
A Portable High-Productivity Approach to Program Heterogeneous Systems

Zeki Bozkus
Dept. of Computer Engineering

Kadir Has Üniversitesi
Istanbul, Turkey

zeki.bozkus@khas.edu.tr

Basilio B. Fraguela
Depto. de Electrónica e Sistemas

Universidade da Coruña
A Coruña, Spain

basilio.fraguela@udc.es

Abstract—The exploitation of heterogeneous resources is
becoming increasingly important for general purpose comput-
ing. Unfortunately, heterogeneous systems require much more
effort to be programmed than the traditional single or even
multi-core computers most programmers are familiar with.
Not only new concepts, but also new tools with different
restrictions must be learned and applied. Additionally, many
of these approaches are specific to one vendor or device,
resulting in little portability or rapid obsolescence for the
applications built on them. Open standards for programming
heterogeneous systems such as OpenCL contribute to improve
the situation, but the requirement of portability has led to
a programming interface more complex than that of other
approaches. In this paper we present a novel library-based
approach to programming heterogeneous systems that couples
portability with ease of use. Our evaluations indicate that
while the performance of our library, called Heterogeneous
Programming Library (HPL), is on par with that of OpenCL,
the current standard for portable heterogeneous computing, the
programming effort required by HPL is 3 to 10 times smaller
than that of OpenCL based on the authors‘ implementation of
five benchmarks.

Keywords-programmability; heterogeneity; portability; li-
braries

I. INTRODUCTION

The relevance of the usage of computing devices with very
different characteristics that cooperate in a computation has
increased exponentially in the past few years. The reason
for this has been the appearance of accelerators which can
be programmed to perform general-purpose computations
which can achieve large speedups over traditional CPUs and
even multicore CPUs. These accelerators, such as GPUs [1]
or the Synergistic Processing Elements (SPEs) of the Cell
BE [2], always coexist with one or more general-purpose
CPUs, giving place to heterogeneous computing systems.

Unfortunately this hardware heterogeneity is also reflected
in the software required to program these systems since,
unlike in the case of regular CPUs, with these types of
accelerators programmers are typically exposed to a number
of characteristics and limitations that must be handled.
For this reason, they cannot be programmed using the
standard languages used for general-purpose CPUs, but
rather require extended versions [3][4][5][6] which demand
different semantics and the specification of many details

such as buffers, transfers and synchronizations. Moreover,
most of these tools are specific to one vendor or even to
one family of devices, which severely restricts the portability
of the codes and places into question the effort needed
for their development. Libraries that complement some of
these languages in order to improve programmability have
been developed [7][8][9], but either their scope of appli-
cation is restricted or their interface to program arbitrary
computations in the GPU is inconvenient and requires the
usage of the GPU-specific languages. Lastly, proposals have
been put forward based on compiler directives [10][11][12],
which obviously require special compiler support and whose
performance is highly dependent on compiler technology.
Additionally, all of the alternatives that we are aware of are
either solutions restricted to a single vendor or have not yet
been implemented.

In this paper we present a portable library-based approach
for the usage of heterogeneous systems that focuses on
delivering high programmer productivity while allowing low
level control. Our library, called Heterogeneous Program-
ming Library (HPL) and developed in C++, is built on two
key concepts. First, it allows for the definition of functions
that are evaluated in parallel by multiple threads on different
inputs for regular CPUs, hardware accelerators, or both.
We call these functions kernels, as they are analogous to
those found in [4][5][6]. The second concept is data types
that allow for the expression of both scalars and arrays of
any number of dimensions that can be used both in serial
portions of the code as well as in kernels.

The rest of this paper is structured as follows. The
following section introduces the hardware view and the
programming model provided by our library. Its program-
ming interface is explained in Section III, followed by
an illustration with examples of increasing complexity in
Section IV. Then, Section V evaluates our proposal. This is
followed by a discussion on related work in Section VI.
The paper presents our conclusions and future work in
Section VII.

II. HARDWARE AND PROGRAMMING MODEL

The main purpose of the Heterogeneous Programming Li-
brary (HPL) is to improve the productivity of programmers

Device 0
Host

CPU

Memory

ProcessorsMemory

Device N-1
ProcessorsMemory

Figure 1. Underlying hardware model for HPL

who want to be able to exploit the computational power of
heterogeneous devices without compromising the portability
of their applications. In this way, HPL reveals a program-
ming model which enables the rapid development of parallel
applications, which is suitable for any computational device,
from sequential processors to many-core systems, and which
is focused first on the application parallelism, and only later
on its mapping on a specific platform. For these reasons, the
HPL programming model is quite simple and intuitive, and
it does not result in complicated patterns of parallelism and
interdependencies between tasks. Rather, the expression of
parallelism is limited to a reduced and well-structured set
of constructs that are effective and platform-independent.
These ones are in fact the characteristics that were found
to be more desirable for a unified programming model for
many-core systems in [13]. According to their classification,
the HPL programming model belongs to the family of the
application-centric generic programming models.

A programming model requires a minimal model of the
underlying hardware. The abstract view of the hardware on
which HPL applications run is depicted in Figure 1. There
is a host with a memory and a single CPU in which the
sequential portions of the application are executed. Attached
to it, there are a number of computing devices, each one
of them with its own memory and a number of processors
that can only access the memory within their device. While
different devices can run different codes, all the processors in
the same device must execute the same code in an SPMD
fashion. In some devices the processors are subdivided in
groups that share a scratchpad memory of a limited size
and can synchronize by means of barriers, this being the
only mechanism available to synchronize processors within
a device. This model is basically a simplified version of
the one proposed by OpenCL [6], which also aims for
maximum portability. Notice that the computational devices
in this model need not be special hardware accelerators. A
traditional cluster of multi-core nodes, either homogeneous
or heterogeneous, could fit perfectly in this model. One
possibility would be to map each node to a device whose
processors are the cores within the node. Another possibility
would be to conceptualize each core in the cluster as an

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (0,6) (0,7)
(1,0) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (1,7)
(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (2,7)
(3,0) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (3,7)

4 threads
globally

8 threads globally

2
th

re
ad

s
lo

ca
lly

4 threads locally

group
(0,0)

group
(1,0)

group
(0,1)

group
(1,1)

Figure 2. Global and local domains for the threads that execute in parallel
a HPL kernel

independent device.
Given this view, a HPL application consists of traditional

sequential regions, which are executed in the host, and
portions of code that are run in an SPMD fashion in
one or several devices. The main program run in the host
manages the transfers of data between the host and the
devices and requests the execution of the parallel regions
of the application in the different devices. These parallel
portions of the application are expressed as functions that
are evaluated in parallel by the processors in the selected
device. These functions are called kernels, since they are
analogous to the kernels found in [4][5][6]. Each thread that
runs a copy of a kernel needs a unique identifier so that
it can identify the work it is responsible for. To allow for
this, kernels are executed on a domain of integers of up to
three dimensions, called a global domain. Each point in this
domain is assigned a unique identifier that is associated to
an instance of the requested kernel, and therefore the size of
this domain is the total number of parallel threads running
the requested kernel. The user can optionally specify a local
domain, which must have the same number of dimensions as
the global domain and whose size in every dimension must
be a divisor of the size of the corresponding dimension of
the global domain. The threads whose identifiers belong to
the same local domain can share scratchpad memory and
synchronize by means of local barriers. These threads form
what we call a group of threads, each group also having
an n-dimensional identifier. Figure 2 represents the unique
global identifiers of the 32 threads to run for a global domain
of 4×8 threads. The identifiers of threads that belong to the
same local domain (or group) of 2×4 threads are surrounded
by a thicker line. The unique identifier of each thread
group is also indicated. As we see again these concepts
are very similar to those in [4][6] and can be mapped to
any computational device. This execution model supports
in a straightforward manner the data parallel programming
model. Task parallelism can be provided by requesting the
parallel evaluation of different kernels on different devices.

Lastly, regarding memory, kernels can only access the
processor’s registers and the memory available inside the
device where they are run. HPL distinguishes three kinds of

device memory. First, we have the standard memory, which
is shared by all the processors in the device both for reading
and writing. HPL calls this memory global memory because
it is accessible by all the threads in the same global domain.
Second, there is the scratchpad memory, which can be only
accessed by the threads that belong to the same local domain.
We call it the local memory for this reason. Finally, there is
a memory for data that can be written by the host but which
the kernels can only read, which is therefore called constant
memory.

III. PROGRAMMING INTERFACE

As explained in the preceding section, our C++ HPL
library allows for expression and execution of arbitrary user-
defined kernels on any of the computational devices avail-
able in the system. Since these kernels must be compiled
so that they can be run on any device requested by the
user, they cannot be expressed using the native C++ data
types and control structures, as this would result in their
regular compilation as standard code to be run in the host.
Rather, they are written in standard C++, but using datatypes,
functions and macros provided by HPL. Thanks to the usage
of these tools, our library is able to build from the original
C++ expressions code that can be compiled at runtime for
the desired device.

Our current implementation of the library generates
OpenCL C [6] versions of the HPL kernels, which are then
compiled to binary with the OpenCL compiler. As a result,
our library can be used to perform computations on any
device that is supported by OpenCL. Since this is the open
standard for the programming of heterogeneous systems, and
it is already supported by a large number of heterogeneous
systems including GPUs, the Cell Broadband Engine and
standard multicores, this allows in turn the widespread and
portable usage of HPL. This was indeed the main reason for
choosing this platform as the backend for HPL, although we
do not exclude using other backends for different platforms
in the future.

We now explain in turn the HPL datatypes, the syntax
required to build its kernels, and the interface to request their
execution, followed by example programs that illustrate all
these points. All the HPL keywords and types are provided to
the user program by the inclusion of the header file HPL.h,
and they are encapsulated inside the HPL namespace in order
to avoid collisions with other program objects.

A. Data Types

The HPL datatypes encapsulate and provide to the library
the information it needs to manipulate the data involved in
the heterogeneous computations as automatically as possi-
ble. This includes array sizes, kind of memory where a data
structure should be allocated, availability of copies of a data
structure in different devices, etc.

The arrays that are used in kernels must belong to the HPL
datatype Array<type, ndim [, memoryFlag]>. This is a C++
template where the type is the standard C++ type for the
elements of the array and ndim is the number of dimensions
of the array. The third argument indicates the kind of device
memory in which the array must be allocated. It is only
needed when the array is to be located in constant or local
memory, their respective flag values being Constant and
Local. When this flag is not specified, the array is allocated
in global memory (Global flag). A special situation takes
place when an Array is defined within a kernel. Since a
kernel is a function, all the variables defined within it are
local, and therefore, private to each given evaluation of the
kernel. For this reason, all the variables defined inside a
kernel that do not specify a memory flag are totally private,
even if their final physical location is the global memory of
the device. The constructor for an Array takes as inputs
the sizes of its dimensions, and, optionally, a pointer to
the raw data in the host memory in case the array had
been previously allocated, which also implies the user is
responsible for its deallocation. Otherwise HPL takes care
of the allocation and deallocation of the storage required by
the array.

Scalars can be defined by using the Array template with
ndim=0, but HPL provides for convenience a series of types
(Int, Uint, Double, . . .) to define scalars of the obvious
corresponding C++ type.

HPL arrays are indexed inside kernels using square
brackets, just like standard C++ arrays. Nevertheless, they
are indexed with parenthesis in the host code. The reason
for this difference is that while the code in HPL kernels
is dynamically compiled, and therefore optimized, this is
not the case for the host code, which is only statically
compiled. As a result, accesses to variables that belong
to HPL datatypes within HPL kernels have no overheads,
while the accesses in host code suffer the typical overhead
associated with user-defined datatypes [14]. The usage of a
different kind of indexing helps the programmer to be aware
of this cost and to identify more quickly whether a portion
of C++ code is a parallel kernel or not. The user can avoid
the indexing overhead in the host code by requesting the
native pointer to the Array data in the host memory, which
is provided by the method data(), and accessing the data
through the pointer.

B. Kernel Syntax

As discussed at the beginning of this section, the con-
trol flow structures used inside kernels must be written
using HPL keywords so that the library can capture them
and thereby generate the appropriate code for them. HPL
provides the usual C++ control flow constructs (if, for,
. . .) with three differences. First, their names finish with an
underscore (if_, for_, . . .). Second, the end of each block
must be closed with a corresponding statement (endif_,

endfor_, . . .). Lastly, the arguments to for_ are separated
by commas instead of semicolons.

A second point of interest for writing HPL kernels is
the existence of variables with predefined meanings. As
Section II explained, kernel executions take place on a global
domain of up to three dimensions on which local domains
can be optionally defined. The predefined variables idx,
idy and idz correspond to the value of the global domain
associated with the current execution of the kernel in the
first, second, and third dimension of the global domain,
respectively. In this way, these variables allow for a unique
identification of the current execution of the kernel. Simi-
larly, lidx, lidy and lidz provide the local identification
of the thread within its local domain in the first, second and
third dimensions of the problem, respectively. For example,
in Figure 2, the threads with global id (1,2), (1,6), (3,2) and
(3,6) all have the local id (1, 2) within their local domain.
The current group of threads can be identified by means
of the variables gidx, gidy and gidz, each one of them
providing the identification in each one of the dimensions
of the domain. HPL also provides similar variables for the
global and the local sizes of the execution of the current
kernel as well as the number of groups of threads in every
dimension of the domain.

Finally, HPL provides a series of functions to perform typ-
ical computations and tasks within the kernels. A particularly
important function is barrier, which performs a barrier
synchronization between all the threads in a group. This
function supports an optional argument to specify whether
the threads need to have a consistent view of the local
memory (argument LOCAL), the global memory (argument
GLOBAL), or both (LOCAL|GLOBAL), after the barrier. Notice
that the global and the local memory are different and
separate, thus the consistency of one of them does not imply
anything on the state of the other one.

C. Kernel Invocation

HPL kernels are functions that are evaluated in parallel
on a domain. These functions communicate with the host
by means of their arguments, which are HPL arrays or
scalars. While the scalars are always passed by value,
the arrays are passed by reference, and therefore are the
mechanism to return the results of the computation. The
syntax to request the parallel evaluation of a kernel is
eval(kernelfunction)(arg1, arg2, . . .).

By default the kernel is evaluated in the first device found
in the system that is not a standard general-purpose CPU,
the global domain of the evaluation of a kernel is given by
the dimensions of its first argument, and the local domain
is chosen by the library. The optional methods global and
local in between eval and the kernel arguments can be
used to specify the global domain and the local domain of
the evaluation, respectively. For example, in order to evaluate
kernel f with the argument a in the default device using the

1 #include ”HPL.h”
2
3 using namespace HPL;
4
5 double myvector[1000];
6
7 Array<double, 1> x(1000), y(1000, myvector);
8
9 void saxpy(Array<double,1> y, Array<double,1> x, Double a) {

10 y[idx] = a ∗ x[idx] + y[idx];
11 }
12
13 int main(int argc, char ∗∗argv) {
14 Double a;
15
16 //the vectors and a are filled in with data (not shown)
17
18 eval(saxpy)(y, x, a);
19 }

Figure 3. SAXPY implementation in HPL

global and local domain sizes illustrated in Figure 2 one
would write eval(f).global(4,8).local(2,4)(a).

As we explained in Section II, the main program that runs
in the host is responsible for managing the data transfers and
launching the kernels for execution in the different devices.
For this reason, the eval function can only be used in host
code.

IV. HPL EXAMPLE CODES

Three codes of increasing complexity are now used in turn
to illustrate the HPL syntax described in Section III as well
as the usual programming style and strategies implied by the
programming model explained in Section II. The description
of the codes is detailed enough to try to enable any C++
programmer with an average proficiency and no previous
experience with the programming of heterogeneous systems
to begin to exploit the advantages of these systems thanks to
HPL. This is in fact one of the main purposes of our work.

A. SAXPY

Let us begin with an HPL implementation of SAXPY,
which computes S = aX + Y , where S, X and Y are
vectors and a is a scalar. A complete program in HPL for
this computation using double-precision floating point data
is shown in Figure 3. After including the HPL.h header, we
indicate that we will operate with objects defined in the C++
HPL namespace in line 3. Then two vectors suitable for use
in HPL kernels are defined in line 7. In one of them, x, the
library is responsible for its allocation and deallocation. For
the second one, y, an existing regular C++ vector myvector
provides the storage. The scalar variable used in SAXPY is
defined in line 14 with the suitable HPL type Double.

The HPL kernel for SAXPY is the saxpy function in
lines 9 to 11. As we explained in Section III-C, HPL
kernels only communicate with the host by means of their
arguments. For this reason the elements that participate

in the computation must be parameters of the kernel and
the return type of the function must be void. In our
implementation each execution of the kernel computes a
single element of the destination vector. This way, to perform
SAXPY on vectors of N elements, a global domain of a
single dimension and N elements must be used, so that the
kernel with unique identification 0 ≤idx< N is in charge
of the computation for the idx-th elements of the vectors, as
reflected in line 10. Let us remember that idx is a predefined
variable that provides the value of the first dimension of
the global domain associated to the current execution of
the kernel. Since this problem has a single dimension, idx
suffices to identify uniquely a kernel execution. Note that
we use the vector Y to store the result S.

The invocation of the kernel takes place in line 18, where
neither the global nor the local domain for the execution
of the kernel are provided. As we explained in the pre-
ceding section, by default the global domain is given by
the number of dimensions and sizes of the first argument,
which perfectly fits this example. As for the local domain,
it can be chosen by the library, as this code does not use
or make assumptions on it because the computation of each
kernel execution is completely independent, that is, there is
no cooperation between the threads that belong to the same
group or local domain.

B. Dot Product

The program shown in Figure 4 is a somewhat more
complex example that illustrates the usage of most HPL
features introduced in the preceding sections. This program
computes the dot product of two vectors of single-precision
floating point elements of length N in two stages. First, a
HPL kernel computes in parallel the partial dot products
associated to subregions of M consecutive elements of the
arrays. The result is an array of nGroup = N/M floating
point values which are reduced in the host in the second
stage. Notice how this array, called pSums, is indexed with
square brackets in the HPL kernel in line 19, but with round
parenthesis in the host code in line 33. The reasons for this
have been explained in Section III-A.

The vectors v1 and v2 whose dot product will be com-
puted as well as the intermediate vector pSums are defined
in line 25 as HPL arrays, since they will be used in the
kernel. The kernel, written in function dotp, is invoked in
line 30 with the syntax we have just explained. The strategy
followed by our implementation is to launch N parallel kernel
executions, so that the idx-th thread will be in charge of
reading and multiplying the idx-th elements of the input
arrays. Then, the threads in each group of M threads, which
is uniquely identified by the variable gidx, will cooperate to
compute the partial dot product by means of the scratchpad
memory they share. For this reason, our evaluation specifies
a global domain of N elements and a local domain of M

elements.

1 #include ”HPL.h”
2 #define N 256
3 #define M 32
4 #define nGroup (N/M)
5
6 using namespace HPL;
7
8 void dotp(Array<float,1> v1, Array<float,1> v2,
9 Array<float, 1> pSums) {

10 Int i;
11 Array<float, 1, Local> sharedM(M);
12
13 sharedM[lidx] = v1[idx] ∗ v2[idx];
14
15 barrier(LOCAL);
16
17 if (lidx == 0) {
18 for (i = 0, i < M, i++) {
19 pSums[gidx] += sharedM[i];
20 } endfor
21 } endif
22 }
23
24 int main(int argc, char ∗∗argv) {
25 Array<float, 1> v1(N), v2(N), pSums(nGroup);
26 float result = 0.0;
27
28 //v1 and v2 are filled in with data (not shown)
29
30 eval(dotp).global(N).local(M)(v1, v2, pSums);
31
32 for(int i = 0; i < nGroup; i++)
33 result += pSums(i);
34
35 std::cout << ”Dot = ” << result << ”\n”;
36 }

Figure 4. Dotproduct example in the HPL syntax.

The dotp function is written with the HPL syntax. Here,
the array sharedM is declared with the Local flag to place
this array on the scratchpad memory shared by the threads
that belong to the same local domain. Its purpose is to store
the result of multiplication operations of the input arrays. A
barrier is used in line 15 to synchronize the threads in the
local domain and ensure that the writing of the sharedM

array in the local memory has been completed after the
barrier. After this, the first thread of each group, whose lidx
is zero, performs the partial sums in the location associated
with the group. We could have implemented a much more
efficient reduction, using for example a binary tree of parallel
reductions. However, we have followed this approach for the
sake of clarity.

C. Sparse Matrix Vector Product

Sparse matrix vector multiplication (spmv) is a common
primitive at many scientific applications. For example, this
operation is the most computationally expensive part of
the Conjugate Gradient (CG) code of the NAS Parallel
Benchmarks suite, and in fact it is part of the benchmarks
chosen by the SHOC Benchmark [15] suite to characterize
heterogeneous systems (although it does not appear in [15] it

for (i = 0; i < nRows; i++) {
for (j = rowptr[i]; j < rowpt[i+1]; j++)

out[i] += A[j] ∗ val[cols[j]];
}

(a) Spmv with C++

1 #include ”HPL.h”
2 #define nRows 1024
3 #define NZ 128 // numNonZeroes
4 #define M 8
5 #define N nRows∗M
6
7 using namespace HPL;
8
9 void spmv(Array<float, 1> A, Array<float, 1> vec,

10 Array<int, 1> cols, Array<int, 1> rowptr,
11 Array<float, 1> out) {
12 Int j;
13 Float mySum = 0;
14
15 for (j = rowptr[gidx] + lidx,
16 j < rowptr[gidx + 1], j += M) {
17 mySum += A[j] ∗ vec[cols[j]];
18 } endfor
19
20 Array<float, 1, Local> sdata(M);
21 sdata[lidx] = mySum;
22 barrier(LOCAL);
23
24 // Reduce sdata
25 if (lidx < 4) {
26 sdata[lidx] += sdata[lidx + 4];
27 } endif
28
29 barrier(LOCAL);
30
31 if (lidx < 2) {
32 sdata[lidx] += sdata[lidx + 2];
33 } endif
34
35 barrier(LOCAL);
36
37 if (lidx == 0) {
38 out[gidx] = sdata[0] + sdata[1];
39 } endif
40 }
41
42 int main(int argc, char ∗∗argv) {
43 Array<float, 1> A(NZ), vec(nRows), out(nRows);
44 Array<int, 1> cols(NZ), rowptr(nRows+1);
45
46 //A and vec are filled in with data (not shown)
47 //cols and rowptr are calculated with CSR format
48
49 eval(spmv).global(N).local(M)(A, vec, cols, rowptr, out);
50 }

(b) Spmv with HPL

Figure 5. Sparse matrix vector multiplication example.

was added later to the suite). For these reasons we will also
use this computation in our evaluation in the next section.
Figure 5(a) shows the main loop of the spmv kernel for a
sequential code where the sparse matrix is stored using the
compressed sparse row (CSR) format. Figure 5(b) presents
the corresponding HPL code for spmv. This code is a good

example of heterogeneous computing using HPL. Here, the
CPU works sequentially to make the CSR format, as it is
more suitable to perform this task; later, the heavy duty and
naturally parallel computation part is written with HPL so
that it can be run on a device. In this code, a group of
local threads identified by the predefined variable gidx is
responsible for the multiplication of a row from the sparse
matrix A with vector vec. Each group performs the reduction
required to compute the result in the out vector for the row
by summing the elements of the vector sdata on the local
memory.

V. EVALUATION

This section evaluates HPL using OpenCL as comparison
point for two reasons. Firstly, since it is the open standard for
programming heterogeneous systems, it is the natural alter-
native to HPL for the portable development of applications
for these systems. Secondly, since OpenCL is the backend
that HPL currently uses, it is natural to wonder which is
the overhead that HPL imposes with respect to the manual
usage of OpenCL.

Our evaluation consists of three categories. First, we
measure the programmability provided by our library by
comparing some benchmark examples written both with
HPL and OpenCL. The second set of experiments compares
the runtime performance of HPL with that of OpenCL. The
third category evaluates the HPL performance on different
platforms for portability.

We wrote all the HPL versions of our codes by our-
selves. This was also the case for the OpenCL version
of the EP benchmark from the NAS Parallel Benchmark
suite [16]. The OpenCL versions of the Floyd-Warshall
algorithm and Matrix transpose were taken from the AMD
APP SDK. Finally, the sparse matrix vector multiplication
(spmv) and reductions OpenCL benchmarks were extracted
from the SHOC Benchmark suite [15]. We chose these five
benchmarks because they vary largely in terms of ratio
of computations to accesses to memory, access patterns,
and degree of interaction required between the parallel
threads that evaluate the kernels. This way they cover a
wide spectrum of application behaviors and, as we will
see in Section V-B, they achieve very different degrees of
improvement when their parallel portions are executed on a
GPU compared to their serial execution in a regular CPU.
Moreover, we chose them from different sources in order
to minimize the impact of coding style differences on the
programmability. The compiler used in all the tests was g++
4.3.3 with optimization level O3.

A. Programmability

There is not a straightforward or universally accepted way
to determine the benefits for programmability of the usage of
a given programming approach. In this paper we have used
Sloccount [17], which counts the number of source lines

Benchmark OpenCL HPL Reduction
EP 1151 281 75.6%
Floyd-Warshall 1170 107 90.9%
Matrix transpose 455 52 88.6%
Spmv 1637 517 68.4%
Reduction 773 218 71.8%

Table I
SLOCS FOR THE OPENCL AND HPL VERSIONS OF THE BENCHMARKS

AND REDUCTION IN SLOCS DUE TO THE USAGE OF HPL

 W A B C
0

50

100

150

200

250

300

problem size

s
p

e
e

d
u

p
 o

v
e

r
C

P
U

OpenCL

HPL

Figure 6. Speedups of the GPU executions of the OpenCL and HPL
versions of EP over the sequential execution in a CPU for different problem
sizes

of code excluding comments and empty lines (SLOC), to
measure the programmability of HPL and OpenCL. SLOC
is a very effective software metric to estimate the amount of
effort that will be required to develop a program, as well as
to forecast the programming productivity or maintainability
once the software is produced. The SLOC results are re-
ported in Table I for the five different benchmarks written
with both HPL and OpenCL. From this data, we can see that
HPL outperforms OpenCL with programs that are 3 to 10
times shorter. The main reason for this result is that OpenCL
requires the manual setup of the environment, management
of the buffers both in the device and host memory and the
transfers between them, explicit load and compilation of the
kernels, etc. On the other hand, all these necessary steps are
highly automated and hidden from the user in HPL.

B. Runtime Performance

In this section we performed some experiments to show
the performance differences of HPL and OpenCL. We used
a Tesla C2050/C2070 GPU as experimental platform. The
device has 448 thread processors with a clock rate of 1.15
GHz and 6GB of DRAM and it is connected to a host system
consisting of 4xDual-Cores Intel 2.13 GHz Xeon processors.

Figure 6 shows the speedup of the execution on the GPU
of EP both when using OpenCL and HPL with respect to the
serial execution of a standard C++ version of the code in the
CPU for different problem sizes. The speedup is computed
taking into account the generation of the backend code (in

the case of HPL) and the compilation and execution of the
kernel, but not the transfers between the GPU and the main
memory. The reason is that the transfer time is basically
the same for OpenCL and HPL, as they both use the same
OpenCL functions and runtime for this. Since the main
purpose of this evaluation is to analyze the performance
difference between these two approaches, disregarding the
transfers allows to identify the difference between them
more clearly, even if it is a bit unfair to HPL. Still, in most
of our benchmarks, and particularly in EP, the transfer time
is minimal compared to the computation time, which is why
we have chosen this benchmark to illustrate the performance
difference between both programming environments as a
function of the problem size.

Given the embarrassingly parallel nature of EP and its reg-
ular access patterns the GPU always provides large speedups
with respect to the CPU in Figure 6. However, what interests
us most here is that the HPL performance is very similar to
that of OpenCL. For the smallest problem size, W, HPL
is 20.5% slower than OpenCL, but in absolute terms the
execution time only goes from 0.044 to 0.053 seconds. It
is very important to outline at this point that HPL stores
internally and reuses the binaries of the kernels it generates.
This way, second and later invocations of an HPL kernel do
not incur in overheads of analysis, backend code generation
and compilation, and as a result they achieve runtimes virtu-
ally identical to those of OpenCL when reusing a previously
compiled kernel. Kernels that require short computing times
are usually written to be run in heterogeneous devices only
if the program will use them several (typically, many) times.
Therefore this behavior of our library dilutes the overhead
of the first invocation on all the subsequent usages of the
kernel that are finally performed.

The absolute difference in runtime between OpenCL and
HPL remains in similar values for larger problem sizes. This
results in run-time slowdowns for HPL, that is, increases
of its runtime with respect to the OpenCL version, of
only 5.7%, 2.3% and 1.1% for the classes A, B and C,
respectively. This happens even when the largest runs are
not long either. For example the GPU run for class C with
OpenCL is just 2.81 seconds.

Figure 7 shows the speedup of all the benchmarks we
implemented when they are run in the GPU using OpenCL
and HPL, the baseline being a serial execution in the CPU
of our system of the corresponding benchmark written and
compiled with regular C++. The benchmarks and problems
sizes are: EP class C, the Floyd-Warshall algorithm applied
on 1024 nodes, the transposition of a 16K×16K matrix,
the spmv code for a 16K×16K matrix with a 1% of non
zeros and the addition of 16M single-precision floating point
values. The speedups were computed as in Figure 6 for
the reasons explained above. We can see that depending
on the degree of parallelism, the regularity of the accesses
and ratio of computations to memory accesses, we have

 EP Floyd transpose spmv reduction
0

50

100

150

200

250

300

benchmark

s
p

e
e

d
u

p
 o

v
e

r
C

P
U

OpenCL

HPL

Figure 7. Speedups of the executions in GPU of the OpenCL and HPL
versions of the benchmarks over their sequential execution in the CPU

 EP Floyd transpose spmv reduction
0

0.5

1

1.5

2

2.5

3

3.5

4

%
 s

lo
w

d
o

w
n

 o
f

H
P

L
 v

s
 O

p
e

n
C

L

benchmark

Figure 8. Slowdown of HPL with respect to OpenCL for the different
benchmark executions in the GPU

chosen benchmarks with a wide range of performances in
an accelerator such as a GPU. This way the speedups found
for the OpenCL codes range from 5.4 for spmv to 257 for
EP. The most interesting fact for us is that for all of them
the performance achieved by HPL is very similar to that of
OpenCL. This can be seen more clearly in Figure 8, which
represents the slowdown of HPL with respect to OpenCL
in these executions in the GPU. We can see that the typical
degradation is below 4%. This degradation is mostly due
to time required by our library to capture the computations
expressed in the HPL kernels, analyze them to decide which
data transfers between memories will be needed due to their
execution, and finally generate the corresponding OpenCL
C codes. Additionally, these codes may also be slightly less
efficient than OpenCL C versions written by hand in some
situations.

If the transfer time between CPU and GPU is taken into
account in the performance comparison between HPL and
OpenCL, the results are basically the same as in Figure 8 ex-
cept for matrix transpose. In this benchmark these transfers
consume a long time compared to the transposition itself,
and since they require the same time in HPL and OpenCL,

 Floyd transpose spmv reduction
0

0.5

1

1.5

2

2.5

3

3.5

4

benchmark

%
 s

lo
w

d
o

w
n

 o
f

H
P

L
 v

s
 O

p
e

n
C

L

Tesla C2050/C2070

Quadro FX 380

Figure 9. HPL overhead with respect to OpenCL for the different
benchmark executions in the Tesla C2050/C2070 and the Quadro FX 380
GPUs

the overhead of HPL compared to OpenCL is reduced to
only 0.41%. This is in contrast with the 3.47% shown in
Figure 8.

C. Portability Results

In order to illustrate the portability of HPL across different
devices, we run our benchmarks choosing for the execution
of the kernels a Quadro FX 380 (16 thread procesors with
a clock rate of 700 MHZ and 256 MB of DRAM) that is
connected to the same host. EP was not part of this set
of experiments because it requires double-precision floating
point calculations, which are not supported by this device.
Also, due to its smaller memory we had to reduce the
problem size of Floyd-Warshall to 512 elements, and the
matrix transposition was performed on matrices of 5K×5K
elements. The spmv code was performed on a 8K×8K
matrix with a 1% of non zeros.

Figure 9 shows the overhead of these HPL runs compared
to those of the same benchmark under OpenCL in our two
GPUs. It is clear that HPL performance is again very similar
to that of manually programmed OpenCL. The precision of
the measurement of such a minimal performance difference
is subject to the usual small variations observed in different
performance measurements for the same code and inputs.
This explains the small changes (≤ 2%) with respect to
Figure 8 in the Tesla. The relevant conclusion is that HPL
overhead is minimal for both devices.

VI. RELATED WORK

The most widely used tools to program computing sys-
tems with accelerators are new languages which are ex-
tended versions of C (sometimes C++), with a series of
related libraries and a runtime system. Brook+ [5] and the
C/C++ extensions for the Cell BE [3] are good examples of
this trend, although CUDA [4] has been the most successful
to date. All these tools force programmers to write their
applications with new languages, to deal with varying levels

1 GPU FILLKERNEL 2D(float,
2 naive transpose,(global<float ∗> src),
3 result = src[j+i∗h];
4);
5
6 gpu array2d<float> src(h, w), dst(w, h);
7 dst = naive transpose(src);

(a) EPGPU transpose

1 void naive transpose(Array<float, 2> dest,
2 Array<float, 2> src) {
3 dest[idy][idx] = src[idx][idy];
4 }
5
6 Array<float, 2> src(h, w), dst(w, h);
7 eval(naive transpose)(dest, src);

(b) HPL transpose

Figure 10. Naı̈ve implementations of matrix transpose

of low level detail (depending on the language), and worse,
to be restricted to a single kind of accelerator or, in the best
case, the devices provided by a single vendor. A separate
mention should be made of the more recent OpenCL [6]
which, although in this group, contrary to the others, is
an open royalty-free standard for general purpose parallel
programming across regular CPUs and all kinds of hardware
accelerators. OpenCL has been chosen for this reason as the
backend for the current implementation of our library.

Some of these environments come with libraries that can
interoperate with them and which improve programmability
for certain kinds of problems. For example Thrust [7]
facilitates the expression on CUDA of many algorithms,
but it has numerous restrictions compared to our library. It
only allows for the manipulation of unidimensional arrays,
its computations must always be one-to-one, i.e., a single
element from each input array can be processed to generate
a single element of one output array, it does not allow for
the use of local or constant memory or the specification of
the number of threads to run, etc.

EPGPU [9] is an interesting library focused on OpenCL
with fewer limitations than Thrust. In exchange, the user-
defined computations to be run in OpenCL must be written
in that language inside macros that build the complete
kernels. This implies that EPGPU kernels must not only be
constant at compile time, but also include inside them all the
definitions of the constants they use, as they are actually only
strings. HPL nevertheless captures in its kernels variables
and macros that are defined outside them, which makes
programming more natural and less verbose. For similar
reasons, EPGPU does not analyze the kernels it generates, as
it would amount to developing a compiler for the OpenCL
C strings it manipulates. HPL nevertheless can and does
analyze the kernels it builds, the aim of that analysis
currently being the minimization of the data transfers due
to the execution of the kernels. The different focus between

EPGPU and HPL is partially illustrated by the naı̈ve matrix
transpose implementations1 shown for them in Figures 10(a)
and 10(b), respectively. EPGPU facilitates enormously the
usage of OpenCL when its restriction are fulfilled. In its code
OpenCL is clearly displayed with the usage of some of its
keywords (__global) or the appearance of its limitations
in the kernels, such as the requirement to use linear indices
to access the multidimensional arrays not defined inside the
kernels (see line 3). HPL on the other hand abstracts away
completely the backend used for the kernels and avoids these
restrictions, resulting in a much more natural integration in
the host language.

Other related libraries are PyCUDA and PyOpenCL [8],
which provide convenient interfaces to Python to perform
numerous predefined computations on accelerators. They
also allow for the expression of custom computations on
these devices, although they require strings of CUDA or
OpenCL code and they must be element-to-element compu-
tations or reductions.

Although, as of today, it only targets general-purpose
multicore systems, the Intel Array Building Blocks frame-
work [18] is similar to HPL in that it also compiles at
runtime arbitrary computations that the programmer ex-
presses in standard C++ using a series of data containers
and macros it provides. Other differences with HPL are its
programming model (no local domains, groups of threads,
etc.) and features, as for example it does not allow for
the control of the task granularity, nor specify different
kinds of memory or synchronizations in the parallel codes.
Finally, contrary to our application-centric approach, it is a
hardware-centric programming model according to [13].

Proposals to program heterogeneous systems by means of
compiler directives [10][11] that try to replicate the success
of OpenMP [19] in homogeneous multicore systems have
also been put forth. The limitations of compiler directives
are well known. When the directives do not allow the pro-
grammer to specify with sufficient detail the transformations
desired, the user does not have enough information about the
transformations performed by the compiler. The result is a
lack of a clear performance model, and, therefore, of the
ability to reason on the performance attained by the appli-
cation [20]. Second, the compiler technology might not be
developed enough to find the best low level implementation
for the application in many situations. These two problems,
which were behind the lack of success of HPF [21], are
particularly important for hardware accelerators, as they
allow for many kinds of optimizations and are very sensitive
to them. An approach based on compiler directives that
tries to avoid these problems will probably require a non-
negligible number of directives, clauses and specifications

1These implementations do not correspond to the matrix transpose
benchmark used in Section V, which optimizes the process by making
contiguous reads and transposing blocks of the matrix in the local memory
shared by each group of threads

in order to achieve good performance in an heterogeneous
system. This is particularly true given the enormous gap
between the semantics of the regular sequential code in
which the directives are to be inserted and the execution
models in the accelerators, as well as the large number
of possible implementations of the same algorithm, and
even of specifiable parameters for each implementation, in
these devices. Lastly, the alternatives mentioned above only
generate CUDA code, and therefore they can only target the
accelerators of a single vendor. A standard interface for the
parallelization on heterogeneous systems based on compiler
directives has been recently proposed [12] but to date it has
not been implemented.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the design and im-
plementation of the Heterogeneous Programming Library
(HPL), which provides a programming environment with
an interface embedded inside C++ for the programing of
heterogeneous platforms. HPL is designed to maximize the
programmability of these systems by hiding from the user
the complexities related to the usage of these platforms
(buffers, transfers, synchronizations, . . .) that are found in
other approaches. Our proposal also avoids the learning
curve of new languages. Rather, it uses only standard C++
features, so that programmers can continue to use the
compilers and tools they are familiar with. Despite this,
HPL provides a very expressive and powerful syntax with
an impressive abstraction to write parallel functions to take
advantage of parallel architectures. Our experiments demon-
strate that HPL is a powerful alternative to OpenCL, the
current standard for portable heterogeneous computing. HPL
outperformed OpenCL by 3 to 10 times on programmability
and productivity metrics, while it typically only experienced
a degradation on performance way below 5%. We believe
that the enormous benefit of programmability of HPL out-
weighs this minor performance degradation. HPL or future
similar approaches will increase the much needed usability
of high performance heterogeneous platforms.

We are working to add new features to HPL in order to
improve further the programmability by providing functions
for typical patterns of computation. Additionally, we plan
to extend the high-productivity features of HPL to handle
distributed memory parallelism by running HPL on a cluster
of SMP nodes in which each node can contain multiple
heterogeneous computing devices.

ACKNOWLEDGMENT

This work was funded by the Xunta de Galicia under
the project ”Consolidación e Estructuración de Unidades
de Investigación Competitivas” 2010/06 and the MICINN,
cofunded by FEDER funds, under the grant with reference
TIN2010-16735. Basilio B. Fraguela is a member of the
HiPEAC European network of excellence and the Spanish

network CAPAP-H, in whose framework this paper has been
developed.

REFERENCES

[1] GPGPU, “General Purpose Computation on Graphics Pro-
cessing Units,” http://www.gpgpu.org, last access December
5, 2011.

[2] IBM, Sony, and Toshiba, Cell Broadband Engine Architec-
ture. IBM, 2006.

[3] ——, C/C++ Language Extensions for Cell Broadband En-
gine Architecture. IBM, 2006.

[4] Nvidia, CUDA Compute Unified Device Architecture. Nvidia,
2008.

[5] AMD, “Stream computing user guide,” 2008.

[6] Khronos OpenCL Working Group, “The OpenCL Specifica-
tion. Version 1.2,” Nov 2011.

[7] N. Bell and J. Hoberock, GPU Computing Gems Jade Edition.
Morgan Kaufmann, 2011, ch. 26.

[8] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov,
and A. Fasih, “PyCUDA and PyOpenCL: A Scripting-Based
Approach to GPU Run-Time Code Generation,” Scientific
Computing Group, Brown University, Providence, RI,
USA, Tech. Rep. 2009-40, Nov. 2009. [Online]. Available:
http://arxiv.org/abs/0911.3456

[9] O. S. Lawlor, “Embedding OpenCL in C++ for Expressive
GPU Programming,” in Proc. 5th Intl. Workshop on Domain-
Specific Languages and High-Level Frameworks for High
Performance Computing (WOLFHPC 2011), May 2011.

[10] T. D. Han and T. S. Abdelrahman, “hiCUDA: High-Level
GPGPU Programming,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, pp. 78–90, 2011.

[11] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP
Programming and Tuning for GPUs,” in Proc. of 2010 Intl.
Conf. for High Performance Computing, Networking, Storage
and Analysis (SC), 2010, pp. 1–11.

[12] OpenACC-Standard.org, “The OpenACC Application Pro-
gramming Interface Version 1.0,” Nov 2011.

[13] A. L. Varbanescu, P. Hijma, R. van Nieuwpoort, and H. E.
Bal, “Towards an Effective Unified Programming Model for
Many-Cores,” in IPDPS Workshops 2011, 2011, pp. 681–692.

[14] B. B. Fraguela, G. Bikshandi, J. Guo, M. J. Garzarán,
D. Padua, and C. von Praun, “Optimization Techniques for
Efficient HTA Programs,” Parallel Computing, accepted for
publication.

[15] A. Danalis, G. Marin, C. Mccurdy, J. S. Meredith, P. C. Roth,
K. Spafford, and J. S. Vetter, “The Scalable HeterOgeneous
Computing (SHOC) benchmark suite,” in Proc. 3rd Workshop
on General-Purpose Computation on Graphics Processing
Units (GPGPU3), 2010, pp. 63–74.

[16] National Aeronautics and Space Administration, “NAS Par-
allel Benchmarks,” http://www.nas.nasa.gov/Software/NPB/,
last access May 20, 2011.

[17] D. A. Wheeler, “Sloccount,” 2004. [Online]. Available:
http://www.dwheeler.com/sloccount/

[18] C. J. Newburn, B. So, Z. Liu, M. D. McCool, A. M. Ghuloum,
S. D. Toit, Z.-G. Wang, Z. Du, Y. Chen, G. Wu, P. Guo, Z. Liu,
and D. Zhang, “Intel’s array building blocks: A retargetable,
dynamic compiler and embedded language,” in 9th Annual
IEEE/ACM Intl. Symp. on Code Generation and Optimization
(CGO 2011), April 2011, pp. 224–235.

[19] OpenMP Architecture Review Board, “OpenMP Application
Program Interface Version 3.1,” July 2011.

[20] T. A. Ngo, “The Role of Performance Models in Parallel
Programming and Languages,” Ph.D. dissertation, Depart-
ment of Computer Science and Engineering, University of
Washington, 1997.

[21] High Performance Fortran Forum, “High Performance Fortran
Specification Version 2.0,” January 1997.

BIOGRAPHIES

Zeki Bozkus received the M.S. and the Ph.D. degrees
in computer science from Syracuse University, NY, USA, in
1990 and 1995, respectively. He worked as a senior compiler
engineer at the Portland Group, Inc. for six years. He worked
as a senior software engineer at Mentor Graphics for the
parallelization of Calibre product line for 11 years. He is
now an assistant professor at the Computer Engineering
Department of Kadir Has University since 2008. His primary
research interests are in the fields of parallel programming
algorithms, parallel programming languages, and compilers.

Basilio B. Fraguela received the M.S. and the Ph.D.
degrees in computer science from the Universidade da
Coruña, Spain, in 1994 and 1999, respectively. He is an
associate professor in the Departamento de Electrónica e
Sistemas of the Universidade da Coruña since 2001. His pri-
mary research interests are in the fields of programmability,
analytical modeling, design of high performance processors
and memory hierarchies, and compiler transformations. His
homepage is http://gac.udc.es/˜basilio

