an open problem in heterogeneous systems. This work
proposes a set of techniques to generate codes that self-adapt to different devices
at run-time. Our approach generates HPL kernels that can be tuned through a
set of parameters whose optimal values are searched following an iterative pro-
cess based on a genetic algorithm. The results show that our strategy generates
versions of the kernels up to 4.67 faster than baselines based on heuristics. Such
improvement is observed in a CPU, whereas the improvements achieved in a
Xeon Phi and a GPU reach 9% and 54%, respectively. We plan to explore the
application of more optimization techniques using our approach and to enhance
the search process with effective heuristics or analytical models.

Acknowledgements

This work was supported by the Xunta de Galicia under the Consolidation Pro-
gram of Competitive Reference Groups (Ref. GRC2013/055) and by the Spanish
Ministry of Science and Innovation (Ref. TIN2010-16735), both of them cofunded
by FEDER funds of the European Union.

References

1. Munshi, A., Gaster, B., Mattson, T.G., Fung, J.: OpenCL Programming Guide.
Addison-Wesley Professional (2011)

2. Wernsing, J.R., Stitt, G.: Elastic computing: a framework for transparent, portable,
and adaptive multi-core heterogeneous computing. SIGPLAN Not. 45(4) (April
2010) 115–124

3. Moore, N., Leeser, M., Smith King, L.: VForce: An environment for portable
applications on high performance systems with accelerators. J. Parallel Distrib.
Comput. 72(9) (2012) 1144–1156

4. Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G., Dongarra, J.: From
CUDA to OpenCL: Towards a performance-portable solution for multi-platform
GPU programming. Parallel Comput. 38(8) (2012) 391–407

5. Dastgeer, U., Enmyren, J., Kessler, C.W.: Auto-tuning SkePU: a multi-backend
skeleton programming framework for multi-GPU systems. In: Proc. 4th Intl. Work-
shop on Multicore Software Engineering. IWMSE ’11 (2011) 25–32

6. Lutz, T., Fensch, C., Cole, M.: PARTANS: An autotuning framework for sten-
cil computation on multi-GPU systems. ACM Trans. Archit. Code Optim. 9(4)
(January 2013) 59:1–59:24

7. Thoman, P., Kofler, K., Studt, H., Thomson, J., Fahringer, T.: Automatic OpenCL
device characterization: Guiding optimized kernel design. In: Euro-Par’11. Volume
6853 of LNCS. Springer-Verlag (2011) 438–452

8. Lan, Q., Xun, C., Wen, M., Su, H., Liu, L., Zhang, C.: Improving performance of
GPU specific OpenCL program on CPUs. In: Proc. 13th Intl. Conf. on Paral. and
Distrib. Computing, Applications and Technologies (PDCAT’12). (2012) 356–360

9. Shen, J., Fang, J., Sips, H., Varbanescu, A.: Performance traps in OpenCL for
CPUs. In: Proc. 21st Euromicro Intl. Conf. on Parallel, Distributed and Network-
Based Processing (PDP 2013). (2013) 38–45

10. Daloukas, K., Antonopoulos, C.D., Bellas, N.: GLOpenCL: OpenCL support on
hardware- and software-managed cache multicores. In: Proc. 6th Intl. Conf. on
High Performance and Embedded Architectures and Compilers. (2011) 15–24

11. Fabeiro, J.F., Andrade, D., Fraguela, B.B.: OCLoptimizer: An iterative optimiza-
tion tool for OpenCL. In: Proc. Intl. Conf. on Computational Science (ICCS 2013).
(2013) 1322–1331

12. Dolbeau, R., Bodin, F., de Verdiere, C.: One OpenCL to rule them all? (2013)
13. Viñas, M., Bozkus, Z., Fraguela, B.B.: Exploiting heterogeneous parallelism with

the Heterogeneous Programming Library. J. Parallel Distrib. Comput. 73(12)
(2013) 1627–1638

14. Beckmann, O., Houghton, A., Mellor, M., Kelly, P.H.J.: Runtime code generation
in C++ as a foundation for domain-specific optimisation. In: Domain-Specific
Program Generation. Volume 3016 of LNCS. Springer Verlag (2004) 291–306

15. Newburn, C., So, B., Liu, Z., McCool, M., Ghuloum, A., Toit, S.D., Wang, Z.G.,
Du, Z., Chen, Y., Wu, G., Guo, P., Liu, Z., Zhang, D.: Intel’s array building blocks:
A retargetable, dynamic compiler and embedded language. In: 9th IEEE/ACM
Intl. Symp. on Code Generation and Optimization (CGO 2011). (2011) 224–235

16. Wall, M.: GAlib: A C++ Library of Genetic Algorithm Components. (1996)
17. Fraguela, B.B., Carmueja, M.G., Andrade, D.: Optimal tile size selection guided

by analytical models. In: Procs. of Parallel Computing (ParCo). (2005) 565–572
18. Fraguela, B.B., Voronenko, Y., Püschel, M.: Automatic tuning of discrete fourier

transforms driven by analytical modeling. In: Proc. of Intl. Conf. on Parallel
Architectures and Compilation Techniques. (2009) 271–280

19. Intel Corp.: OpenCL design and programming guide for the Intel Xeon Phi copro-
cessor. http://software.intel.com/en-us/articles/opencl-design-and-programming-
guide-for-the-intel-xeon-phi-coprocessor (2014) [Online; accessed 29-May-2014].

