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Abstract
Multicores are the norm nowadays and in many of them there are cores that share one or several
levels of cache. The theoretical performance gain expected when several cores cooperate in the
parallel execution of an application can be reduced in some cases by a cache access bottleneck, as
the data accessed by them can interfere in the shared cache levels. In other cases the performance
gain can be increased due to a greater reuse of the data loaded in the cache. This paper presents
an analytical model that can predict the behavior of shared caches when executing applications
parallelized at loop level. To the best of our knowledge, this is the first analytical model that
tackles the behavior of multithreaded applications on realistic shared caches without requiring
profiling. The experimental results show that the model predictions are precise and very fast and
that the model can help a compiler or programmer choose the best parallelization strategy.

1. Introduction

Nowadays, multicore processors have become the norm, and their design often presents one
or more levels of cache shared by several cores [1]. This way, the interference of the accesses
generated by the different cores in the shared cache levels can reduce the speedup of parallel
applications. On the other hand, multithreaded applications can experience superlinear speedups
when their threads share data in these caches. Analytical models have proved to be an useful
tool capable of providing reasonable estimations of the cache performance [2, 3, 4] in order
to guide successfully compiler optimizations [5, 6]. Unfortunately, they usually have a limited
scope of application and, in fact, the prediction of the performance of multithreaded applications
in realistic caches is still an open problem.

This paper presents an accurate analytical model of the behavior of shared caches during
the execution of multithreaded applications. This model is an extension of the Probabilistic
Miss Equations (PME) model [2] of the cache behavior. The extension proposed in this work
considers the most common pattern of parallelization in shared memory of regular and scientific
applications, which distributes blocks of iterations of parallel loops among several threads.

There are two main differences in the behavior of these applications with respect to single-
threaded ones: (1) The reuse of cache lines is also possible between accesses performed by
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threads that run in parallel in different cores that share the same cache. (2) The attempts of reuse
in the shared cache are interfered not only by the accesses from the same thread but also by
the accesses performed by other parallel threads. As a result of these facts, the behavior of the
shared caches present in multicores can be very different for the sequential and the parallelized
version of a code. Also, the cache behavior of a parallel code can largely vary depending on its
scheme of parallelization. This way, a good model of the behavior of shared caches is needed in
order to take proper decisions on the parallelization of codes and drive the optimization process of
multithreaded applications. The validation shows that our model reliably predicts the behavior of
realistic shared caches during the execution of parallelized codes, thus being a very suitable tool
to play that role. Despite the growing importance of multicore systems and the critical role of the
memory hierarchy in performance, we do not know of any other model in the bibliography that
can predict the behavior of shared caches during the execution of multithreaded codes without
resorting to a previous profiling or simulation.

The rest of this paper is organized as follows. Section 2 defines the scope of application of our
model. The model has two parts: the construction of the PMEs, which is described in Section 4,
and the miss probability calculation, whose details are explained in Section 5. Section 6 shows
the experimental results. Section 7 discusses the related work and Section 8 presents conclusions
and future work.

2. Scope of application

Our model supports cache hierarchies composed of a number of set associative cache levels
with a Least Recently Used (LRU) replacement policy. One or several of these cache levels can
be shared by any number of cores. In each level, the cache size, line size and associativity can be
fixed arbitrarily. This is, by far, the most common situation in modern multicore architectures.

The model uses also as input the source code to analyze, which can be composed of an
arbitrary number of perfect or non-perfect loop nests, and references which can be located in any
nesting level. Each data structure can be accessed by any number of references, and the indexing
of the data structures must be done using affine functions of the loops control variables. The
number of iterations of the loops must be known to perform the analysis.

Inter-routine cache effects are modeled using inlining, either symbolic or actual. Regarding
conditional statements, they may appear in the code analyzed when they guard accesses to regis-
ters or to the latest data item accessed before the branch, as in these cases the data-dependent flow
does not alter the cache behavior. This scope of application covers a large number of programs
and kernels. In fact, it is the same one as in [2], where it sufficed to model complete SPECfp95
and Perfect Benchmarks codes, or at least their more significative and time-consuming routines.
The model presented in this paper adds the possibility that some of the loops may be parallelized,
provided they are not nested inside another parallelized loop, using any method to extract loop-
level parallelism, such as for example the OpenMP [7] for pragma. Finally, it is assumed that
the threads that participate in the parallel execution of a loop begin their execution at about the
same time.

The distribution of the iterations of parallelized loops is chosen to be block-cyclic, that is,
blocks of bi consecutive iterations of loop i are distributed among ti threads. This is a very generic
approach, as the cyclic distribution is a sub-case where the block size is one, and the consecutive
distribution is also a sub-case where the block size is Ni/ti, Ni being the number of iterations of
the loop. Then, block cyclic distribution of iterations is supported using both static and dynamic
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function PMEmodel(sourceCode,Cs , Ls , k) {
1 init model(Cs , Ls , k)
2 misses=0
3 foreach R = re f erence in sourceCode {
4 misses = misses + FR0(RD)
5 }
6 return misses
7 }

Figure 1: General algorithm followed by the PME model

scheduling policies: in the static one blocks of iterations are distributed cyclically among the
threads, while in the dynamic one blocks of iterations are assigned on demand to idle threads.

The extension of the model presented in this paper requires exactly the same information as
the model in [2], with only two additions: the number of threads used in the parallelization and
the block size used to distribute the iterations of the parallelized loops among the threads. The
pieces of information required as an input to the model can be gathered through different means.
For example, the number of iterations a loop can often be inferred from the code, particularly
after applying standard compiler techniques such as inlining and constant propagation. It has
already been proved in [8] that the information required by the sequential version of the model
can be automatically extracted from regular codes like the ones considered in this paper using
a compiler. Also, a compiler that could gather the data required by the PME model even in
irregular codes, where this information is sometimes difficult to obtain, was presented in [9].
When this is not the case, missing information can be obtained from an analysis of the input data
that can be provided by the user, for example by means of compiler directives recognized by the
tool that applies the model, or obtained by means of runtime profiling.

3. The Probabilistic Miss Equations Model

The PME model [2] estimates the number of cache misses that take place during the exe-
cution of a code. The source code and the cache configuration (cache size Cs, line size Ls and
associativity k) must be provided as inputs to the model. This is reflected in the arguments of the
function shown in Figure 1, which is an overview of the algorithm followed by the PME model.
When there are several cache levels, the behavior of each cache level is modeled independently.
The predictions are precise even although the accesses do not take place directly on the shared
cache, as they are filtered previously by one or two upper levels of private caches. In previous
works [2, 6, 10], it has been shown that if the n-th cache level is modeled directly using the PME
model and ignoring the filtering of the upper cache levels, the predictions are still accurate. Once
the number of cache misses generated by each cache level has been predicted, its behavior in the
overall cache performance can be estimated by weighting the number of misses with the cost of
a cache miss in that level.

Loops are numbered from the outermost one and proceeding inwards starting at 0 and they
are normalized to have step one. For each static reference R in the code, and loop i enclosing
it, the model creates an estimator of the number of misses that a reference R generates during
one complete execution of the loop called Probabilistic Miss Equation (PME), FRi (lines 3-5 of
Figure 1). Finally, the PMEmodel returns the number of misses generated by the code during its
execution (line 6 of Figure 1).

As caches are assumed to be initially empty, memory accesses only result in cache hits when
they reuse a cache line brought to the cache by a previous access. The model predictions are
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Figure 2: Procedure for estimating miss probabilities from the code

based in the calculation of the probability that each reuse attempt results in a miss. This proba-
bility depends on the cache footprint of the data accessed during the reuse distance, i.e. the piece
of code executed since the previous access to the considered line.

The PME FRi classifies the accesses of R during the execution of loop i depending on whether
they can exploit reuse with respect to other accesses that took place during such execution or not.
The accesses that cannot exploit reuse within the loop may reuse a line already accessed in a
previous iteration of an outer loop, or in a preceding loop nest. As a result these accesses may
end up being compulsory misses, or they can enjoy reuse distances that are out of the scope of
the loop being analyzed. Namely, their reuse distance could be a given number of iterations of
an outer loop, plus/or additionally the execution of loop nests preceding the one being analyzed.
This is the reason why each PME has an input parameter RD which is the reuse distance of the
first-time accesses to lines within its loop (parameter RD passed to the function FR0 in line 4 of
Figure 1). The remaining accesses can exploit reuse within the loop, as they access lines that have
been brought to the cache previously in the loop, or they may end up being interference misses.
Normally, each given line can be reused with different reuse distances, that is, different portions
of code are executed in between different attempts to reuse the line. In the case of references
found in loop nests, which is the scope of the PME model, each loop enclosing a reference
gives place to a different reuse distance, which can be measured in terms of loop iterations, that
(possibly) characterizes some of the reuses not captured by the inner loops.

This way, our model estimates the number of misses generated by a reference by exploring
the loops that enclose it from the innermost one to the outermost one. In each loop the model
builds a partial PME that adds information about the reuses whose reuse distance is associated
with that loop. That PME relies on the PME of the immediately inner level to model the behavior
of that inner level. The reason is that each PME discovers reuse distances between accesses
that take place in different iterations of the analyzed nesting level i, thus, the reuse distances
associated to the studied reference in inner loops are discovered by the PME associated to that
inner level. In the innermost level containing the reference, the recursion is finished by replacing
the call to the PME of the inner level by the calculation of the miss probability associated to the
reuse distance. Thus, the PME associated with the outermost loop in a nest takes into account
all the reuses, and its evaluation yields the number of misses generated by the reference during
the execution of the loop nest. Section 4 explains the construction of the Probabilistic Miss
Equations Model. Now, Section 3.1 gives an overview of the method used to calculate the miss
probability associated to a given reuse distance, which is a key component of our model.

Figure 2 shows the steps the PME model follows to derive the miss probability associated to
a given reuse distance.

3.1. Miss Probability Estimation
The PME model is probabilistic as it uses the probability that each access results in a miss to

calculate the number of misses. In a k-way set associative cache following a LRU replacement
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policy, an access to a cache line results in a miss if it is a first-time access or if since the previous
access to that line, k or more different lines mapped to the same cache set have been accessed.
As a result, the probability of miss in a non-first access is equal to the probability that a cache set
has received k or more lines during the reuse distance. Figure 2 shows the three steps the PME
model follows to derive the miss probability associated to a given reuse distance:

(1) Access pattern identification: the access patterns followed by the references involved
in the reuse distance and the parameters that characterize them are inferred from the references
indexing functions and the shape of the loops that enclose them. The PME model represents each
pattern as a function whose output is a mathematical representation of the footprint of the access
pattern on the cache. There is one function per each typical access pattern (sequential access,
access with constant stride, etc.), and its arguments provide the quantitative characterization of
the access pattern.

(2) Cache impact quantification: the functions obtained in the preceding step are turned into
a mathematical representation of the impact of these access pattern on the cache. This mathe-
matical representation, called area vector, contains the probability that a cache set has received a
given number of lines from the pattern.

(3) Area vectors addition: the area vectors for the different access pattern are combined in
order to calculate a global area vector, that represents the combined impact of all these patterns
on the cache.

Section 5 explains how the PME model follows these steps. Once they are completed, the
final interference probability is estimated as component 0 of the global area vector associated
with the analyzed reuse distance, since it contains the ratio of sets that received k or more lines
during the reuse distance, which is conversely the probability a given set has received k or more
lines.

4. Probabilistic Miss Equations construction

One of the key components of the PME model are Probabilistic Miss Equations, as seen in
Section 3. A different PME is built per reference and per nesting level in which this reference is
enclosed in order to calculate the number of misses associated to that reference. The structure of
the PME FRi(RD) is defined depending on whether the loop i is parallelized or not as

FRi(RD) =



















FsRi(RD) if loop i is not parallelized
FpRi(RD) if loop i is parallelized
MissP(RD) if i = Z + 1

(1)

MissP(RD) is the miss probability associated to a reuse distance RD, and Z is the innermost
loop containing the reference. When i = Z + 1, the PME stands for the behavior of reference
R in a single access in the innermost loop containing R. The probability that access results in a
miss is equal to the miss probability associated to the input reuse distance MissP(RD). Section 5
explains how to compute miss probabilities.

4.1. PMEs for intra-reference reuse in the sequentially executed case
When loop i is not parallelized, the PMEs introduced in [2] are used. We explain here for

completeness the PME for references that only carry reuse with themselves in the loop analyzed,
that is, which can only reuse lines that have been accessed by them, and not by any other refer-
ence, in the considered loop. We call this situation intra-reference reuse, as the reference reuses
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bi Block size for loop i in cyclic distribution
DA j size of the j-th dimension of array A. Dimensions are numbered from left to right starting

at 0.
In a 2D matrix, the row index is dimension 0 and the column index dimension 1.

dA j cumulative size of the j-th dimension of array A, dA j =
∏N

i= j+1 DAi
k Associativity
Ls Line size ( in elements )
LRi(Nits) # of iterations in a set of Nits consecutive iterations of loop i that cannot exploit spatial/tem-

poral locality
MissP(RD) Miss probability associated to reuse distance RD
Ni # of iterations of loop i
SOL Set of lines
S Ri stride that reference R has with respect to loop i
ti # of threads among which the iterations of loop i are distributed

Table 1: Notation summary

lines it accessed in previous iterations of the considered loop. The PMEs for references that carry
reuse with other references, i.e., for inter-reference reuse, can be found in [2]. Those PMEs allow
the modeling of reuse both among references located in the same loop nest and among references
located in different loop nests.

In the innermost loop that contains a reference, the number of iterations in which the refer-
ence cannot exploit reuse within the loop is equal to the number of different lines it accesses.
When the loop studied is not the innermost one containing the reference, the iterations of the
loop define sets of lines (SOL) accessed by R in the inner loops. For example, let us consider
a bi-dimensional M × N array is accessed by columns (that is, the innermost loop of the access
sweeps through the M rows of a given column) in a code in C. In the analysis of the outer loop
that controls the column index of the reference, each iteration of this loop is associated to the
access to the set of lines that hold the elements of a column of the matrix. As C stores matrices
in row-major order, if N ≥ Ls, where Ls is the cache line size measured in elements, which is the
most usual situation, each set of lines will be made up of M different lines. In what follows we
will talk in general about sets of lines (SOLs), in the understanding that in the innermost loop
each one of these sets consists of a single line.

The number of iterations in a set of Nits consecutive iterations of loop i in which R cannot
exploit either spatial or temporal locality because it accesses a new SOL is

LRi(Nits) = 1 +
⌊

Nits − 1
max(Ls/S Ri, 1)

⌋

, (2)

S Ri being the stride that reference R has with respect to loop i. These terms and others that
appear along the paper are summarized in Table 1. This stride S Ri is a constant, since either
the loop control variable (Ii) does not index reference R, or the index we are considering is an
affine function of Ii. In the former case, trivially S Ri = 0. In the latter case S Ri = αR j × dA j,
where j is the dimension whose index depends on Ii; the scalar that multiplies Ii in the affine
function is αR j, and dA j is the cumulative size1 of the j-th dimension of the array A referenced by

1Let A be an N-dimensional array of size DA1 × DA2 × . . .DAN , we define the cumulative size for its j-th dimension
as dA j =

∏N
i= j+1 DAi
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#pragma omp parallel \
private (TMP,R,ci,cj,ck,cjj,ckk) \
for nowait schedule(static)

for(ck = 0; ck < 8192; ck += 32)//L0
for(cj = 0; cj < 8192;cj += 32) {// L1
for(ci = 0; ci < 8192; ci++) {//L2

for (ckk = ck; ckk < min(8192, ck+32); ckk++)//L3.1
for (cjj = cj; cjj < min(8192, cj+32); cjj++)//L4.1
TMP[cjj-cj][ckk-ck] = B[ckk][cjj];

for (cjj = cj; cjj < min(8192, cj+32); cjj++) {//L3.2
ACC = C[ci][cjj];
for (ckk = ck; ckk < min(8192, ck+32); ckk++) //L4.2
ACC += TMP[cjj-cj][ckk-ck] * A[ci][ckk];

C[ci][cjj] = ACC;
}

}
}

Figure 3: Matrix product with tiling and buffering (MATMULTB in Table 4)

R. Dimensions are numbered from left to right starting at zero. In the case of a bi-dimensional
array, the row index is dimension 0, while the column index is dimension 1. The model assumes,
without loss of generality, that multidimensional arrays are stored by rows.

If LRi(Ni) < Ni, Ni being the number of iterations of loop i, then there are Ni − LRi(Ni)
iterations of loop i in which R accesses the same SOL accessed in the previous iteration of this
loop. It is necessarily the same SOL, since there is a constant stride S Ri between the set of
addresses accessed in consecutive iterations. Thus, from the point of view of the cache behavior
of the accesses of reference R there are two kinds of iterations of loop i:

• In LRi(Ni) iterations a new SOL is accessed by R, giving place to first-time accesses in this
loop. The potential reuse distance for such accesses is unknown in this nesting level and is the
input RD to the PME FRi.

• In the other Ni − LRi(Ni) iterations the reuse distance for the accesses of R is one iteration of
loop i, which we denote by Iteri(1).

According to the preceding explanation, the PME FsRi(RD) that computes the number of
misses generated by reference R during the execution of a sequential loop i is

FsRi(RD) =LRi(Ni) × FR(i+1)(RD)+
(Ni − LRi(Ni)) × FR(i+1)(Iteri(1))

(3)

The first term of the PME captures the behavior of those iterations where the reference generates
accesses to SOLs accessed for the first time in this execution of the loop. The reuse distance for
these iterations is given by the input parameter of the PME, RD. The second term captures the
remaining iterations as potential reuse attempts where the reuse distance is always one iteration
of loop i, Iteri(1).
Example 1. Calculation of the PME associated to a reference: Let us consider the C code for the
product of 8192 × 8192 matrices optimized using tiling and buffering in Figure 3 (MATMULTB
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in Table 4) and a shared direct-mapped cache which can store Cs = 1024 elements, with lines of
Ls = 8 elements. A tile size of ts = 32 is selected for two of the dimensions of the problem. The
iterations of the parallel loop in the code are distributed by blocks of b0 = 32 iterations among 8
threads.

Let us analyze the behavior of reference R ≡C[ci][cjj]. The analysis starts in the inner-
most loop containing the reference, loop labeled as L3.2 at level 3 in Figure 3. This loop is
sequentially executed, so, according to Equations (1) and (3), PME FR3 is built as FsR3. Equa-
tion (2) is used for the calculation of LR3(N3 = 32): the stride S R3 = αR1 × dC1 because the loop
index cjj indexes dimension 1 of matrix C, the value αR1 = 1 and dC1 = 1 since in C language
matrices are stored by rows; thus, S R3 = 1 and LR3 = 1 +

⌊

32−1
max{8/1,1}

⌋

= 4. Finally, Equation (3)
yields

FsR3(RD) = 4 × FR4(RD) + 28 × FR4(Iter3(1))

This PME means that during a full execution of the loop L3.2 R accesses 4 different lines which
are reused in the remaining 28 iterations with a reuse distance of one iteration of the loop. This
is sensible, since we can see that during the execution of this loop the reference accesses 32
consecutive elements, which are spread on 4 different lines because each line can hold Ls = 8
elements. This way, in four of the iterations the reference accesses one of these lines form the
first time during this execution of the loop, while the other 28 iterations try to reuse the line
accessed in the previous iteration. As for FR4, since Z = 3 is the innermost loop containing
the reference FR4(RD) = MissP(RD) according to Equation (1). The calculation of MissP will
be explained in Section 5. The two immediately outer loops (L2 and L1) are also sequential,
thus following Equation (1), FR2(RD) = FsR2(RD) and FR1(RD) = FsR1(RD). The development
of these two PMEs is not included here due to space reasons, as it is analogous to the one of
loop 3. Finally, the outermost loop is parallelized, so Equation (1) refers us to FpRi(RD), whose
modeling is introduced in Section 4.2.

4.2. PME for intra-reference reuse in a parallelized loop
We describe now the construction of the PME for references that only carry reuse with them-

selves in a parallelized loop. Appendix A deals with the PMEs for references that carry reuse
with other references, located in the same loop nest, in a parallelized loop. The modeling of
references that carry reuse with other references located in different loop nests does not suffer
variations with respect to the strategy already described in [2]. When a loop i is parallelized, the
model assumes that its Ni iterations are distributed in blocks of bi consecutive iterations among
the ti threads available. This way,

⌊

Ni
bi

⌋

blocks of bi iterations are assigned to the ti threads. If Ni
is not divisible by bi, one of the threads executes additionally Ni mod bi iterations. The parallel
execution of the loop is organized in parallel iterations where a number of threads (typically ti)
are executing one serial iteration of the loop each concurrently.

The first term of the PME includes the LRi(Ni) SOLs accessed during the execution of loop
i whose associated reuse distance is the input reuse distance RD to the PME. If the loop were
executed sequentially, the remaining iterations would attempt to reuse a SOL accessed in the
previous iteration of the loop, as it was seen in Equation (3). However, the parallel execution
of the loop opens the possibility of inter-thread reuse, that is, a SOL can be accessed by several
threads. Inter-thread reuse may appear in one of two situations, if:

• Situation Inter-thread reuse-1: bi is neither a multiple nor a divisor of the line size
Ls and Ii, the loop index of loop i, indexes R
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Figure 4: Distributions of the iterations of a parallel loop among the threads

• Situation Inter-thread reuse-2: bi × S Ri < Ls.

Let us see an example where both situations arise.
Example 2. Figure 4 considers a simple loop that is parallelized using an OpenMP pragma that
distributes its iterations among a number of threads in groups of bi consecutive iterations. The
four schemes in the figure represent the distribution on the cache of the 16 elements of array a
accessed in the loop. The schemes consider a static scheduling policy which cyclically assigns
the groups of bi iterations to the available threads. Each cache line can store 4 elements of the
array, and the elements of each cache line are grouped in the scheme. The elements (conversely,
iterations of the loop) processed by each thread are represented using a different pattern. On top
of each element there is a number that represents the parallel iteration in which the element is
processed. Each parallel iteration is labeled with an integer number starting at 0. This way, all
the elements labeled with the same number are processed concurrently by different threads. The
number under each element is its index in the array. Each scheme in the figure indicates the block
size, bi and the number of threads ti it considers. The distribution of the serial iterations among
the threads for one of the schemes (scheme C) is shown in Figure 5. In scheme C (b0 = 3 and
t0 = 3), there are

⌊

16
3

⌋

= 5 blocks of b0 = 3 iterations and one of 16 mod 3 = 1 iteration to
distribute cyclically among the threads. Each row contains for a given parallel iteration, which
serial iteration executes each thread.

In schemes A and B the situation Inter-thread reuse-2, that gives place to inter-thread
reuse attempt, arise. In both schemes, b0 × S R0 < Ls as S R0 = 1, Ls = 4, being b0 = 1 for scheme
A and b0 = 2 for scheme B. This situation makes that several threads access different elements
from the same cache line. For example, we can see in Figure 4 that in Scheme A at parallel
iteration 0, both threads are accessing two consecutive elements (0 and 1 respectively) from the
same cache line. Similarly, in Scheme B at parallel iteration 0, elements 0 and 2 are accessed
respectively by both threads. The PME model assumes that the progress of all the threads along
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Figure 5: Correspondence among threads, parallel iterations and serial iterations for scheme C of Figure 4

the iterations is similar. This way, when two threads access simultaneously memory positions
located at the same cache line, only the accesses of one of the cores is going to produce cache
misses as the other cores are going to take advantage of the line that has been already loaded on
the cache. Thus, in both schemes this cache line is reused by one of both threads, with a reuse
distance of 0 parallel iterations.

In scheme C, both situations, Inter-thread reuse-1 and Inter-thread reuse-2, are
present at the same time, b0 × S R0 < Ls as b0 = 3, S R0 = 1 and Ls = 4, while b0 = 3 is neither a
multiple nor a divisor of the line size Ls = 4. These situations causes that, like in schemes A and
B, different elements from the same cache line are accessed by different threads. For example,
at parallel iteration 0, elements 0 and 3 are accessed simultaneously by threads 0 and 1, thus,
this cache line is reused by one of both threads, with a reuse distance of 0 parallel iterations. No
all the inter-thread reuses happen in the same parallel iteration. For example we can see that at
parallel iteration 2, thread 2 accesses element 8, while at parallel iteration 3 thread 0 accesses
element 9 that belongs to the same cache line. In this case, one of the threads is attempting to
reuse a cache line that was accessed in the previous parallel iteration by the other thread. This
attempt of reuse has thus a reuse distance of one parallel iteration.

Finally, in scheme D only situation Inter-thread reuse-1 takes place, as b0 = 3 is neither
a multiple nor a divisor of the line size Ls = 4. For example, thread 0 accesses element 4 at
parallel iteration 4, while the other three elements from the same cache line (elements 5, 6 and
7) has been accessed by thread 1 at parallel iterations 0, 1 and 2, respectively. The most recent
access to the cache line, when thread 0 accesses it for the first time in the 4th parallel iteration,
was done by thread 1 in parallel iteration 2, thus, in this case the reuse distance is 2 parallel
iterations !

The modeling of these situations is covered now. During the execution of the loop, a total
of LRi(Ni) SOLs are accessed. Now, these iterations are distributed among ti threads in &Ni/bi'
groups of bi and eventually one group of Ni mod bi. The number of SOLs accessed by several
threads is equal to the difference between the number of first time accesses to SOLs, considering
isolatedly the iterations executed by each thread, and the number of accessible SOLs. This value
nrs is calculated as

nrs =
(

LRi(bi) ×
⌊

Ni
bi

⌋)

+ LRi(Ni mod bi) − LRi(Ni) (4)

These SOLs are accessed in the first iteration of one of the blocks of iterations assigned to a
given thread and can be reused in an iteration that belongs to the previous block, assigned to
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another thread, and which is run in a later parallel iteration. There are bi − 1 iterations between
the first iterations of two consecutive blocks, and on average the number of reuses within the
same thread of a SOL shared by two blocks (threads) is &Ls/S Ri' − 2 as it is the mean of all the
possible number of reuses of this kind (1 . . . (Ls/S Ri) − 1). Subtracting, the reuse distance rd for
the subsequent access, expressed in parallel iterations of loop i, is calculated as

rd = max (bi − &Ls/S Ri' + 1, 0) (5)

Example 3. Calculation of rd: Let us consider the scheme D in Figure 4, in which t0 = 3
threads participate in the parallel execution of the loop distributing its iterations in chunks of
b0 = 5 consecutive iterations per thread. During its execution, all the lines but the first one are
accessed by two threads. This way, one of the threads may reuse the lines brought to the cache by
another one. The number of these reuses is nrs =

(

LRi(5) ×
⌊

16
5

⌋)

+ LRi(16 mod 5) − LRi(16) =
(2 × 3) + 1 − 4 = 3 (see Equation (4)). The average reuse distance of these reuse attempts is
rd = max

(

5 −
⌊

4
1

⌋

+ 1, 0
)

= 2 (see Equation (5)) parallel iterations of the loop. In Figure 4 we
can see that these 3 reuses are between:

• (1) The accesses to element 4 by thread 0 and element 5 by thread 1 at parallel iterations 4
and 2, respectively (reuse distance is 2).

• (2) The accesses to element 9 by thread 1 and element 11 by thread 2 at parallel iterations
4 and 1, respectively (reuse distance is 3).

• (3) The accesses to elements 14 by thread 2 and element 15 by thread 0 at parallel iterations
4 and 5, respectively (reuse distance is 1) !

If bi × S Ri < Ls several threads access simultaneously the same line (or SOL), so the reuse
distance of these reuses is 0 iterations of the loop. As we saw, the Ni iterations of the loop
are distributed in groups of bi iterations. This way, the Ni iterations are divided into groups of
ti × bi iterations where each thread executes a block of bi iterations. It must be calculated how
many of these groups of ti × bi iterations fit in one SOL (ngrt) and how many threads can access
concurrently a SOL (nst). Once we have calculated these values, we can calculate that there are

rso = ngrt × max((nst − 1), 0) × (bi − 1) × LRi(Ni) (6)

iterations where the reuse distance is 0, as the same SOL is being accessed simultaneously by
other threads. For each group, one thread of the nst threads whose bi iterations fit in one SOL is
not considered in this term because it is regarded as the first one that accesses the SOL. For the
other threads, for each group of bi iterations, only the last bi − 1 iterations are considered here,
as the reuse of the first iteration of each group of bi iterations has already been considered in the
term nrs (see Equation (4)). Finally, such reuses happen in each one of the LRi(Ni) SOLs that
reference R defines in loop i.

Regarding the calculation of ngrt and nst, if S Ri = 0, ngrt = Ni
ti×bi and nst = ti because in the

Ni iterations of the loop the same SOL is accessed. When S Ri > 0, ngrt = min
(

Ni
ti×bi ,

Ls
ti×bi×S Ri

)

and
nst = min

(

Ls
bi×S Ri , ti

)

. These two cases are summarized in the following expressions:

ngrt = min
(

Ni
ti × bi

,
Ls

ti × bi × S Ri

)

(7)
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nst = min
(

Ls

bi × S Ri
, ti
)

(8)

Example 4. Calculation of rso: Considering schemes A, B and C of Figure 4, as bi × S Ri < Ls
several threads access simultaneously the same SOL. For example, in scheme C, rso = 3 as:

• (1) At parallel iteration 0, threads 0 and 1 access elements 0 and 3, which belong to the
same cache line.

• (2) At parallel iteration 1, threads 1 and 2 access simultaneously elements 4 and 7, which
belong to the same cache line.

• (3) At parallel iteration 3, threads 1 and 2 access elements 12 and 15, which belong to the
same line.

This can be also visualized for scheme C in Figure 5.
Regarding scheme B, one group of t0 × b0 iterations fits in one cache line. Thread 1 reuses

the lines that are accessed concurrently by thread 0. The first access to each line by thread 1 is
accounted by the term nrs with associated reuse distance rd = 0. The second access to each line
by thread 1 is considered by term rso = ngrt ×max((nst − 1), 0) ×max((2 − 1), 0) × LR0(16) (see
Equation (6)). As ngrt = min

(

16
2×2 ,

4
2×1×2

)

= 1 group (see Equation (7)) of t0 × b0 = 4 iterations,
and the iterations of nst = min

(

4
2×1 , 2

)

= 2 (see Equation (8)) threads fits in one cache line, then,
according to Equation (6), rso = 1 × (2 − 1) × 1 × 4 = 4. These 4 reuses take place due to the
simultaneous access to elements 1 and 3, 5 and 7, 9 and 11, and finally 13 and 15, by threads
0 and 1, respectively. Notice that the simultaneous access to elements 0 and 2, 4 and 6, 8 and
10, and finally 12 and 14, which correspond to the reuse of the first iteration of each group of bi
iterations , have already been considered in the term nrs (see Equation (4)) !

If more than one group of ti × bi iterations fit in a SOL (ngrt > 1), the first thread that
accesses a SOL may access that same SOL again in a different block of iterations associated
to that same thread. In these iterations, the thread is reusing the same SOL it accessed in the
immediately previous iteration. However, these iterations were initially included in the term
nrs, which corresponds to accesses with a reuse distance of rd iterations. The number of these
iterations is

ngrtC = max((ngrt− 1), 0) × LRi(Ni) (9)

This fact must be taken into account by subtracting these iterations from nrs and adding them to
a term where the reuse distance is one iteration of the loop.
Example 5. Calculation of ngrtC: Considering scheme A of Figure 4, nrs = 12 and rd = 0. But
the second access to each line by thread 0 has a reuse distance of one iteration of the loop. The
number of these iterations is calculated using Equation (9) as ngrtC = max((2−1), 0)×LR0(16) =
4, because ngrt = min

(

16
2×1 ,

4
2×1×0

)

= 2. We are assuming that all the threads progresses at the
same speed along the iterations of the parallel loop. In addition, we assume that, when both
threads access simultaneously memory positions located at the same cache line, thread 1 takes
advantage of the line loaded in the cache by thread 0, these ngrtC = 4 iterations correspond to
the accesses of elements 2, 6, 10 and 14 of the array. As it is shown in Figure 4, these iterations
access the same cache line brought to the cache by the simultaneous access performed by threads
0 and 1 in the immediately previous parallel iteration and thus their reuse distance is one parallel
iteration, not the rd = 0 iterations computed for nrs !
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The iterations not accounted in the previous terms attempt to reuse a line accessed in the
immediately previous iteration. The number of iteration of this kind (rem) is calculated by sub-
tracting the iterations already considered in the other terms from the Ni total iterations.

rem = Ni − (nrs + rso + LRi(Ni) − ngrtC) (10)

Example 6. Calculation of rem: Considering scheme A of Figure 4: LRi(Ni) = 4 which corre-
sponds with the processing of elements 0, 4, 8 and 12; nrs = 12 which corresponds to the process-
ing of the remaining elements of the array, and ngrtC = 4 which corresponds to the processing of
elements 2, 6, 10 and 14, as it was stated in Example 5. Let us recall that term ngrtC is substracted
from nrs. rso = 0 because b0 = 1, so finally rem = Ni−(nrs+rso+LRi(Ni)−ngrtC) = 16−12 = 4
as N0 = 16. This last term correspond to the processing of elements 2, 6, 10, and 14 !

This term takes into account the ngrtC iterations that attempt to reuse a SOL accessed in the
previous parallel iteration, and the remaining iterations that, not being first-time accesses to SOL
or inter-thread reuses, reuse a SOL accessed in the previous iteration by the same thread. This
way the PME to model the behavior of a reference R that carries no reuses with other references
in a parallel loop i is

FpRi(RD) =LRi(Ni) × FR(i+1)(RD)+
(nrs − ngrtC) × FR(i+1)(Iteri(rd))+
rso × FR(i+1)(Iteri(0))+
rem × FR(i+1)(Iteri(1))

(11)

Example 7. Calculation of the PME associated to a reference: Let us consider again the code
in Figure 3 and a shared direct-mapped cache which can store Cs = 1024 elements, with lines
of Ls = 8 elements. Let us recall that the tile size is ts = 32 for both dimensions and that the
iterations of the parallel loop in the code are distributed in blocks of b0 = 32 iterations among 8
threads.

Example 1 was devoted to analyze the behavior of reference R ≡C[ci][cjj]. In the three
innermost loops containing the reference, which are sequential. We build here the PME that
models of the behavior of that reference in the outermost loop at level 0 (L0). As that loop is
parallelized, Equation (1) refers us to Equation (11), and S R0 = 0, since its loop index ck does
not index any dimension of C.

LR0 is calculated using Equation (2), the loop has N0 = 8192/32 = 256 iterations, so
LR0(256) = 1. nrs = 7 according to Equation (4), ngrtC = 0 (Equation (9)), rd = 0 (Equa-
tion (5)), rso = 217 (Equation (6)) and rem = 31 (Equation (10)). This way, FpR0(RD) is
calculated as,

FpR0(RD) = 1 × FR1(RD) + 7 × FR1(Iter0(0))+
217 × FR1(Iter0(0)) + 31 × FR1(Iter0(1))

Let us examine the meaning of this expression. The same SOL is accessed in all the iterations of
the loop. Thus, it is accessed once for the first time by one of the threads (reuse distance RD).
In the same parallel iteration, the remaining 7 threads access the same line simultaneously (reuse
distance 0). The same behavior is repeated in the remaining 256/8 − 1 = 31 parallel iterations.
One thread accesses the SOL for the first time (31 iterations now with a reuse distance of one
iteration) and the other 7 threads reuse that SOL simultaneously (31 × 7 = 217 iterations with a
reuse distance of 0 iterations) !
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5. Miss probability calculation

Once the PMEs have identified the reuse distance of each access, the miss probability asso-
ciated to those reuse distances must be calculated to compute the estimation of misses. This is
achieved in three stages (access pattern identification, cache impact estimation, and area vectors
union) which are discussed now in turn.

5.1. Access pattern identification
This step identifies the access pattern followed by each reference executed during the reuse

distance. This access pattern is a formal characterization of the set of memory positions accessed
by the reference. The access pattern followed by a reference can be used to derive the memory
region defined by the accesses generated by that reference. The process to identify the access
pattern that references follow during a reuse distance consisting of n iterations of the loop at
nesting level h has two steps. They are discussed now in turn.

5.1.1. Indexing identification
In this step, for each reference R the indexes of each dimension and the number of iterations

of each loop during this reuse distance are examined. The output of this analysis is a DA-tuple
RR(h, n), where DA is the number of dimensions of the array A referenced by R. Each element
of these tuples is in its turn a 2-tuple RR j(h, n) = (Mj, S j), where Mj is the number of points
accessed along dimension j, and S j is the distance between each two consecutive points. The
algorithm followed to calculate the 2-tuple associated to dimension j of reference R during n
iterations of the loop at nesting level h is as follows.

The indexing considered is always an affine function αR j×Ii+δR j of some loop index Ii. The
set of points accessed in this dimension by R can be represented as the tuple (Itersi(h, n), S Ri),
where S Ri is the stride between the points accessed in two consecutive iterations of loop i, and
Itersi(h, n) stands for the number of different values that Ii takes during n iterations of the loop
in nesting level h. This value is calculated as

Itersi(h, n) =



















1 if i < h
n if i = h
Ni if i > h

The DA-tuple RR(h, n) may be simplified by applying some transformations between pairs of
2-tuples RR j(h, n) that describe the access pattern in different dimensions of the arrays such as:

((1, S k), (Mj, S j)) = (Mk, S k)
((Mk,Mj × S j), (Mj, S j)) = (Mj × Mk, S j)

(12)

Both simplifications refer to accesses associated to bidimensional matrices where the ele-
ments of the matrix are stored by rows. In the first simplification, the DA-tuple represents the
access to Mj elements of one row separated by a distance S j. This access may be simplified as
the access to Mj elements of the matrix separated by a distance S j. In the second simplification
the DA-tuple represents the access to Mk rows of the matrix separated by a distance Mj × S j.
In each row, Mj columns separated by a distance S j are accessed. The distance between a pair
of the rows accessed is equal to the distance between the first and the last element accessed of
each row. This way, the access may be simplified as an access to Mj ×Mk elements of the matrix
separated by a distance S j.
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An additional vector −→QR is required to describe the region accessed by each reference R.
If the reference is not indexed by a loop index of any parallel loop directly or indirectly, −→QR
has a single component, which is the offset with respect to the beginning of the array of the first
element accessed by R. If R is indexed by the loop index Ii of a parallel loop directly or indirectly
(when a loop index that indexes R depends on Ii) vector −→QR may contain several components.
In this case, R generates concurrent accesses in each one of the ti threads that participate in the
execution of the loop. Each thread executes

⌈

Ni
bi×ti

⌉

groups of bi consecutive iterations, where
bi is the block size. The distance between the elements that belongs to consecutive groups is
stridei = bi × S Ri, where S Ri is the stride that reference R has with respect to loop i. This way, if
we are considering the reuse distance of n iterations of loop h, the components of the −→QR vector
are calculated as follows,

• If i > h, −→QR has a single component, which is the offset with respect to the beginning of the
array of the first element accessed by R. The reason is that the Ni iterations of the parallel loop
are executed.

• If i < h, −→QR has ti components because R has generated one access per thread. Component
QR0 contains the offset with respect to the beginning of the array of the first element accessed
by the first thread. The remaining components are calculated as QRt = QR0 + t × stridei where
t = 1 . . . (ti − 1).

• If i = h, the number of parallel iterations executed of the loop i is equal to the number of
iterations of the reuse distance n. −→QR has n × ti components. Component QR0 is calculated as
in the previous case and the remaining values are calculated using the following expression

QR(n∗t+s) = QR0 + &s/bi' × bi × ti + s mod bi + t × stridei

where s = 0 . . . (n − 1) and t = 0 . . . (ti − 1).

5.1.2. Access pattern function identification
Rather than this description of the memory region accessed, the output of the access pat-

tern identification step is a function that characterizes the access pattern. The most common
kinds of access patterns identified are Regs(S R), the access to S R consecutive elements, and
Regr(MR, LR, TR), the access to MR groups of LR consecutive elements separated by a distance
TR. This way, when the result of the previous step is a single 2-tuple (M, S ), depending on the
values of M and S , two kinds of access pattern functions can be identified in this step. If S = 1, it
is an access to M consecutive elements, Regs(M). Otherwise it is an access to a set of M groups
of one element separated by a constant stride S , Regr(M, 1, S ).

Sometimes more than one tuple appears in the region description. For example, when R =
((M1, S 1), (M2, 1)), the access pattern can be represented by function Regr(M1,M2, S 1). When
M2 = S 1, then the access pattern is Regs(M1 × M2).

As a result of the indexing identification step, there may be either several RR(h, n) tuples
associated to references to the same data structure, tuples with a −→QR parameter containing more
than one component or both things simulatenously. These descriptors must be post-processed
to: (1) identify overlapping or adjacent regions and (2) derive the overall access pattern that
describes the memory positions associated to these references. This post-processing considers
simultaneously all the components of all these −→QR parameters. The PME model provides simple
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algorithms to merge the components of several −→QR. This way, lines that are accessed by different
references are not taken into account several times as source of interferences and several memory
regions associated to the same data structure may be merged to be characterized as a unique one.
For example, in the parallel case due to the regular distribution of the parallelized loop iterations
among the threads and the affine indexing considered in this paper, each two components of
the −→QR vector may differ a fixed value stridei. This way, for example, if the access has been
identified as sequential, Regs(M), then, considering the combined effect of all the threads, the
access is represented by Regr(N,M, stridei), i.e. the access to N groups of M elements separated
by a distance stridei.
Example 8. Calculation of the interference region associated to a reference during a reuse dis-
tance: Examples 1 and 7 built the PMEs for reference C[ci][cjj] in the code of Figure 3.
Let us consider that the number of threads used in the parallelization is t0 = 8 and the block
size b0 = 32. We explain here part of the access pattern identification step of the reference
A[ci][ckk] during the reuse distance Iter3(1), i.e., one iteration of loop 3 (L3.2 for this refer-
ence).

The first tuple of the 2-tupleRR(3, 1) that characterizes the region it accesses in the reuse dis-
tance is (Iters2(3, 1), S R2), because the first dimension of this reference is indexed by the loop in-
dex of loop 2. Iters2(3, 1) = 1, as (i = 2) < (h = 3), and S R0 = αR0×dA0 = 1×8192 = 8192. Thus,
the first component of RR(3, 1) is the tuple (1, 8192). The second component of RR(3, 1) charac-
terizes the access to the second dimension in the reference and it is the tuple (Iters4(3, 1), S R4),
as this dimension is accessed by the loop at level 4 (L4.2). The value Iters4(3, 1) = N4 = 256
as (i = 4) > (h = 3), while S R4 = αR1 × dA1 = 1 × 1 = 1. This way, the second component of
RR(1, 1) is the tuple (256, 1).

The parallel loop (loop i = 0) indexes indirectly the second dimension of reference A[ci][ckk]
because this loop selects the different tiles in which this dimension is divided. Its −→QR parameter
has t0 = 8 components as (i = 0) < (h = 3). Component QR0 contains the offset with re-
spect to the beginning of the array of the first element accessed and the remaining 7 components
are generated using the expression QRt = QR0 + t × stride0 where t = 1 . . . ((t0 = 8) − 1) and
stride0 = (b0 = 32) × (S R0 = 256) = 8192. S R0 = αR1 × dA1 = 256 × 1 = 256 as loop 0 has
stride 256 and must be normalized to have stride one. As a result, the values contained in the 8
components of −→QR are separated by a constant stride 8192.

The two components of the RR(3, 1) tuple can be simplified as ((1, 8192), (256, 1)) = (256, 1)
according to Equation (12). As a result, the access can be represented by a single tuple (M =
256, S = 1). As S = 1, it is an access to M = 256 consecutive elements, Regs(256). Then,
considering the combined effect of all the threads, and as the 8 components of −→QR are separated
by a constant stride0 = 8192, the access is represented by Regr(8, 256, 8192)!

5.2. Cache impact estimation
The cache impact estimation step quantifies the impact on the cache of each access pattern

found using a mathematical representation of the distribution of the lines of the access pattern
on the cache sets, called area vector. An area vector V has k + 1 components, k being the
associativity of the cache. Component V0, represents the ratio of cache sets that receive k or
more lines from the access, while component Vi, 0 < i ≤ k, stands for the ratio of cache sets
that receive k − i lines. There is a method to calculate the area vector associated to each kind of
access pattern. The methods to calculate the area vector associated to the most common access
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patterns have already been described in [2]. For example, the sequential access to n consecutive
words Regs(S R) generates an area vector AVs:

AVs(k−&l') (S R) = 1 − (l − &l')
AVs(k−&l'−1) (S R) = l − &l'
AVsi(S R) = 0 0 ≤ i < k − &l' − 1, k − &l' < i ≤ k

(13)

where l = min{k, (S R + Ls − 1)/(LsNK)} is the minimum of k and the average number of lines
placed in each set. In this expression, Ls stands for the line size and NK for the number of cache
sets. The number of cache sets NK can be calculated as Cs/Lsk. The term Ls−1 added to n stands
for the average extra words brought to the cache in the first and last accessed lines.
Example 9. The impact of a sequential access to 256 elements, Regs(256), on a direct mapped
cache that can store 1024 elements distributed in lines of 8 elements, is represented by the area
vector with the values AVs = (0.256836, 0.743164) because l = min{k, (S R + Ls − 1)/(LsNK)} =
min{1, (256+8−1)/(8×128)} = 0.256836 as Nk = Cs/Lsk = 1024/(8×1) = 128. Once the value
of l is replaced in Equation (13), AVs(k−&l') (S R) = AVs(1−0) (256) = 1−(l−&l') = 1−(0.256836−0) =
0.743164 and AVs(k−&l'−1) (S R) = AVs(1−0−1) (256) = l − &l' = 0.256836 − 0 = 0.256836. This means
that 25.6836% of the cache sets receives 1 or more lines from the access pattern, while the
remaining 74.3164% receives none. !

5.3. Area vectors union
The preceding step generates an area vector per access pattern found during a reuse distance.

Each component of one of these area vectors is the ratio of cache sets that receives a given
number of lines from those that comprise the memory region accessed by the corresponding
access pattern, which is conversely the probability a cache set holds a given number of lines
from those lines. In this last step these area vectors are added in order to get a global interference
area vector which represents the total impact on the cache of all the accesses that take place
during the considered reuse distance. The component 0 of this area vector is the miss probability
we are trying to estimate. The reason is that this component is the ratio of sets that have received
a number of different lines equal or greater than the associativity (k) during the reuse distance,
and in a cache with LRU replacement policy a reuse attempt results in a miss if and only if this
number of lines is mapped to the cache set considered during the reuse distance. The algorithm
to add area vectors has already been described in [2]. Given two area vectors VA and VB, their
addition, represented by the operator ∪, is calculated as

(VA ∪ VB)0 =
∑K

j=0

(

VA j

∑K− j
i=0 VBi

)

(VA ∪ VB)i =
∑K

j=i VA jVB(K+i− j) 0 < i ≤ K

This method is based on the addition as independent probabilities of the area ratios, which
means that it does not take into account the relative positions of the program data structures in
memory. This approach allows our model to provide reasonable estimations in many situations
in which the base addresses of the data structures are not known at compile time (e.g. physically-
addressed caches, which is in fact the case of all the actual shared caches we know of), something
that, as far as we know, no other model supports.
Example 10. Using the method previously described, the union of two area vectors VA =

(0.25, 0.75) and VB = (0.15, 0.85) is (VA ∪ VB) = (0.3625, 0.6375). The rationale is that if
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Processor Level Cache size Line size Associativity

Intel Core i7
1 (private) 32KB 64B 8
2 (private) 256KB 64B 8
3 (shared) 8MB 64B 16

Intel Core 1 (private) 32KB 64B 8
2 Duo 2 (shared) 4MB 64B 16

Table 2: Characteristics of the cache hierarchy of two different multicore systems

each region places one ore more cache lines in a 25% and in 15% of the cache sets, respectively,
and the location of these cache sets is unknown, the percentage of cache sets that receives one
or more cache lines from these two regions is 25 × 15 + 25 × 85 + 75 × 15 = 36.25%. That is,
a cache set receives at least one cache line from both regions, A and B, if it receives at least one
cache line from A and B, or at least one cache line from A but none from B, or at least one cache
line from B and none from A. The remaining 63.75% cache sets do not receive a cache line from
any of both regions !

6. Experimental results

The accuracy of our cache prediction has been first validated against the SESC cycle-accurate
simulator [11]. In a second set of experiments, it is verified that the model accurately reflects
the changes in the behavior of the cache due to the existence of a different number of threads
and block sizes in the parallelization of loops. In this second set of experiments, the predictions
of the model are validated against the SESC simulator and against the actual execution time of
the code in real platforms. Let us notice that neither the simulations nor the actual executions
enforce a lock-step execution of the iterations by the threads involved in the parallelization.

The experiments consider two cache hierarchies with the parameters of two well-known mul-
ticore processors, Intel Core 2 Duo and Intel Core i7 [12]. The main characteristics of these
memory hierarchies are outlined in Table 2. For each processor and each cache level the table
specifies whether the cache is private to each core or shared, the cache size, the line size, and the
associativity. The characteristics of the L1 instruction cache are not included, as its effects on
the shared cache levels during the execution of the codes used in this section are negligible. We
were able to confirm this fact using the SESC simulator. Unless otherwise stated, the number of
threads used in the experiments for each configuration is equal to the number of cores that exist
in the processor (2 for the Intel Core 2, and 4 for the Intel Core i7).

The accuracy of the model has been validated using thirteen codes (see first column of Ta-
ble 3). MATMULIJK performs the parallel product of two matrices in IJK order. These three
letters indicate the order of the loop indexes in the code, the first index is the one for the outer
loop and the last index is the one for the innermost loop in the nest. I and K select the row and the
column of the first matrix to be multiplied, respectively, and J selects the column of the second
matrix to be multiplied. MATMULJIK performs also a parallel matrix product but using order
JIK; MATMULTB, shown in Figure 3, performs the same operation as MATMULIJK but apply-
ing tiling (to loops J and K), and buffering for the tile of matrix b; TRANS performs the parallel
transposition of a matrix. SWIM is a parallelized version of the complete SWIM benchmark
from the SPECfp95 suite already used in [2]. SU2COR-MATMAT and HYDRO2D-FILTER
are parallelized versions of the most-time consuming routines in the SU2COR and HYDRO2D
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# Loops # omp for pragmas # parallelized loops # References Ex. time %
MATMULIJK 3 1 3 5 100%
MATMULJIK 3 1 3 4 100%
MATMULTB 7 1 7 6 100%
TRANS 2 1 2 2 100%
SWIM 23 7 23 193 100%
SU2COR-MATMAT 1 1 1 36 23.5%
HYDRO2D-FILTER 24 14 24 120 46.8%
SP-LHSY 14 5 14 77 12.8%
SP-TZETAR 4 1 4 21 6.8%
SP-COMPUTE-RHS 68 21 53 289 36.4%
LU-JACLD 2 1 2 284 31%
MG-COMM3 6 3 6 12 1%
MG-RESID 4 1 4 21 47%

Table 3: Characteristics of the codes analyzed

benchmarks of the same suite. Finally, the analysis of SP-LHSY, SP-TZETAR, SP-COMPUTE-
RHS, LU-JACLD, MG-COMM3 and MG-RESID routines covers a significative percentage of
the execution time of the SP, LU and MG benchmarks of a version of the NAS Parallel Bench-
marks parallelized using OpenMP (NPB-omp).

In MATMULIJK, MATMULJIK, MATMULTB and TRANS, the outermost loop has been
parallelized using the OpenMP for pragma. A similar strategy was used to parallelize all the
parallelizable loops of the codes from the SPECfp95 suite (SWIM, SU2COR-MATMAT and
HYDRO2D-FILTER). Finally, the codes from the NPB-omp suite are already parallelized and
thus, they have been analyzed as provided in this suite. The complexity of these codes is summa-
rized in Table 3. For each code analyzed, the table contains the number of loops (# Loops), the
number of OpenMP for pragmas used in the parallelization ( # omp for pragmas ), the number
of loops whose execution is nested inside one of the pragmas (# parallelized loops), the number
of array references (# References), and the percentage of the execution time of the whole bench-
mark consumed by the analyzed routine (Ex. time %). All the references in all the codes are
inside parallel regions, so they are executed simultaneously by different threads.

Table 4 compares the number of misses predicted by the model with the number of misses
observed in the simulator in the shared cache of the two processors considered, using both static
and dynamic policies for the scheduling of the parallel execution. Regarding the problem size,
for MATMULIJK, MATMULJIK, MATMULTB and TRANS, each dimension of each one of
the data structures involved has size 1000. In the case of MATMULTB, the tile size in both
dimensions has been fixed to 100. In these codes the iterations of the parallel loop are distributed
by blocks of 4 iterations. In the benchmarks from SPECfp95 suite the default problem size was
used and the iterations of the parallelized loops were distributed among the threads in blocks of
25 iterations. Finally, for the benchmarks from the NPB-omp suite, the class C size and a block
size of 16 iterations were used for the parallelized loops.

The predictions of the number of misses in the private cache levels were also computed using
the PME model in [2], and they accurately reflected the values obtained by the simulator. They
are not shown in the table as their computation does not require the extension of the model
presented in this paper. For each case, the table also includes the miss rate (MR) with respect
to the total number of accesses that produces the code during its execution. The predictions are
precise even although the accesses do not take place directly on the shared cache, as they are
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Code Intel Core i7 (4 threads)
mod sim (static) sim (dynamic)

misses MR misses MR misses MR
MATMULIJK 1971369 0.09% 2160860 0.10% 1931723 0.09%
MATMULJIK 7220821 0.36% 7007347 0.35% 7133528 0.35%
MATMULTB 677659 0.01% 774540 0.01% 774591 0.01%

TRANS 250000 12.5% 250000 12.5% 249461 12.47%
SWIM 354249154 1.51% 257314373 1.1% 257309505 1.1%

SU2COR-MATMAT 6156 4.17% 6153 4.17% 6153 4.17%
HYDRO2D-FILTER 65675 1.45% 64775 1.43% 64831 1.43%

SP-LHSY 14956562 7.61% 14516653 7.38% 14517172 7.38%
SP-TZETAR 6412800 9.42% 6221760 9.14% 6221760 9.14%

SP-COMPUTE-RHS 89480848 7.39% 96357543 7.95% 96343323 7.95%
LU-JACLD 559649 7.46% 388011 5.15% 386541 5.15%

MG-COMM3 853762 27.14% 784796 24.94% 784796 24.94%
MG-RESID 84801106 3.42% 83661839 3.37% 83661846 3.37%

Intel Core 2 Duo (2 threads)
mod sim (static) sim (dynamic)

misses MR misses MR misses MR
MATMULIJK 62750000 3.13% 62750000 3.13% 62750000 3.13%
MATMULJIK 63500000 3.17% 63376500 3.16% 63625500 3.17%
MATMULTB 1191320 0.02% 1003850 0.02% 1006375 0.02%

TRANS 250000 12.5% 250000 12.5% 250000 12.5%
SWIM 547768496 2.34% 516181431 2.21% 516145330 2.21%

SU2COR-MATMAT 6156 4.17% 6153 4.17% 6153 4.17%
HYDRO2D-FILTER 65675 1.45% 64839 1.43% 64863 1.43%

SP-LHSY 14956562 7.61% 14516868 7.38% 14516874 7.38%
SP-TZETAR 6412800 9.42% 6221760 9.14% 6221760 9.14%

SP-COMPUTE-RHS 98836762 7.54% 98824503 8.16% 6607318 8.16%
LU-JACLD 561276 7.48% 386840 5.15% 386840 5.15%

MG-COMM3 853762 27.14% 784788 24.94% 784788 24.94%
MG-RESID 84800831 3.42% 83665677 3.38% 83660279 3.37%

Table 4: Number of misses and miss rate (MR) of the shared level of the cache predicted by the model (mod) and
observed in the simulator (sim) respectively using both static and dynamic scheduling. Each dimension of each one of
the data structures involved has size 1000. In MATMULTB, a tile size of 100 has been used in both dimensions.

filtered previously by one or two upper levels of private caches. In previous works [2, 6, 10], it
has been shown that if the n-th cache level is modeled directly using the PME model and ignoring
the filtering of the upper cache levels, the predictions are still accurate.

The estimations of the model are scheduling policy-independent, and the simulation results
confirm that the cache behavior using both policies does not change substantially. The reason
is that in the static scheduling, the blocks of bi iterations are assigned cyclically to the threads,
while in the dynamic scheduling the order of assignment depends of the occupancy of the threads
and all the threads have a very similar load. The load is similar because all the iterations of the
loops require the same amount of computation. The cache behavior does not depend on the order
used to assign the blocks of iterations to the threads. The prediction of the model matches the
cache behavior observed in the simulator. Another interesting characteristic of our model is that
the predictions are obtained very fast. The average modeling time is 0.56 seconds, the minimum
modeling time is 0.01 seconds and the maximum one is 2.3 seconds. The modeling times were
obtained using an Intel Core 2 Duo at 2.4 Ghz with 2GB of RAM.

Figure 6 illustrates how application behavior can largely change depending on the cache
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Figure 6: Miss rate prediction vs. miss rate observed in the simulation changing the line size, cache size and associativity
of the Intel i7 cache

configuration and how our model reliably predicts these changes. The figure shows the miss
rate predicted and the miss rate obtained in the simulator changing the line size, cache size and
associativity of the Intel i7 shared cache level, for the SP-LHSY, HYDRO2D-FILTER and MG-
RESID codes parallelized using 4 threads, respectively. In the SP-LHSY and MG-RESID codes,
the class C size has been used. We can see that changes in any of the three basic configuration
parameters of the shared cache can give place to strong variations of the performance, and that
our model accurately predicts them.

Figure 7 shows a comparison of the miss rate predicted and the one observed in the simulation
using three different parallelization schemes (changing the number of threads ti and block size
bi) for the MATMULJIK code and the Intel i7 cache for different problem sizes. The predictions
of the model are very accurate, as they match the behavior observed in the simulator. When the
problem size is small with respect to the cache (500x500 and 750x750) the cache performance
is not influenced by the parallelization scheme. However, for larger problem sizes the cache
performance changes depending on the parallelization scheme and the model perfectly captures
this behavior. Thus, it is important to study the influence of the number of threads and the block
size on the performance of shared caches. This way, the second target of our experiments is
to validate that the model precisely reflects the changes in the behavior of the code due to the
existence of a different number of threads and block sizes in the parallelization of loops. The
results of these experiments are shown in Sections 6.1 and 6.2 respectively. In these sections,
the predictions of the model are validated against the simulator. Additionally, it is also verified
that these changes in the cache behavior affect the actual execution time of the code. Finally,
Section 6.3 shows how the predictions of the model can be used to guide compiler optimizations.

21



MATMULJIK

0.05%

0.1%

s1 s2 s3

M
R

Parallelization scheme

size 500x500

s1: ti=2, bi=32 
s2: ti=4, bi=8
s2: ti=8, bi=4

Model
Simulation

0.05%

0.1%

s1 s2 s3
M

R
Parallelization scheme

size 750x750

s1: ti=2, bi=32 
s2: ti=4, bi=8
s2: ti=8, bi=4

0.35%

0.7%

s1 s2 s3

M
R

Parallelization scheme

size 1000x1000

s1: ti=2, bi=32 
s2: ti=4, bi=8
s2: ti=8, bi=4

1%

3%

s1 s2 s3

M
R

Parallelization scheme

size 1250x1250

s1: ti=2, bi=32 
s2: ti=4, bi=8
s2: ti=8, bi=4

1%

3%

s1 s2 s3

M
R

Parallelization scheme

size 1500x1500

s1: ti=2, bi=32 
s2: ti=4, bi=8
s2: ti=8, bi=4

Figure 7: Miss rate prediction vs. miss rate observed in the simulation using different parallelization schemes and
problem sizes for the MATMULJIK code on the Intel i7 cache

6.1. Influence of the number of threads in the shared cache performance
The first factor whose effect in the shared cache performance is studied, is the number of

threads used in the parallelization. Thus, Figure 8(a) shows the number of misses predicted by
the model and the number of misses observed in the simulator in the shared cache present in
an Intel Core i7 when transposing with TRANS a 60000 × 1000 matrix using 1, 2 or 4 threads.
Each one of the t threads is assigned a block of (N = 60000)/t consecutive iterations, where
N = 60000 is the number of iterations of the parallel loop. The reason why in this case a square
matrix has not been used is that it has been detected analytically that the cache performance
of the transposition of a cache with 60000 elements per row could be largely influenced by the
variation of the number of threads in this kind of cache. However, each 60000 × 60000 matrix of
elements of type double occupies around 26 Gigabytes, so the performance of this code in these
conditions would have been negatively influenced by the impossibility to fit the data structures
in the main memory of our system. The problem sizes used in the other experiments have also
been selected on purpose to be illustrative of the influence of different factors in the shared cache
performance. Table 8(b) shows the number of misses predicted by the model for each one of the
data structures involved. The ability to provide the number of misses per reference (and even per
nesting level) is an interesting characteristic of this model, as this information may be used in
optimization processes. The results show that the usage of several threads in the code influences
the number of misses of matrix b while the number of misses of matrix a remains unaltered. The
last column of the table shows the actual execution time of the code on a system with a Intel Core
i7. The large increase of the number of misses predicted is reflected in the execution times, even
although the work is distributed among more threads. Let us analyze the possible causes of these
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Figure 9: Cache behavior of the shared cache of an Intel Core i7 when executing MATMULIJK on two 1200 × 1200
matrices using different number of threads

results. This code consists of two nested loops where one matrix a, the matrix to be transposed,
is accessed by rows and another matrix b, the matrix where the result is stored, is accessed by
columns. The iterations of the outermost loop are distributed among ti threads. The reuse in
matrix a is between consecutive iterations of the innermost loop. During this reuse distance,
ti elements of a and b are accessed so the miss probability associated to this reuse distance is
very small even when using 4 threads. The reuse in matrix b takes place between iterations of
the outermost loop. During this reuse distance, ti rows of a and ti columns of b are accessed.
The miss probability associated to this reuse distance is high, and the usage of several threads
increases the number of misses.

Figure 9(a) shows the results of a similar experiment for the multiplication of two 1200 ×
1200 matrices on the shared cache of an Intel Core i7 using the MATMULIJK code. The dis-
tribution of the iterations among the threads is consecutive, therefore, each one of the t threads
is assigned a block of (N = 1200)/t consecutive iterations, where N = 1200 is the number of
iterations of the parallel loop. In this case, as the number of threads increases we observe a re-
duction of the number of misses. Table 9(b) shows the number of misses per structure predicted
by the model and the execution time of the real code. The cache performance of the accesses to
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matrices a and c remains unaltered, while the number of misses produced by the accesses to ma-
trix b decreases with the number of threads used. This improvement in the memory performance
reduces the execution time in the target architecture, as the access to matrix b generates most of
the cache misses in this code. The reduction of the execution time in this case is due both to:
the better memory performance and the distribution of the work among an increasing number of
threads. According to the results in Table 4 (where 1000 × 1000 matrices were considered), the
miss rate in this code is below 1%, so it can be inferred that the usage of an increasing number of
threads that do not interfere among them is the main reason for the improvement of the execution
time. Let us analyze the causes of this behavior. This code performs the matrix product a = b× c
in sucha a way that matrices a and c are accessed by rows, while b is accessed by columns. Thus,
the reference that accesses b is likely the main source of cache misses in this code. The reason
is that in different iterations of the outermost loop, the same positions of b are accessed in the
same order, and as this loop is parallel, several iterations of this outermost loop are executed by
different threads concurrently. If the progress of all the threads along the iterations of the differ-
ent loops is similar, the access to each element of b in one thread takes advantage of the access
to the same element that takes place simultaneously in another thread.

6.2. Influence of the block size in the shared cache performance
The second factor which can influence the cache performance of a shared cache is the block

size, that is, the number of consecutive iterations that are assigned to each thread. Thus, Fig-
ure 10(a) represents the number of misses predicted by the model and the number of misses
observed in the simulator using both a static and a dynamic strategy to distribute the iterations
among the threads, when transposing with TRANS a 40000 × 100 matrix in the shared cache
of an Intel Core 2 Duo. Block sizes of 1, 4, 20 and 50 iterations have been used to distribute
the iterations of the parallel loop among 2 threads. The predictions of the model are good and
match the behavior observed in the simulator when both static and dynamic strategies are used
to distribute the iterations among the threads. The cyclic distribution, where the block size is
equal to one iteration, is the one that produces the smallest number of misses. Table 10(b) shows
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the number of misses per matrix predicted by the model and the execution time of the real code
in the target architecture. The number of misses of b and the execution time of the real code
increase with the block size. The reason is that in this code, the destination matrix a is accessed
by rows, while the source one b is accessed by columns. A cyclic distribution of the iterations
facilitates the reuse of lines between the accesses to different columns of matrix b that take place
in different threads.

Finally, Figure 11(a) shows the number of misses predicted by the model and observed in
the simulator using both a static and a dynamic strategy to distribute the iterations among the
threads, when executing MATMULJIK on two 1000 × 1000 matrices using different block sizes
for the parallelization of the outermost loop in the shared cache of an Intel Core i7. Block sizes
of 1, 4, 20 and 250 iterations have been used to distribute the iterations of the parallel loop
among 4 threads. The cyclic distribution is the one that generates the fewest number of misses.
The code performs the matrix product a = b × c. Table 11(b) shows that the number of misses
produced by the access to the three matrices involved in the code increase with the block size. As
a consequence, the execution time also increases for larger block sizes. The reason is that many
of the reuses (or potential misses) may take place among consecutive iterations of the outermost
loop of this code, where consecutive elements of the same row of b and c are accessed, and the
access to the whole matrix a is repeated. This way, in one iteration of this loop, the whole matrix
a and four columns (one per thread) of b and c are accessed. The number of lines brought to the
cache by the access to these four columns increases with the block size bi, as they may share the
same line or instead they may be located in different lines. In the studied case, for the smallest
block sizes, the lines brought to the cache in one iteration of the outermost loop fit in the cache.
This is not the case for the larger ones, which avoid reuses and consequently increase largely the
number of misses.

6.3. Usage of the model to guide compiler decisions
The previous results show that the model is very accurate, as it matches the behavior observed

in a simulator. Besides, it provides its predictions in less than three seconds independently of the
analyzed code. This turns our model in a very valuable tool to guide compiler optimizations. For
example, the first two rows of Table 4 show that the MATMULIJK ordering of a matrix product
has more locality than the JIK ordering. However, the difference among both implementations is
less important in the cache of an Intel Core 2 Duo. Anyway, according to the results in this table
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MATMULTB should be chosen as the best implementation of a matrix product from the cache
point of view as it produces fewer cache misses and a smaller miss rate. Thus, our model can be
used to statically asses the locality of different variants of the same kernel.

Figures 8(a) and 9(a) show that the model correctly tracks the evolution of the number of
misses with respect to the number of threads used for the parallelization in different scenarios.
This way, Fig. 8(a) shows that the CPU performance gain expected due to the usage of more
threads can be spoiled by the existence of a high number of collisions in the shared caches. The
opposite happens in Fig. 9(a) where the benefit of using more threads is increased due to the
intense reuse of cache lines in the shared cache among different threads. This information can be
used by the compiler to select the optimal number of threads used to paralellize a loop.

Finally, Figures 10(a) and 11(a) show that the model also correctly tracks the effect of the
block size in the number of misses. In both cases, the number of misses increases with the block
size. This information would be useful at compile-time to select the optimal block size.

7. Related work

Cache modeling has been extensively studied in sequential single core environments. For
example, Beyls and D’Hollander [13] use a set of reuse distance metrics to tune the cache hints
values available in the memory operations of the EPIC architectures. Unlike our work, they
can only predict the number of capacity misses of non-parallel codes and they do not take into
account shared caches.

Cascaval and Padua in [4] use a stack histogram model to predict the cache performance.
These predictions are used to evaluate memory optimizations like tiling, data shackling and the
product-space transformation, or to estimate the optimal tile size. As in the preceding paper,
they only use sequential codes and they do not consider the existence of shared caches. The
accuracy of their approach is only relatively good for fully associative caches, while our approach
accurately predicts the behavior of cache size with arbitrary associativities. They also explicitly
state that the accuracy of their approach can be significatively lower for larger data sets, while
our experimental results show high accuracy independently of the problem size.

Other works focus on the cache behavior on multicore and many-core environments, but only
for single-threaded applications. This is the case of Chauhan and Shei [14], who present an effi-
cient algorithm to compute static reuse distance at source level (without requiring a trace of the
memory addresses) using an extended version of dependence graphs. They accurately analyze
the behavior of complete MATLAB programs, which rely on third-party libraries to perform
certain computations in multicore or many-core environments, but both their model and their
validation only consider applications with only one active thread. As a result, as in the preced-
ing papers, they do not consider the impact on the cache of multithreaded codes. Besides, their
model ignores cache associativity, which limits the accuracy and applicability of the approach.
Finally, unlike our model, which provides its estimations in a few seconds, this approach is very
time-consuming for nested loops, which may be fine when you target codes in MATLAB but not
for applications written in general-purpose languages.

Many works in the bibliography study the impact of cache sharing on co-scheduled threads,
assuming that these threads execute different applications that do not share any address space.
Kim et al. [15] study the fairness in cache sharing between threads and propose different met-
rics to measure the degree of fairness in cache sharing, some of which strongly correlate with
execution time fairness. Using these metrics they propose static and dynamic methodologies to
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partition the cache maximizing fairness. These techniques are tested on a set of co-scheduled
benchmarks and an improvement of 4x is observed in the fairness. The paper concludes that the
improvement of the fair cache sharing also improves throughput. The problem considered by
this work is different from that considered by us as it aims to reduce fairness in the execution of
threads associated to different applications on a multicore systems.

West et al. [16] estimate analytically the cache occupancy of set-associated caches with a
LRU replacement policy by individual threads using the hardware counters. They do not consider
the effect of data sharing among different threads, which has a significant impact on the cache
performance as we have proved in this paper. On top of this analytical model they build a method
to construct online miss rate curves which are used to make informed resource management
decisions.

Chandra et al. [17, 18] propose three performance models that predict the impact of L2 cache
sharing on co-scheduled threads that do not share any address space. They use as an input the
L2 cache distance or circular sequence profile of each thread, and predict the number of extra
L2 cache misses for each thread due to cache sharing. The input information is obtained through
profiling. The models have been validated against a simulation of fourteen pairs of benchmarks
(mostly from SPEC). The most accurate model achieves an average error of 3.9%. This model
also considers the execution of threads associated to different applications on a multicore envi-
ronment which is a different target than the one considered by ours.

Xu et al. [19] present CAMP, a model that calculates a metric of the cache contention among
two different applications in shared caches using as an input reuse distance histograms, cache
access frequencies and the relationship between the throughput and the cache miss rate of each
process. The model has been validated considering the execution of pairs benchmarks from
SPEC CPU2000 on a dual core machine, so the target of this model is also different from ours.

Other works consider thread-parallel numeric codes like those considered in our work. This
way, Song et al. [20] propose an analytical model for predicting the number of misses of shared
caches assuming that they are fully associative, which can strongly restrict its accuracy in real
memory hierarchies. Besides, the model requires the trace of accesses to the shared cache.
The model is validated against simulations on fully-associative caches of three typical scientific
codes obtaining an average relative error between 2% and 12%. However, our model is general
enough to consider any associativity and it only uses as an input the source code and the cache
configuration. The usage of traces is very time consuming and is a potential source of inaccuracy
as the trace reveals the characteristics of the execution of one code under certain circumstances.

Schuff et al [21] model the effect of multithreaded applications on private and shared caches
by using a variant of the well-known reuse distance measurement method. Their reuse distance
approach requires the instrumentation of the code to obtain the trace of addresses accessed by the
program. The authors use sampling to reduce the overhead introduced by this instrumentation.
A parallelized analysis completes a technique. This analysis is 80 times to 265 times slower than
native execution. Let us recall that our technique allows to obtain estimations in less than one
second no matter which is the execution time of the real code. The experimental results show
the accuracy of this sampled technique with respect to that one which uses the full trace of the
addresses. The technique demonstrate effective for an example application of selecting important
portions of code which cause cache misses.

Kandemir et al. [22] propose a compiler based code restructuring scheme that assigns chunks
of iterations to each core and decides in which order to run those chunks seeking to optimize
the locality in the shared caches. This way, they improve the locality of the data accessed on
each core. The application of this technique to Splash-2 and Parsec benchmarks reduced their
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execution time by 29% on average. Unlike our model, this technique does not predict the cache
behavior, thus it cannot guide general compiler transformations such as loop reordering, tile size
selection, etc.

Kandemir et al. [23] develop an automated source-to-source transformation tool that uses
a cache-aware tile scheduling strategy customized for on-chip cache topologies of multicore
machines. The method takes into account horizontal and vertical data reuses in on-chip caches
while exploiting intra-tile and inter-tile reuses. This technique produces a reduction of a 27.9%
of the cache misses a 13.5% of the execution time over PLUTO [24]. This work is focused on
the application of a specific cache optimization technique, while the purpose of our work is to
provide a tool to guide the application of arbitrary optimizations to improve the cache behavior.

Jian et al. [25] define the concurrent reuse distance, an extension of the traditional reuse
distance that aims to characterize the behavior of caches shared by concurrent threads. Their
proposal, which can only predict the cold and the capacity misses, requires the memory traces of
the threads. As a result, either profiling or simulation must be performed before the behavior can
be predicted. The error of the reuse histograms predicted is around 25% for the real applications
tested.

Other works are focused on the improvement of the performance of shared caches that can
be obtained through cache partitioning. This way, Lu et al. [26] develop Soft-OLP (Software-
based Object-Level cache Partitioning), a tool that collects per-object reuse distance and inter-
object interference histograms through memory sampling to determine the locality pattern of data
objects. Data objects are classified into several locality types and the cache is partitioned among
those objects using heuristics to reduce cache misses. This strategy obtains up to a 78% L2 cache
misses reduction with respect to a standard LRU L2 cache, for a set of single and multithreaded
programs, including SPEC CPU2000 and NAS benchmarks.

Lin et al. [27] present an OS-based cache partitioning tool for multicore processors. This tool
confirms several key findings already obtained from simulation-based studies while discovering
new insights not obtained by simulation. These approaches are different from ours, as they are
focused on the usage of cache partitioning as a method to improve the memory performance of
shared caches.

Soares et al [28] also propose a method (ROCS) that tries to improve the performance of
shared caches at OS-level. Cache unfriendly pages are dynamically mapped to a pollute buffer
in the cache. Cache unfriendly pages are detected using the hardware counters at run-time. This
buffer for non-reusable page is implemented through page-coloring. Experimental results show
that ROCS improves the performance of some SPEC CPU 2000 and NAS benchmarks by up to
34% and 16%, respectively.

8. Conclusions

This paper presents the first model that accurately predicts the behavior of realistic shared
caches when executing scientific parallel programs parallelized at loop level without requiring
profiling. Regarding the distribution of the iterations of the parallel loops among the threads, the
model is general and allows to consider a block cyclic strategy where the block size is config-
urable.

The validation has been conducted using from small kernels to complete benchmarks from
the SPECfp95 and NPB-omp suite, or at least their most significative and time-consuming rou-
tines, which proves the large applicability of the model. The predictions of the model for these
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codes have been validated against a simulator using a varying number of threads, loop block
sizes, and scheduling policies on the cache hierarchies of two state-of-the-art multicore proces-
sors. In addition, we have conducted experiments that show that the accuracy of the model is
high using a wide variety of cache configurations and problem sizes. The experiments show that
the model accurately reflects the influence in the cache behavior of the scheme of parallelization
followed (number of threads and block size), no matter if a static or a dynamic scheduling policy
is used. The evolution of the number of misses tracked by the model is also reflected in the ac-
tual execution time of the actual code on the real computer. Finally, the predictions of the model
are always obtained in less than three seconds, even for the most time-consuming benchmarks,
which enables its usage in automated optimization processes.

A future line of research is the evaluation of the usage of the model complemented with a
CPU model to guide compiler optimizations on parallel applications.
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1function PMEs(S) {

2 D = ∅
3 for it = 0 to ,Ni/ti- − 1 {

4 foreach reference R ∈ S {

5 for t = 0 to min{ti , ,(Ni − &it/bi' × bi × ti − it mod bi)/bi-} − 1 {

6 let seqit = &it/bi' × bi × ti + it mod bi + bi × t
7 let tag = &(seqit × SRi + δR j × dA j)/Ls'
8 if ∃p ∈ D | p.tag = tag {

9 FRi(RD) += FR(i+1)(Iti(it − p.it) + RD(p.R,R))
10 D = D − p
11 } else {

12 FRi(RD) += FR(i+1)(RD)
13 }

14 D = D ∪ (tag, it,R)
15 }

16 }

17 }

18 return FRi ∀R ∈ S
19}

Figure A.12: Algorithm to compute the PMEs for a set S of references in translation

Appendix A. PME for inter-reference reuse in the parallelized case

The PME model supports the modeling of the reuses among references in translation to the
same array. These are references that have the same stride S Ri with respect to each loop, but
which can differ in the added δ constants used in the indexing of one or more dimensions. Most
reuse in scientific codes comes from this kind of reference groups. The model sorts the references
in translation in descending order of the position they access. The first reference is modeled in
all the loops disregarding the other references, i.e., using the intra-reference reuse PMEs. The
reason is that it carries no reuse with the other references, as it is the first one to access any line.
For each one of the following references, all the loops are modeled in the same way but the one
associated with the greatest dimension whose indexing changes with respect to the preceding
reference. The reason is that this one will be the dimension in which the reuse takes place. This
approach is accurate for references that only differ with the preceding one in the indexing of
one dimension. When the references differ in the indexing of several dimensions, it simplifies
the problem while providing good estimations in most cases. Such cases are those in which the
variations introduced by the differences in the smaller dimensions are much smaller than those
produced by the greatest dimension. In the loop where the reuse is modeled a PME that takes
into account the reuse with respect to the preceding reference is applied.

Our extension follows the approach in [2] to model references in translation with a modifi-
cation. This change is applied when the loop that indexes the largest dimension, among those in
which the indexing of the references in translation differ, is parallelized. Finding all the possible
reuse distances for each reference when there are several references to the same data structure
executed in parallel in different threads, using a formula would be very complex. Thus in this
case, instead of applying the PME for reuses among references explained in [2], the PME is built
applying the algorithm in Figure A.12. The algorithm takes as input an array S containing all the
references for which the largest dimension, among those whose indexing is different from the one
of the previous reference in the ordering, is indexed by the variable of control of a parallelized
loop. The references are stored in S in the order in which they are found in the loop, which is
thus the order in which they are executed.
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The algorithm emulates an execution of the parallelized loop at nesting level i in ,Ni/ti- steps
(line 3). In each step each reference is considered in the order in which it is found in the code
(line 4), and up to ti parallel accesses for the reference are calculated (line 5). The algorithm
computes in line 6 the index of the serial iteration corresponding to the current parallel iteration
and thread considered. A tag associated to the SOL accessed by the reference is computed in
line 7, where S Ri is the stride of all the accesses in S with respect to the considered loop i, δR j is
the constant in the j-th dimension of R, which is indexed by Ii, and dA j is the cumulative size of
the j-th dimension of the array A that R accesses. Set D is made up of triplets whose components
are a tag representing a SOL accessed during the execution of the loop, the number of parallel
iterations, it, in which the most recent access to the SOL took place, and the reference, R, that
accessed the SOL in that latest access. If no triplet with the computed tag is found in D, the PME
for R at this nesting level FRi(RD) is updated adding a term FR(i+1)(RD) associated to potential
compulsory misses (line 12). If a triplet p is found, then the PME is updated in line 9 with
a term FR(i+1)(Iti(it − p.it) + RD(p.R,R)). This means that the PME for the immediately inner
level is evaluated with a reuse distance associated to it − p.it iterations of loop i, modified taking
into account the reuse distance between references p.R and R. This is achieved by considering
it − p.it + 1 iterations for the computation of the interference generated by the references found
between p.R and R if p.R precedes R in the loop (and, thus, in S ), and considering it − p.it − 1
iterations for them otherwise. The algorithm updates D with the triplet associated to the current
access in line 14. Its output is the set of PMEs for nesting level i for the references in S , returned
in line 18.
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