
TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20

Static Analysis of the Worst-Case Memory Performance
for Irregular Codes with Indirections

DIEGO ANDRADE, BASILIO B. FRAGUELA, and RAMÓN DOALLO,
Universidade da Coruña, Spain

Real-time systems are subject to timing constraints, whose upper bound is given by the Worst-Case Execution
Time (WCET). Cache memory behavior is difficult to predict analytically and estimating a safe and precise
worst-case value is even more challenging. The worst-case memory performance (WCMP) component of the
WCET can only be estimated with the precise knowledge of the stream of data addresses accessed by the
code, which is determined by the access patterns and the base addresses of the data structures accessed.
The regularity of strided access patterns simplifies their analysis, as they are characterized by relatively
few parameters, which are often available at compile time. Unfortunately codes may exhibit irregular access
patterns, which are much more difficult to statically analyze. As for the base addresses of the data structures,
they are not always available at compile-time for many reasons: stack variables, dynamically allocated
memory, modules compiled separately, etc. This article addresses these problems by presenting a model that
predicts an upper bound of the data cache performance for codes both with regular and irregular access
patterns, which is valid for any possible base addresses of the data structures. The model analyzes irregular
access patterns due to the presence of indirections in the code and it can provide two kinds of predictions:
a safe hard boundary that is suitable for hard real-time systems and a soft boundary whose safeness is not
guaranteed but which is valid most of the times. In fact, in all our experiments the number of misses was
below the soft boundary predicted by the model. This turns this soft boundary prediction into a valuable
tool, particularly for non and soft real-time systems, which tolerate a percentage of the runs exceeding their
deadlines.

Categories and Subject Descriptors: B8.2 [Performance and Reliability]: Performance Analysis and
Design Aids; C.4 [Computer Systems Organization]: Performance of Systems

General Terms: Performance

Additional Key Words and Phrases: WCET, Cache memories

ACM Reference Format:
Andrade, D., Fraguela, B. B., and Doallo, R. 2012. Static Analysis of the worst-case memory performance
for irregular codes with indirections. ACM Trans. Architec. Code Optim. 9, 3, Article 20 (September 2012),
32 pages.
DOI = 10.1145/2355585.2355593 http://doi.acm.org/10.1145/2355585.2355593

1. INTRODUCTION

Worst-Case Execution Time (WCET) must be calculated for Real-Time Systems (RTS)
in the context of a schedulability analysis. The presence of cache memories complicates
the compile-time estimation of a safe and tight upper bound of its Worst-Case Memory

This work has been supported by the Xunta de Galicia under projects INCITE08PXIB105161PR and UDC/GI-
000265; and the Ministry of Education and Science of Spain, FEDER funds of the European Union (Project
TIN2010-16735).
Authors’ address: D. Andrade, B. B. Fraguela, and R. Doallo, Electronics and Systems Department, University
of A Coruña, Spain; email: diego.andrade@ude.es.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1544-3566/2012/09-ART20 $15.00

DOI 10.1145/2355585.2355593 http://doi.acm.org/10.1145/2355585.2355593

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:2 D. Andrade et al.

Performance (WCMP) component. Good results have been obtained in the prediction
of the WCMP in the presence of instruction caches [Healy et al. 1999; Yan and Zhang
2008]. The analysis of data caches [White et al. 1997; Lundqvist and Stenström 1999;
Ramaprasad and Mueller 2006; Vera et al. 2007] is more challenging, as several ref-
erences can access the same line simultaneously and the access patterns can be more
irregular. The number of data cache misses varies largely depending on the access
patterns and the data addresses accessed. The access patterns cannot be statically
determined in irregular codes, and the data addresses depend on the base addresses of
the data structures, which may not be available at compile-time and even change in dif-
ferent runs. There are several reasons for this: stack variables, dynamically allocated
memory, modules compiled separately or by just-in-time compilers, etc.

The worst-case Probabilistic Miss Equations (wcPME) model introduced in [Fraguela
et al. 2010] modifies the Probabilistic Miss Equations (PME) analytical model [Fraguela
et al. 2003; Andrade et al. 2007b], to predict the WCMP for regular codes. This wcPME
model inherits the PME model ability to make a prediction without information of the
base addresses of the data structures involved in the code, which is a property not
present in previous works in the bibliography. This characteristic is very interesting
because the cache performance depends largely on the base addresses, as they mod-
ify the alignment of data with respect to the cache and thus the overlapping of the
footprints of the data accessed on the cache.

The main contribution of this article to the wcPME model with respect to Fraguela
et al. [2010] is the extension of the model to cope with irregular codes where the irreg-
ularity is due to indirections. This ability to predict the upper bound of the memory
performance of this kind of irregular codes is a characteristic not present in the bibli-
ography. The prediction of this bound must be tight, as an estimation far from the real
behavior would impact negatively the system performance. In hard RTS the prediction
must also be completely safe, as it should not be exceeded by any execution. The cache
footprints of references with irregular access patterns due to indirections depend on
the base addresses as well as on the particular values contained in the index arrays
used in the indirections. The extension presented in this article can provide two kinds
of predictions: a soft one that is not guaranteed to be absolute maxima, but which
reflect realistic WCMP in practice, and a hard one that is absolutely safe.

Regarding the soft prediction, our extension considers both the worst-case
alignments and reasonable worst-case contents of the index arrays. The memory
performance observed in our experiments in Section 6 never exceeded the soft WCMP
predicted by the model. Thus, while this soft prediction for irregular codes is not safe,
it makes reasonable worst-case assumptions, which makes it a very valuable tool for
soft RTS.

In the case of the hard prediction, there is a guarantee that this boundary will not
be exceeded by any run. This kind of prediction is suitable for hard RTS. However,
the predicted hard boundary is much higher than the soft one. In some cases, this
boundary predicts a 100% miss rate (which means that all the accesses turns into
misses). These high values of predicted hard boundaries do not necessarily indicate
lack of tightness as in most cases this will be the worst-case behavior observed for
some specific contents of the index arrays and base addresses. This happens mainly in
direct mapped caches, however for set-associative caches lower miss rates are obtained.
Both kinds of predictions, the soft and the hard one, can be used as an input to a WCET
analyzer that needs some knowledge of the worst-case number of misses for each array
reference.

The rest of this article is organized as follows. Section 2 introduces the worst-case
PME model. Then, the method used to generate the soft prediction is presented. Thus,
Section 3 describes the equations that the model generates to provide this kind of

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:3

prediction, which are based on miss rates associated to reuse distances. Then, Section 4
is devoted to the worst-case miss rate estimation process used to provide this soft pre-
diction. Section 5 describes the method used to generate the hard safe prediction. This
method is presented by explaining the differences with the soft version. A discussion
on its safeness is also included in this section. Section 6 contains the experimental
results, Section 7 is devoted to related work and Section 8 concludes the article.

2. THE WORST CASE PROBABILISTIC MISS EQUATIONS (WCPME) MODEL

The worst-case Probabilistic Miss Equations (wcPME) model [Fraguela et al. 2010] is a
modification of the original PME model [Fraguela et al. 2003] to predict an upper bound
of the number of misses generated by regular codes for any cache with a Less Recently
Used (LRU) replacement policy. The model requires as inputs a representation of the
code to analyze and the cache configuration. The representation of the code can be the
source, or if there are optimization steps involved in the generation of the executable,
the Abstract Syntax Tree (AST) generated by the compiler after those transformations,
which reflects the final structure of the executable. If the analysis is not performed
within the compiler and no such internal representation could be made available for the
analysis, optimizations would have to be disabled so as not to endanger the precision of
the prediction. The scope of application of the wcPME model is extended in this article
to irregular codes where the irregularity is due to the existence of indirections. The
proposed extension is able to provide a soft unsafe prediction, suitable for non-RTS,
or a hard safe one, which is suitable for hard RTS. Section 2.1 describes in detail, the
scope of application of our model and Section 2.2 introduces the basics of the wcPME
model.

2.1. Scope of Application

The scope of application of the extension proposed in this article consists of codes with
a set of normalized perfectly or nonperfectly nested loops. The number of iterations of
each loop, or at least a bound, must be known at compile time. All the code parameters
required for the analysis are not always available explicitly in the code. They can be
derived through either program analysis [David and Puaut 2004], user annotation, or
profiling. It is assumed that the required statistical information about the input data
is provided by any of these mechanisms and its generation is not covered in this article.

The code may contain any number of references, which can be located in any nesting
level. The existence of several references to the same data structure is also supported.
The data accessed can be stored in any memory area (stack, heap, etc.) The reference
indexes must be affine functions fi either of the loops control variables Ii or of values
read from arrays. An array whose values index another array is known as an index
array and the array being indexed, the base array.

While the PME model has been extended to model data-dependent flows [Andrade
et al. 2006], that is, codes with conditional statements and multiple paths, this article
does not consider this extension, and its modification to compute the WCET is left
as future work. The only conditionals allowed inside the portions of code analyzed in
this article are those that only guard accesses to registers or to the latest data item
accessed before the branch, so that the data-dependent flow cannot modify the cache
behavior. These restrictions are common in the compile-time analytical models of the
cache behavior [Ghosh et al. 1999; Fraguela et al. 2003; Xue and Vera 2004; Vera et al.
2007]. Inlining, either symbolic or actual, allowed PMEs to model inter-routine cache
effects in Fraguela et al. [2003] and can be applied in the same way to the extensions
proposed here. Besides, the applications that exhibit irregular access patterns, such
as those arising from the usage of pointers or more complex conditional statements,
can be made analyzable for the model by locking the cache before such patterns arise

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:4 D. Andrade et al.

and unlocking it after them. This latter technique is commonly used to enable cache
predictability, particularly for enabling a tight computation of the WCET [Vera et al.
2007].

A clear proof of the large applicability of the model proposed in this article in real-
world situations is that its scope of application is larger than [Fraguela et al. 2003], and
the scope of that model sufficed to analyze complete SPECfp95 and Perfect Benchmarks
applications, or at least their more significative and time-consuming routines. The
support of codes with irregular access patterns due to indirections by our extension
enables the modeling of an even wider range of codes.

2.2. Introduction to the wcPME Model

The wcPME model generates a formula FRi, called Probabilistic Miss Equation (PME),
that analyzes the behavior of each static reference R during the execution of each
loop at nesting level i that encloses R. This formula classifies the accesses produced
by R during the execution of the loop as either potential first-time (or cold) misses
or potential interference misses (which also include capacity misses). The first ones
are produced when a line is accessed for the first time during the execution of the
loop. These accesses cannot exploit reuse with respect to previous accesses in that
loop. The second ones are the nonfirst accesses to a line in the loop, which may result
in successful cache reuses within the loop. The success of a reuse attempt of a line
depends on the number of other lines mapped to the cache set where this line resides,
since the immediately previous access to the line. If that number exceeds or equals the
cache associativity K, the reuse attempt will result in a miss. The reason is that the
LRU replacement policy replaces a line before its reuse if and only if K or more other
lines are mapped to its cache set before it is reused.

The probability that a given access results in a miss, called miss probability, depends
on the footprint on the cache of the data accessed during the reuse distance. Probabil-
ities are suitable to estimate the average performance but not the WCMP, where they
must be replaced by worst-case miss rates. In the following, the term miss probability
used in the original PME model [Fraguela et al. 2003] is replaced by miss rate. The
reasons for this replacement are explained in detail in Section 4.

The reuse distance (RD) is defined as the piece of code executed since the last access
to the line whose reuse may take place. Normally, a line can be reused with different
reuse distances. In the case of references found in loop nests, which is the scope of the
PME model, each loop enclosing a reference gives place to a different RD, which can be
measured in terms of loop iterations, that (possibly) characterizes some of the reuses
not captured by the inner loops. This way, the model estimates the number of misses
generated by a reference by exploring the loops that enclose it from the innermost one to
the outermost one. In each loop, the model builds a partial PME that adds information
about the reuses whose RD is associated with that loop. Specifically, each partial PME
estimates the number of accesses generated by the reference that cannot exploit reuse
in the considered loop, the number of accesses whose RD is associated with this loop,
and the associated worst-case miss rate for such reuses. The PME for each loop and
static reference is expressed recursively in terms of the PME for the same reference
in the immediately inner loop, so that it contains all the information for the behavior
of the reference within the loop. The recursion finishes in the innermost loop, where
the worst-case miss rate associated to the RD for each individual access is calculated.
Thus, the PME associated with the outermost loop in a nest takes into account all
the reuses, and its evaluation yields the number of misses generated by the reference
during the execution of the loop nest.

In order to provide an upper bound of the number of misses produced by each
reference, rather than the average value estimated in Andrade et al. [2007b], the

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:5

original PME model must be modified to: (1) Associate the longest possible RD to each
reuse attempt and (2) Maximize the miss rate associated to each RD. This way, the
calculation of this upper bound is a two steps process:

—In the first step, the PME FRi that models the behavior of the reference R in the
loop at nesting level i computes the minimum number of reuse attempts within the
loop and discovers the longest possible RD for each one of them. The construction
of the PME is described in Sections 3 and 5.1 for the soft and the hard versions of
the model, respectively. There are two different PMEs depending on whether the
analyzed reference follows a regular access pattern with respect to the considered
loop (Section 3.1) or an irregular one (Section 3.2). The hard prediction of the model
is provided using the PME for the regular case described in Section 3.1 and using a
new one for the irregular case, which is presented in Section 5.1.

—The model requires the calculation of the maximum miss rate associated to a given
RD RegIn, called MissR(RegIn). Sections 4 and 5.2 explain how this miss rate is
calculated for the soft and the hard version of the model, respectively.

3. PROBABILISTIC MISS EQUATIONS CONSTRUCTION: SOFT VERSION

This section explains the method used in the construction of the PMEs to generate the
soft (unsafe) prediction of the model. Along this section, by simplicity we will use the
terms worst-case and upper bound to refer to the predictions provided by this version of
the model although they are not safe worst-case of upper bound values but reasonable
pessimistic predictions in practice. As explained in Section 2.2, a partial PME FRi is
built for each static reference R in the code and loop at nesting level i that encloses
such reference. This PME estimates the number of misses that R generates during a
complete execution of this loop. It is a sum of the number of accesses that enjoy each
possible reuse distance (RD) associated with this loop multiplied by the miss rate that
the memory regions accessed during that reuse distance generate. Of course every
access that is the first one to a line in this execution of the loop, cannot result in reuses
of lines already accessed, thus their miss rate cannot be associated to RDs within the
loop. The miss rates for those accesses correspond either to (a) RDs that are associated
with outer loops; or (b) RDs with respect to accesses to the same data in previous loops
in the same nesting level, when we consider nonperfectly nested loops; or (c) when the
loop is the outermost one (i = 0) and there are no preceding loops that could give place to
reuses, the miss rate is simply one, since every first access to a line in this loop is indeed
a first access to the line, unable to exploit any reuse, which results in a compulsory
miss. A PME is always a function of the input parameter RegIn, which are the memory
regions accessed during the reuse distance for what in this level of the nest happen to
be first accesses. The reason is that PMEs are built beginning in the innermost loop
and proceeding outwards, and their evaluation depends on memory regions associated
with reuses that are calculated in outer or previous loops. The exception are the PMEs
for outermost loops FR0, in which no reuse from previous accesses is possible. This is
modeled by using as RegIn, a memory region whose associated miss rate is one, so that
the first-time accesses to a line in the nest are predicted as misses.

Each PME FRi is expressed in terms of the PME for the immediately inner loop
that encloses R. The recursion finishes in the innermost loop containing the reference,
where FR(i+1) simply stands for the miss rate for each access of R, MissR(RegIn), which
is a function of the region accessed during its RD. This region is the RegIn input to
FR(i+1).

The construction of FRi depends on whether the control variable for loop i, Ii, is used
in the indexes of index arrays found in the reference, or not. If Ii does not play any role
in the indexing of index arrays in R, the reference has a steady access pattern after the

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:6 D. Andrade et al.

Table I. Notation Used

Cs Cache size
Ls Line size
K Associativity of the cache
S Number of cache sets

DA j size of the j-th dimension of array A. Dimensions are numbered from left to right starting at 0.
In a 2D matrix, the row index is dimension 0 and the column index dimension 1.

dA j cumulative size of the j-th dimension of array A, dA j = ∏N
i= j+1 DAi

Ni # of iterations of loop at nesting level i, whose index is Ii

SRi stride of reference R with respect to the loop at nesting level i, SRi = αRj × da j ,
where j is the dimension of array a referenced by R indexed by Ii

LRi # of different sets of lines (SOLs) accessed by reference R during
the execution of the loop at nesting level i

DRi # of different sets of lines (SOLs) that reference R can potentially
access during the execution of the loop at nesting level i

first iteration of loop i and so it is regular with respect to this loop. The PME for this
loop is built as a Worst-Case Regular Access PME, explained in Section 3.1. If, on the
contrary, Ii participates directly or indirectly in the indexing of an index array in R,
thus giving place to an indirection, the access pattern of R is irregular with respect to
loop i. This gives place to a very different behavior of the reference that is modeled with
a Worst-Case Irregular Access PME in Section 3.2. Both types of PME maximize the RD
associated to each attempt of reuse and the number of lines accessed by the reference.
This will maximize the number of misses generated for a reference if, in addition, the
worst-case miss rate for each RD is used, which will be addressed in Section 4.

3.1. Worst-Case Regular Access PME

When the access pattern of a reference R is regular (strided) with respect to a loop,
its worst-case behavior in that loop is modeled by the PME introduced in Fraguela
et al. [2010]. The regularity guarantees that R follows the same access pattern in each
iteration of the loop, and that the region it accesses in each iteration is the same as the
one accessed in the previous one but displaced a constant stride. In this context, we
call set of lines (SOL) this region that R accesses during the execution of one iteration
of a loop. The SOL consists of a single line in the innermost loop that encloses R. In the
loops at outer nesting levels it will usually consist of several lines. For example, if we
consider a M × N C array (stored by rows) that is accessed by columns, the analysis of
the inner loop discovers that each iteration references one line, thus the SOL consists
of a single line. The analysis of the outer loop that controls the column index of the
reference, discovers that each iteration of this loop is associated to the access to the
set of lines that holds the elements of a column of the matrix. If the array is stored by
rows, if N ≥ Ls, where Ls is the cache line size measured in array elements, which is
by far the most usual situation, each SOL will be made up of M different lines.

Regarding the notation of our model, dimensions are numbered from left to right
starting at zero. In the case of a bidimensional array, the row index is dimension 0,
while the column index is dimension 1. DA j is the size of the j-th dimension of array A.
The model assumes, without loss of generality, that multidimensional arrays are stored
by rows. Thus, dA j the cumulative size of the j-th dimension of array A is calculated as
dA j = ∏n

k= j+1 DAk. Table I depicts these parameters and others that will be referenced
during the explanation of the model.

The regular access PME classifies the iterations of the corresponding loop in two
groups: those in which R accesses a SOL for the first time, and those in which R

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:7

reuses an already accessed SOL. The WCMP is achieved when the number of SOLs
is maximized. This is because the iterations that access a new SOL for the first time
in the execution of the loop, have longer reuse distances than those that reuse a SOL
within the loop. Thus we need to estimate the maximum number of different SOLs that
R can access during the execution of loop i, given by

LRi = min
{

Ni,

⌈
SRi(Ni − 1) + Ls

Ls

⌉ }
, (1)

where Ni is the number of iterations of the loop, and SRi the stride of R with respect to
loop i. The rationale of this formula is that during the execution of loop i, reference R
performs Ni accesses separated by a stride SRi to SOLs. Therefore, there are SRi ·(Ni−1)
elements between the first element of the SOL accessed by R in the first iteration of
the loop, and the one accessed in the last iteration. Additionally, up to 2 · Ls − 2 more
elements can be brought to the cache in the first and the last line of this memory
region accessed by R. The second term inside min in Equation (1) takes into account
both facts to estimate the maximum (worst-case) number of lines that can be brought
to the cache if the whole region between both elements is accessed, each line defining
a SOL. Now, if SRi > Ls not all the lines will be accessed, as the stride leads R to skip
some of them. Besides it is impossible to access more than Ni different SOLs in Ni
iterations. Therefore Equation (1) adjusts LRi to be the minimum between Ni and the
expression just discussed, yielding a safe and tight estimation of the maximum number
of SOLs accessed. The stride SRi is a constant, since either the loop i index variable
Ii does not index reference R, or the index we are considering is an affine function of
Ii. In the former case, trivially SRi = 0 and LRi = 1, since the iterations of the loop do
not lead the reference to access different data sets. In the latter case SRi = αRj × dA j ,
where j is the dimension whose index depends on Ii; αRj is the scalar that multiplies
Ii in the affine function. For simplicity, in all the terms and formulas, sizes and strides
are expressed in elements of the array whose access is being analyzed rather than in
bytes. Equation (1) computes the maximum number of different lines accessed during
Ni iterations with step SRi, each line defining a SOL. The equation assumes that the
first element accessed is placed at the end of a cache line, which maximizes the number
of SOLs affected.

Since PME FR(i+1) provides the number of misses of R during an execution of the
loop at level i + 1, it also provides its number of misses during one iteration of the loop
at level i, that is, during the access to the SOL associated to that iteration. Regarding
the SOLs reused in different iterations of loop i, when a reference follows a strided
access with respect to a loop, it can only reuse the same line in consecutive iterations
of the loop. Thus the reuse distance for the reuses of SOLs in a loop in which R follows
a regular pattern, the case we are considering, is always one iteration of the loop. As a
result of both facts, the maximum number of misses generated by R at nesting level i
is estimated by the PME:

FRi(RegIn) = LRi × FR(i+1)(RegIn) + (Ni − LRi) × FR(i+1)(RegRi(1)), (2)

where Ni is again the number of iterations of the loop at nesting level i, and LRi is
derived from Equation (1). RegRi(j) stands for the set of memory regions accessed
during j iterations of the loop in nesting level i that can interfere with the accesses of
R in the cache. This equation calculates the number of misses as the sum of two values.
The first term is the number of misses generated by the first accesses in loop i to the LRi
different SOLs that R accesses in the scope of this loop. The reuse for these accesses
can only happen with respect to outer or preceding loops, thus number of misses is
obtained evaluating FR(i+1) passing as parameter the value RegIn provided by those

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:8 D. Andrade et al.

for(i=0;i<m;i++) { // Level 0
reg = 0;
for(j=r[i];j<r[i+1];j++) { // Level 1
reg = reg + a[j] * x[c[j]];

}
d[i] = reg;

}

Fig. 1. Sparse Matrix-Vector Product.

Fig. 2. Lines accessed depending on the base address of array d.

external loops. The second term corresponds to the Ni − LRi iterations in which there
can be reuse with respect to the accesses in the previous iteration in this loop, so the
argument to FR(i+1) for these iterations is the set of memory regions accessed during
one iteration of loop i. In the topmost nesting level of code the PMEs are evaluated
with a RegIn whose miss rate is 1, which means no reuse due to any previous access is
feasible.

Example 3.1. We will use as ongoing example to illustrate the construction of the
different kinds of PMEs the sparse matrix-vector product code in Figure 1, where the
matrix is stored in CRS1 (Compressed Row Storage) format [Barret et al. 1994]. The
code multiplies an sparse m × n matrix (stored in arrays a, c and r) that contains Nnz
nonzero values and a vector x of size n. Let us consider that m is 4 and a cache with line
size Ls = 2. If we analyze the reference R=d(i) in the context of the loop at nesting
level 0, we see that the variable that controls the loop, indexes this reference by means
of the affine function 1×i+0. Thus, the regular access PME of Equation (2) models
the behavior of this reference in this loop. In order to apply it, we must first calculate
the number LR0 of different sets of lines this reference accesses during the execution
of this loop by means of Equation (1). Since the number of iterations of this loop is
4 and the stride SR0 is 1, we get that at most LR0 = min{4, � 1(4−1)+2

2 �} = 3 different
SOLs are accessed. Figure 2 shows the influence of the base address of d in the number
of different lines affected by the access. The figure represents two mappings of the
4 elements of vector d on the example cache considering different base addresses. The
lines accessed during the first execution of the innermost loop are marked. We can see
that in Case 1 the 4 elements of d are spread on 2 lines while in Case 2 they are spread
on 3 lines, which matches our worst-case LR0 prediction. Replacing LR0 in Equation (2)
we get the PME that calculates an upper bound of the number of misses produced by
that reference,

FR0(RegIn) = 3 × FR1(RegIn) + (4 − 3) × FR1(RegR0(1)) . (3)

1The CRS (Compressed Row Storage) format stores sparse matrices by rows in a compressed way using
three vectors. One vector stores the nonzeros of the sparse matrix ordered by rows, another vector stores
the column indices of the corresponding nonzeros, and finally another vector stores the position in the other
two vectors where the nonzeros of each row begin. In the example code these vectors are called a, c and r,
respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:9

Since loop 0 is the innermost loop containing the reference R=d(i), FR1(RegIn) must
be substituted by MissR(RegIn) and FR1(RegR0(1)) by MissR(RegR0(1)).

3.2. Worst-Case Irregular Access PME: Soft Version

When the control variable for loop i, Ii, indexes directly or indirectly an index array
in an indirection, the access pattern of the base array of our reference R is irregular
with respect to loop i. The reason is that the address accessed by R no longer depends
directly on Ii, but on the value read from the index array that Ii indexes either directly
or through more levels of indirection. In that scenario, both the number of sets of lines
(SOLs) accessed in each execution of the loop, and the number of iterations of the loop
between different accesses to a given SOL, which is their reuse distance (RD), are
variable.

Since the wcPME model tries to provide an upper bound for the number of misses, it
assumes the situation that maximizes both the number of SOLs and the RD among all
the possible ones. This way, the largest number of misses will be achieved when LRi,
the number of different SOLs that R can access during the execution of loop i, reaches
its maximum value. When loop i governs an indirection in reference R,

LRi = min{Ni, DRi}, (4)

where Ni is the number of iterations of loop i and DRi is the number of different
SOLs that R can potentially access during the execution of loop i. The rationale of this
formula is that a maximum of DRi SOLs are accessed during the execution of loop i,
unless this value is larger than the actual number of iterations Ni.

The maximum number DRi of different SOLs that R can potentially access during
the execution of the loop i is given by

DRi =
⎧⎨
⎩

⌈
DA jdA j − 1 + Ls

max{SRi, Ls}
⌉

if �v/i < v ∧ DimIndR(v) = DimIndR(i)

�DRt/LRt� t = min{v/i < v ∧ DimIndR(v) = DimIndR(i)},
(5)

where SRi = αRj × dA j , and dA j and DA j are defined as in the preceding section. Let us
remember that j is the dimension that is indexed, in this case indirectly, by the loop
index. This also means that in this case the constant αRj is multiplying the indirection
indexed by the loop index rather than the variable of the loop index itself. The first
case of this equation computes DRi when there are no loops v nested inside i (i < v)
such that their index variable Iv indexes (directly or indirectly) the same dimension of
the reference R as the variable Ii of the considered loop i (DimIndR(v) = DimIndR(i)).
The rationale of the expression is that the total size of the dimension indexed by the
indirection is divided by the stride of the indirection on this dimension, or the line
size (whichever is larger) to calculate the number of SOLs on which the indirection is
defined. The numerator adds Ls − 1 and the result is rounded up to take into account
the worst-case alignment of the access with respect to the cache lines. When such loops
exist, the second case of the equation calculates DRi from DRt and LRt, where t is the
outermost loop nested inside i that indexes this dimension. If in the immediately inner
loop t that controls the indirection there are DRt SOLs of which LRt are accessed, this
leaves �DRt/LRt� SOLs for this loop level.

This definition of DRi allows to handle correctly those cases in which, for example,
the indirection for a given dimension in R depends on several loop index variables, for
instance, in a(b(i,j)) both i and j index indirectly the only dimension of vector a.
Another example for this situation is often found in the codes where indirections are
generated by sparse matrices because of the formats used to store them.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:10 D. Andrade et al.

Example 3.2. The modeling of the behavior of reference x(c(j)) in the code of
Figure 1 will be used as a running example throughout this section. This code multiplies
a m× n sparse matrix in CRS format by a vector x of length n. We will assume a cache
configuration (Cs = 8, Ls = 2, K = 1), m = 4, n = 8, and that the number of nonzeroes
Nnz of the sparse matrix is 8. The modeling of this reference requires an upper bound
for Nnz because from it we can estimate the number of accesses across the indirection.
This information is provided externally to our model and its obtention is not covered
in this work. If that value is not available the worst-case situation is that the matrix
does not have null values, thus, Nnz is equal to the matrix size. However, the number
of nonzero values is usually small, so, that assumption would distance the model
prediction from the real behavior.

LR1, the number of different SOLs that R can access during the execution of loop 1
(the innermost one), can be calculated using using Equation (4) in nesting level 1. For
this purpose, DR1, the number of different SOLs that R can potentially access during
the execution of that loop, must be calculated in advance. The first case of Equation (5)
is used because loop 1 is the innermost loop that governs the indirection. It calculates
DR1 knowing that (a) the indirection takes place in the first dimension of the base
array x (j = 1), (b) the cumulative size for the first dimension of any array is always
one (dx1 = 1), (c) the stride SR1 of the reference with respect to its indirection is one
(SR1 = αR1×dx1 = 1×1), and (d) the size of the first (and only) dimension of x is Dx1 = 8.
With these data Equation (5) yields DR1 = 5, that is, during each iteration of loop j,
x(c(j)) can potentially access any of the 5 lines that constitute x in the worst-case. The
average number of iterations of the loop N1 = Nnz/m = 8/4 = 2, since the innermost
loop sweeps along the elements of a row of the sparse matrix, Nnz being the number of
nonzeroes in the sparse matrix and m its number of rows. This way Equation (4) yields
LR1 = min{N1, DR1} = min{2, 5} = 2.

LR0, the number of different SOLs that R can access during the execution of loop
0 (the outermost one), is computed also applying Equation (4). The reason is that the
outermost loop also indexes the reference across the indirection, in this case indirectly,
because the index j of the innermost loop depends on r(i). In this loop, N0 = 4 and
Equation (5) calculates DR0, which is �5/2� = 3, using the second case of Equation (5).
The reason is that loop t = 1 also indexes the array across and indirection and LR1 = 2,
while DR1 = 2. Replacing these values in Equation (4) yields LR0 = min{N0, DR0} =
min{4, 3} = 3.

If LRi is smaller than Ni, the number of iterations of loop i, there will be some
reuse attempts. Namely, LRi iterations generate first-time accesses to SOLs, while
the remaining Ni − LRi iterations can reuse a previous access to any of those SOLs.
The RD between two reuse attempts is not necessarily one iteration of the loop, as in
the regular case. Instead, it depends on the particular sequence of values contained
in the index array. The worst-case cache performance takes place when this sequence
maximizes the RD. This happens when the indirection accesses the SOLs cyclically
each LRi iterations, resulting in a RD of LRi iterations for all the reuse attempts. That
situation is modeled with the following PME,

FRi(RegIn) = LRi × FR(i+1)(RegIn) + (Ni − LRi) × FR(i+1)(RegRi(LRi)) . (6)

Example 3.3. The modeling of the behavior of reference x(c(j)) in the code of
Figure 1 starts in the innermost loop containing the reference. The behavior of x(c(j))
in this loop is modeled by the irregular access PME in Equation (6) because the loop
index j controls the reference across an indirection. Since N1 = 2, as it was seen in
Example 3.2, the PME for this loop is

FR1(RegIn) = LR1 × MissR(RegIn) + (2 − LR1) × MissR(RegR1(LR1)),

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:11

where PME for the inner loop, FR2, has been replaced by the miss rate calculation, as
this is the innermost loop containing the reference.

The outermost loop also controls the indirection in x(c(j)), so it is also modeled with
the PME of Equation (6). Since N0 = m = 4, we have

FR0(RegIn) = LR0 × FR1(RegIn) + (4 − LR0) × FR1(RegR0(LR0))

Equation (4) yielded the maximum number LRi of iterations of loop i that cannot
exploit either spatial or temporal locality with respect to any previous iteration of that
loop. This value of LRi always provides the worst-case cache performance when there
are not outer loops that index the same dimension. The reason is that this strategy
maximizes LRi, and consequently the first term of the PME (6), while it minimizes the
second one. The miss rate for the accesses in the first term is always larger, as it is
associated to reuses with respect to previous loops or iterations of outer loops, which
include then one or more full executions of the considered loop i. On the other hand, the
second term is associated to a given number of iterations of the current loop, during
which a smaller interference region is accessed, and thus, whose corresponding miss
rate is smaller.

However, if there is an outer loop m that indexes the same dimension j across an
indirection and Equation (4) is used in the modeling of both loops, the maximization
of LRi results in a minimization of LRm. When Equation (4) is applied at level m,
Nm is a constant (it does not depend on the method used to calculate LRi) and DRm
adopts is maximum value as the second case of Equation (5) is used in its calculation,
which depends on LRi. The opposite strategy would be to minimize LRi, so that LRm
and, consequently, the RD in loop m is maximized, which may increase the miss rate
associated to the reuses in that loop. The minimum LRi is trivially 1; this would happen
if all the elements of the index array accessed during one complete execution of loop i
contained the same value. If it is assumed that all the values must be different, which is
a reasonable worst-case assumption, LRi is minimized when the Ni values in the index
array are consecutive and the addresses they map to occupy the minimum number of
lines. This is modeled by the equation

LRi = 1 +
⌊

Ni − 1
max{Ls/SRi, 1}

⌋
. (7)

Both strategies, maximizing LRi in either the inner or the outer loop, must be evaluated
to find out which one maximizes the number of misses. Although we do not have a proof
of its safeness, our approach of evaluating these two opposite situations and choosing
the worst one, makes reasonable worst-case assumptions. In fact, in our validation in
Section 6 the WCMP observed never exceeded the prediction.

Example 3.4. LR0 and LR1, the number of different SOLs that reference x(c(j))
can access during the execution of loop 0 and 1 respectively in the code of Figure 1
were calculated in Example 3.2 using using Equation (4), obtaining that LR0 = 2 and
LR1 = 3. In we expand the PMEs derived in Example 3.3 and replace it by these values,
we get

FR0(RegIn) = 6 × MissR(RegIn) + 2 × MissR(RegR0(3)),

which means that 6 accesses cannot exploit reuse within the loop nest and 2 have a RD
of 3 iterations of the outermost loop. Figure 3, case (a), shows the sparse matrix that
produces this kind of worst-case access pattern in the accesses to vector x. Nonzero
values in the matrix, and the elements accessed in x in each iteration of the loops are
colored grey. The thick vertical black bar between some elements of x represents the
limits of each cache line. Using this matrix, 5 accesses cannot exploit reuse within

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:12 D. Andrade et al.

MATRIX ARRAY X

i=0

i=1

i=2

i=3

row=0
row=1

row=2

row=3

case (a) case (b)

MATRIX ARRAY X

i=0

i=1

i=2

i=3

row=0
row=1

row=2

row=3

Fig. 3. Worst-case matrix modeled and elements of array x accessed in each iteration of the outermost loop
of Figure 1.

the loop, while 3 have a RD of 3 iterations of the outermost loop, which produces
a better performance than the WCMP estimation of the model. The worst-case miss
rate associated to RegR0(3), computed following the method that will be described
in Section 4, is 1.0, and we assume no reuses from previous pieces of code, that is,
MissR(RegIn) = 1. Thus, in this case FR0(RegIn) = 8.

If LR1 is calculated using Equation (7) and LR0 using Equation (4) we get LR1 =
1 + � 2−1

max{2/1,1} � = 1, which would lead LR0 to adopt the value LR0 = min{N0, DR0} =
min{4, 5} = 4, where DR0 is calculated using the second part of Equation (5), where
t = 1, DR1 = 5 and LR1 = 1. Substituting these values and composing the PMEs, we get

FR0(RegIn) = 4 × MissR(RegIn) + 4 × MissR(RegR1(1)),

that is, there are four accesses that cannot exploit reuse within the loop nest and
another four that enjoy a RD of one iteration of the innermost loop. The sparse matrix
associated to this possibility and the corresponding accesses on vector x are depicted
in Figure 3, case (b). As we can see, this situation also requires a different mapping of
x on lines. Following the procedure that will be described in Section 4 to calculate miss
rates, we get MissR(RegR1(1)) = 0.5. Also, since no reuses from previous pieces of code
are modeled in this example, MissR(RegIn) = 1. Thus in this case FR0(RegIn) = 6.

As we have seen, in this example the use of Equation (4) to calculate LR1 produced
the largest number of misses for this code, matrix and cache characteristics. That
is, the worst-case memory performance is achieved spanning as much as possible in
different lines the elements accessed in the innermost loop across the indirection. This
distribution maximizes the RD of the reuse attempts in the innermost loop. However,
if Cs = 64, Ls = 2 and K = 1, the number of iterations of the outermost loop, m, is
35, array x has size 8, and the number of nonzeroes Nnz of the sparse matrix is 128,
the use of Equation (4) in the calculation of LR1 produces 35 misses, while the use of
Equation (7) produces 49.34 misses. So, for this other matrix and cache configuration
the best strategy to estimate a reasonably safe WCMP is to assume that the positions
accessed across the indirection are consecutive in the innermost loop in order to
maximize the RD in the outermost loop.

4. WORST CASE MISS RATE CALCULATION: SOFT VERSION

This section explains the method used in the calculation of the worst-case miss rate
to generate the soft (unsafe) prediction of the model. As we have seen in Section 3, in
the PME equation for the innermost loop containing a reference R, the PME for the
immediately inner level FR(i+1) evaluated for a given input RD RegIn, is substituted by
MissR(RegIn), the worst-case miss rate associated to that RD. Let us remember that
a RD is the portion of code executed between two consecutive accesses to a line. The
worst-case miss rate associated to a RD is an upper bound of the rate of accesses that
can exploit that RD, which can result in misses. Thus, multiplying it by the number

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:13

of accesses that experience that RD yields an upper bound of the number of misses
among those accesses.

The model described in this article uses worst-case miss rates instead of miss proba-
bilities (average miss rates), which is what the original PME model in Fraguela et al.
[2003] estimated. Now the worst-case overlapping of the lines to be reused and the
interfering lines is computed. This is the mapping that places the largest possible
number of lines to reuse in the sets that receive the largest number of lines from the
considered interfering access pattern. Then, the model calculates the ratio of lines of
the reuse region, the region whose reuse we are studying, that have to compete with
a given number of interfering lines in their set in this worst case overlapping. The
changes in the model to compute worst-case miss rates instead of probabilities were
explained in detail in Fraguela et al. [2010]. This article also includes an explanation
of why the results generated following this approach are indeed worst-case miss rates.

This section explains the computation of the worst-case miss rate associated to a
RD in four stages. Sections 4.1 through 4.4 develop these four stages: access pattern
identification, cache impact estimation, worst-case overlapping adjustment, and area
vectors union.

4.1. Worst Case Access Pattern Identification

This first step identifies the kind of access pattern followed by each reference during
the RD. The main access patterns are the sequential access to M elements, the access to
M regions of size N separated by a constant stride S, and their irregular counterparts:
the sequential access with uniform probability P of access per element and the access
to groups of elements separated by a constant stride with uniform probability of access
P per element. Access pattern identification is described in detail in Andrade et al.
[2007b] and needs no changes for WCMP prediction, thus it is not detailed here due to
space limitations.

4.2. Worst Case Cache Impact Estimation

This second step of the worst-case miss rate calculation measures the impact on the
cache of each access pattern identified by the previous step. The impact is quantified
with a vector V of K + 1 elements called area vector (AV), K being the associativity of
the cache. Each component of an AV is a ratio or probability of interference, that is,
it is the probability a line to be reused conflicts in its cache set with a given number
of lines from the access pattern that the AV characterizes. Its first element, V0, is the
ratio of sets that receives K or more lines from the access, while Vi, 0 < i ≤ K is the
ratio of sets that receive K − i lines. Since a K-way cache with LRU replacement expels
a line if it has placed K or more different lines in its set before it is reused, component
0 of an AV is the miss rate generated by the access pattern. The other ratios are used
in the union operation described in Sec. 4.4, since lines from different access patterns
can be mapped to the same set and thus combined to fill it and increase the miss rate.
We now describe how to compute the AV for each access pattern.

4.2.1. Worst Case Cache Impact Estimation for Regular Accesses. The sequential access to
n consecutive elements generates an area vector AVs(n):

AVs(K−�l�) (n) = 1 − (l − �l�)
AVsmax{0,(K−�l�−1)}(n) = l − �l�
AVsi (n) = 0 0 ≤ i < K − �l� − 1, K − �l� < i ≤ K,

(8)

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:14 D. Andrade et al.

l being the average number of lines a cache set can hold simultaneously from the access,
given by

l = min
{
K, Lines(n)/S

}
, (9)

where Lines(n) is the the maximum number of lines that n consecutive elements from
the referenced array can occupy and it is calculated as follows

Lines(n) = 1 + �(n − 1)/Ls�. (10)

It must be divided by S, the number of cache sets, to obtain the average number of
lines that this region places in each cache set. In the worst case the first element of the
access is at the end of a line, and the other n− 1 elements require bringing �(n− 1)/Ls�
lines to the cache to access them. Thus in the worst case the number of lines brought to
the cache is 1 + �(n− 1)/Ls�. As a consequence, a l − �l� ratio of the cache sets receives
�l� lines while the remaining ratio 1 − (l − �l�) receives �l�.

Example 4.1. Reading the four elements of d in Figure 2, involves accessing 4
consecutive elements. The figure represents two possible placement of those elements
on the cache. In Case 2 the four elements of d are spread on 3 lines, which is the worst-
case alignment. According to Equation(8) the model predicts the AV (0.75, 0.25) that
represents the impact of that worst-case alignment, that is, that 3 out of the 4 cache
sets (3/4 = 0.75) have received K = 1 or more lines, while the other one (1/4 = 0.25)
did not receive any line

An upper bound of the impact on the cache of an access to M regions of size N
separated by a constant stride S, can be estimated by the method described in [Fraguela
et al. 2010], which is not included here due to space reasons.

4.2.2. Worst Case Cache Impact Estimation for Irregular Accesses. Let us consider the calcu-
lation of the worst-case area vector associated to an access to E elements that belong
to a group of M consecutive elements, AVirreg(E, M).

The placement of the E elements accessed that maximizes their footprint on the
cache must be considered. The region of the cache occupied by these E elements can
not exceed the maximum area occupied by the M elements potentially accessible. In the
worst case each one of the E elements brings a different line to the cache. Consequently,
the maximum number of elements from the data structure brought to the cache is the
minimum of E × Ls and M, as it cannot be larger than M. Since the access is irregular,
the specific lines brought to the cache are unknown. Their worst-case mapping on the
cache is the one that gives place to a larger miss rate. This happens when they are
placed in the cache filling the maximum number of cache sets. That kind of placement
for a group of n consecutive elements distributed in the area occupied by m consecutive
elements generates an interference area vectors AVfill(n, m), where all the components
AVfilli (n, m) are zeroed except:

AVfill(K−�l�−1) (n, m) = min
{

l − �l�,
⌊

Lines(n)
�l�

⌋
S

}
when l < K

AVfill(K−�l�) (n, m) =
⌊

rem
�l�

⌋
S when �l� > 0

AVfillK−(rem mod �l�) (n, m) = 1
S when �l� > 0

AVfillK (n, m) = 1 − ∑K−1
i=0 AVfilli (n, m),

(11)

where S is the number of cache sets, Lines(n) is the maximum number of lines that
can be occupied by n consecutive elements, and l is the average number of lines from
the access to m consecutive elements that a cache set can hold simultaneously. The
calculation of Lines(n) and l was detailed previously for the regular counterpart of

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:15

x[7] x[0] x[1] x[2] x[3] x[4] x[5] x[6]

Fig. 4. Irregular access to several consecutive elements of array x.

x[0] x[1] x[2] x[3] x[4] x[5] x[6]

Group 1 Group 2

x[7]

Fig. 5. Irregular access to 2 groups of 3 elements separated by a distance 4 with a probability 0.57 of array x.

this access pattern. Finally, rem = Lines(n) − AVfill(K−�l�−1) (n, m) × �l�, is the amount of
lines from Lines(n) not assigned to AVfill(K−�l�−1) (n, m). The rationale is that, as in the
regular case, a l − �l� ratio of cache sets would receive �l� lines from the access if
the m elements were accessed. Since only n elements are brought to the cache by the
irregular access, the number of lines (Lines(n)) that they occupy are mapped on S
cache sets in groups of �l� lines. The unprocessed rem lines are mapped on S cache sets
distributed in groups of �l� lines. As rem may not be a multiple of �l�, the remaining
rem mod �l� are concentrated in one cache set. The unprocessed cache sets remain
empty. As a result, the worst-case cache impact can be estimated as AVsp(E, M) =
AVfill(min{M, E × Ls}, M).

Example 4.2. Let us consider the access to 4 elements of an array x of 8 elements.
The area vector that quantifies the impact of this access on the cache is AVirreg(4, 8).
Figure 4 shows a mapping of the elements of array x in an example cache (Cs = 8,
Ls = 2, K = 1). Let us note that the line containing the last element of array x (element
7) is mapped to the same cache set as the line containing the first element of the
array (element 0). In the worst-case four cache lines are affected by the access and one
element of each line is accessed. The impact of that access on this cache is represented
by the AV (1, 0). The area vector AVirreg(8, 0.5) is calculated as AVfill(8,min{8, 8 × 0.5 ×
2} =AVfill(8, 8) and, this way, the right AV (1, 0) is calculated.

The impact of an access to E elements that belong to an access pattern of M
groups of N consecutive elements separated by a constant stride D, is calculated
as AVirreg(E, M, N, D). As the access is strided, the total accessible region consists
of (M − 1) × D + N elements. This way, its impact on the cache is calculated as
AV f ill(M × Ls × Lines(min{N, E × Ls}), (M − 1) × D + N), as it is also an irregular ac-
cess, but in this case only E elements of each one of the M groups are accessed. These
elements are spanned covering the maximum number of lines, thus, min{N, E × Ls}
elements are affected by the access. As there are M groups, and each group can access
a maximum of Lines(min{N, E × Ls}) lines, the maximum number of elements brought
to the cache by that access is M × Ls × Lines(min{N, E × Ls}).

Example 4.3. The area vector associated to an irregular access to four elements,
out of two groups of three elements separated by a distance of 4 elements, of an array
x is AVirreg(4, 2, 3, 4). Figure 5 shows a possible mapping of the elements of array x in
an example cache (Cs = 16, Ls = 2, K = 1). The four elements accessed across the indi-
rections are underlined and the lines affected are marked. Each element belongs to a
different cache line, which maximizes the number of lines affected. The AV that repre-
sents the impact of that access is (0.5, 0.5). The method described previously calculates
that AV, as Regrp(4, 2, 3, 4), which is modeled as Regfill(2×2×Lines(min{3, 4}), 1×4+3) =
Regfill(4×Lines(3), 7) = Regfill(4×2, 7) = Regfill(8, 7), which yields the right AV (0.5, 0.5)

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:16 D. Andrade et al.

REUSED REGION ON CACHE (Reg)

 MAPPING 1

MAPPING 2
THREE POSSIBLE MAPPINGS OF THE

INTERFERENCE REGION ON CACHE (Reg')
MAPPING 3

(0,1)

(0.5,0.5)

(1,0)

Reg' ACTUAL AV
WITH RESPECT

TO Reg

{
Fig. 6. Miss rate depending on the relative positions of the reused and the interfering memory regions.

The strategy to estimate the impact of the two types of irregular regions (AVfill) is a
potential source of unsafeness of our WCMP estimation. This strategy maximizes the
number of cache sets filled by each individual region, thus maximizing the component
0 of the resulting AV. However, that strategy does not guarantee that when more
regions are accessed during the reuse distance, the combined impact of all those regions
provides the AV with the largest component 0 (miss rate).

Example 4.4. Let us consider a 2-way cache with Ls = 2 elements and 4 cache
sets. During a given reuse distance four consecutive elements of an array are accessed,
whose AV is AVs(4) =(0,0.75,0.25); in addition 2 elements out of 4 consecutive ones of
another array are accessed, which yields an AV AVirreg(2, 4) =(0.25,0,0.75). The method
to calculate the worst-case union of several AVs will be introduced in 4.4. The worst-case
combined effect of both regions according to this algorithm is the AV (0.25,0.5,0.25),
which maximizes the 0 component of the resulting AV. However, if the lines brought
to the cache by the access to 2 of the 4 elements of an array were distributed in two
different cache sets, this would yield the AV (0,0.5,0.5). This AV combined with the
AV (0,0.75,0.25) belonging to the access to 4 consecutive elements yields a worts-case
area vector (0.5,0.25,0.25), which has a largest component 0 (miss rate) than the AV
previously calculated.

The previous example shows that maximizing the component 0 of the AV associated
to an isolated region does not always guarantee that when it is combined with other
AVs it maximizes the result.

4.3. Worst-Case Overlapping

The overlapping of the reuse and the interference regions on the cache can produce a
larger interference between both regions than the one predicted by the component 0
of the AV of the interference region. The reason is that the AV obtained in the cache
impact estimation process reflects the distribution of the lines of a memory region
on the whole cache. Each element of the AV represents the ratio of cache sets that
receives a given number of lines from that region. This is also the probability a line in
a randomly chosen cache set has to compete for the set with a given number of lines
from the region. This is what is needed to estimate average miss probabilities when
the relative positions in the cache of the region whose reuse we are studying, which we
will call reuse region, Reg and the interfering region, Reg’, are unknown. Now, when
worst-case miss rates are to be predicted, a worst-case alignment of Reg and Reg’ must
be considered, not an average one.

Example 4.5. Figure 6 represents the mapping on a one-way (direct mapped) cache
with four cache sets of a reuse region Reg and three possible mappings of an interference
region Reg’. The AV calculated for Reg’ in the cache impact estimation process is
(0.5, 0.5) for the three mappings, which indicates an average 50% probability of conflict,
since Reg’ fills two of the four cache sets. However, the actual interference with the
cache sets of Reg is represented by the AV placed on the right side of each mapping
in the figure. This way, the first mapping does not interfere with the reuse of Reg, the

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:17

second mapping only interferes with the reuse of one of its lines, and the third one
avoids both reuses, which leads to 0, 50 and 100% miss rate, respectively.

The average-case AV does not correspond to a worst-case alignment of the reusable
and the interfering regions, but to an average-case one. The worst-case alignment will
be the one in which the largest possible number of lines from region Reg have to compete
with the largest possible number of lines from Reg’ in their cache set. That is, it is the
situation in which the largest possible number of lines from Reg are mapped to the
AVReg′

0
× S sets that receive K or more lines from Reg’, where AVReg′ is the AV for Reg’

calculated in the standard way and S is the number of sets in the cache. Component
0 of AVwcReg′ , the AV for Reg’ considering this worst-case alignment, will be then the
ratio of lines of Reg mapped to these full sets, as it is conversely the probability a
randomly chosen line from Reg has to compete with K or more lines from Reg’. Once
those full sets are exhausted, then the largest possible number of lines from Reg are
mapped to the AVReg′

1
× S sets that receive K − 1 lines from Reg’, and their ratio on

the total number of lines of Reg will be AVwcReg′
1
, and so on. This algorithm requires

AVReg′ , the standard AV for Reg’, but it also needs the distribution of lines of Reg per set
in order to match them with the lines from Reg’. Unfortunately AVReg does not suffice
for this purpose because its component 0 does not provide the exact number of lines
per set, just that there are K or more lines, which is not enough to estimate the ratios.
If for example in Figure 6 region Reg had occupied three sets with a single line each,
its AV would have been (0.75, 0.25), and since two of them would have collided in the
worst case with Reg’, AVwcReg′ would have been (0.66, 0.33). Now, if Reg had mapped
two lines to set 0, another two to set 1, and another line to set 2, its AV would have
also been (0.75, 0.25), but since 4 out of its 5 lines could collide with Reg’ in the worst
case, AVwcReg′ would have been (0.8, 0.2). The wcPME model presented an algorithm
to systematically calculate this worst-case overlapping in Fraguela et al. [2010].

4.3.1. Treatment of Full Alignments. This method estimates safely and tightly the max-
imum overlapping between the reuse and the interference region. However, its pre-
dictions can be very far from the average observed in those codes where there are
references whose accesses may collide systematically in the same cache sets, a situa-
tion we call full alignment. Two references R and R’ are potentially fully aligned when
SRi mod Csk = SR′i mod Csk,∀ 0 ≤ i ≤ Z, where SRi is the stride of reference R with
respect to loop i as defined for Equation (2), Csk = Cs/k and Z is the innermost loop
containing both references.

The full alignment actually takes place when the addresses accessed by the refer-
ences are aligned with respect to the cache, that is, mapped to the same cache sets.
Fully aligned references collide cyclically in the same cache sets. In the worst case they
will be mapped to the same cache set in every iteration, in the best case in one out of Ls
iterations. The corresponding accesses will result in misses when the number of lines
involved per set is larger than the associativity.

The modular nature of our model allows to disable selectively the modeling of full
alignments when desired. This is achieved by disabling the worst-case overlapping
adjustments described in Section 4.3 only for the potentially fully aligned references
in the innermost loop containing them. The user may wish to do this because if tech-
niques such as padding or buffering have been applied to avoid the full alignments,
the WCMP predicted (and observed) will be much smaller. Even if full alignments are
not avoided explicitly, the model would provide a highly probable WCMP prediction, as
the percentage of base address combinations that lead to full alignments is fortunately
very small.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:18 D. Andrade et al.

4.4. Worst Case Area Vectors Union

The previous step of the calculation of the miss rate associated to a reuse distance
yields one AV per each one of the memory regions accessed during that distance. The
last step of the calculation of the miss rate summarizes the effects of these AVs merging
them into a global one through an union operation [Andrade et al. 2009] that calculates
the maximum combined impact on the cache of all the AVs.

After the worst-case overlapping adjustment process described in Section 4.3 the
meaning of the ratios of the AVs change. They are not ratios of cache sets that receive
a given number of lines from a memory region anymore, as in the original PME model.
They become ratios of lines to be reused that conflict with a given number of lines
from the interfering region when the very worst-case overlapping between the reuse
and the interfering regions is considered. This change of interpretation has no influence
on the worst-case AV union algorithm. Without worst-case overlapping adjustment, this
algorithm should combine ratios of cache sets with a given number of lines in order to
maximize the final ratio of sets that receive K or more interfering lines. Now, after the
adjustment, it should combine ratios of lines to reuse that conflict with a given number
of lines in order to maximize the final ratio of lines of the reuse region whose reuse
is hampered by K or more interfering lines. As we see the mechanics of the algorithm
should be the same for both interpretations. The algorithm ensures that the resulting
AV has the largest leftmost component that can be obtained by combining the ratios
in the input AVs, and thereby it is a safe upper bound of the miss rate provided by the
union operation. The details of this algorithm can be found in Fraguela et al. [2010].

5. HARD PREDICTION OF THE WORST-CASE MEMORY PERFORMANCE

Hard RTS require a safe estimation of the maximum number of misses. This safe
estimation can be provided by our model with some modifications to the soft version
described in Sections 3 and 4, namely, a safe version of the PME for the irregular case,
and an adapted method to calculate the worst-case miss rate. These modifications are
explained separately in Sections 5.1 and 5.2, respectively. Finally, Section 5.3 contains
a discussion on the safeness of the proposed method.

5.1. Probabilistic Miss Equations Construction: Hard Version

The construction of the PME for references following regular access patterns does not
change because the one presented in Section 3.1 is safe, as proved in Fraguela et al.
[2010]. The safe worst-case PME for references following irregular access patterns
(due to indirections) considers that none of the irregular accesses can reuse cache lines
within any loop nest. Thus, the new form of this PME is as follows,

FRi(RegIn) = Ni × FR(i+1)(RegIn). (12)

This prediction may not be very tight in some situations. A tighter safe prediction
would be obtained analytically by searching exhaustively among all the possible
sequences of accesses generated by the contents of the index array. For example, when
DRi the number of different SOLs that R could potentially access during the execution
of loop i is 4, then in the first iteration of loop i any of these 4 SOLs may be accessed
through the indirection. So, these four possibilities turn out into the first four leaves of
the tree, which reflects all the possible sequence of accesses. In the second iteration any
of these 4 SOLs may be accessed, thus, each leaf of our tree is expanded to take it into
account. At this point, the tree already has 16 leaves, which correspond to 16 possible
sequence of accesses for the first two iterations of the loop that should be evaluated
separately. The tree is expanded in each new iteration of loop i and the number
of possible sequence is multiplied by DRi. At the end, if the loop has n iterations,
there are 4n possible sequence of accesses that must be evaluated separately. In

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:19

real-life applications, there are hundreds or thousands of SOLs accessible through
the indirections (DRi) and loops have thousands of iterations (Ni). So in general, the
number of possible sequences whose performance must be evaluated would be (DRi)Ni .
The time and resources required to evaluate all these sequences would be impractical
or even impossible in realistic situations, as the model should be applied independently
to each possible sequence to calculate its associated memory performance.

When the contents of the index array are known to fulfill certain properties, a tighter
estimation can be provided in a reasonable time. For example, if the analyzed loop i
is the only one whose control variable indexes the reference across an indirection and
the values contained in the index arrays are ordered, the PME for the regular case,
Equation (2), can be used as a safe upper bound for references following irregular
access patterns. The reason is that in each iteration of loop i a SOL is accessed for the
first time in this loop or, it is a reuse attempt whose associated reuse distance (RD)
is necessarily one iteration of that loop. The component LRi of Equation (2) would be
calculated in this situation using Equation (4), which calculates its maximum value in
the irregular case instead of Equation (1), which applies only to regular access patterns.

5.2. Worst-Case Miss Rate Calculation: Hard Version

As we explained in Section 4.2, the strategy to estimate the impact of the irregular
regions (AVfill) is a potential source of unsafeness of our WCMP estimation. The reason
is that this strategy maximizes the number of cache sets filled by each individual
region, thus maximizing the component 0 of the resulting AV. However, that strategy
does not guarantee that when more regions are accessed during the reuse distance (RD)
the combined impact of all those regions provides the AV with the largest component 0
(miss rate), as Example 4.4 showed.

A safe prediction of the worst-case miss rate associated to a given RD can be provided
by modifying the method to calculate the worst-case miss rate. The safe method begins
following the process described in Section 4, but only for regions associated to regular
access patterns, and with the change that the worst-case overlapping process described
in Section 4.3 is skipped. At the end of this process an AV, AVREG, which summarizes
the impact of all the regions associated to regular access patterns is obtained. This AV
represents the worst-case distribution of the lines associated to the regions following
regular access pattern among all the cache sets. This distribution is the one that fills
more cache sets with lines from those interfering regions. This AV must be processed
still in three stages. In the first one, the AV is mapped to a representation of its impact
on the cache called nlinesInter f . This representation facilitates the calculation of the
worst-case overlapping of the regular interfering regions represented by AVREG and
the irregular interfering regions as well as the reuse region. In the second stage, the
interference generated by the irregular interfering regions is added to nlinesInter f .
Finally, the worst-case overlapping between all the interference regions represented
by nlinesInter f and the reuse region is calculated. This gives place to the worst-case
interference AV, and therefore to the maximum possible miss rate generated by the
interferences. In this safe version of the algorithm, the adjustment to take into account
this overlapping is different and it is performed after the area vectors union.

Figure 7 shows the algorithm used to change the representation of the impact of the
interfering regions from an area vector to a vector of number of lines per set. The result
of this algorithm is a vector nlinesInter f of S components, where each component is
associated to a different cache set and it represents the number of lines that this set
holds due to the interfering regions represented by AVREG. The loop between lines 2
and 6 is used to make a correspondence between the cache sets represented in AVREG
and the cache sets in vector nlinesInter f . The loop iterates across the K+1 components
of AVREG. First, the number of cache sets nsets associated to the jth components of

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:20 D. Andrade et al.

Fig. 7. Algorithm to change the representation of an area vector to a vector of number of lines per set.

Fig. 8. Worst-case overlap for irregular access patterns.

AVREG is calculated (line 3). Then, line 4 assigns K − j to nlinesInter fi for the nsets
sets associated to this component of the AV. This represents that K − j lines from
the interference region represented by AVREG are placed in nsets cache sets, which is
the meaning of AVREGj . Notice that nlinesInter f is filled in so that it is monotonically
decreasing, that is, nlinesInter fi ≥ nlinesInter f j for any i < j.

Then, the worst overlapping of interfering regions associated to irregular access
patterns with the regular ones already represented in nlinesInter f is calculated. These
regions are processed one by one using the algorithm irregProcess in Figure 8. In this
algorithm, the processed interfering region is not represented by an AV. The reason
is that since the access is irregular, the lines it brings to cache can be distributed in
arbitrary ways on the cache sets. Therefore our strategy is to estimate the maximum
number of lines nlines that the irregular access can bring to the cache, and calculate the
worst distribution of these lines on the cache, that is, the one that will give place to the
largest interference. The only restriction we will take into account for this distribution
is that at most �l� lines from the access can go to the same cache set, �l� being the
maximum number of lines a cache set can hold simultaneously from the access. This
maximum value is calculated using l, the average number of lines from the access
a cache set holds simultaneously. The method to calculate both values is different
depending on whether the irregular access pattern accesses random positions on a
region of a number of consecutive positions, or on a number of regions of consecutive
positions separated by a constant stride. Both methods are explained in turn.

The maximum number of lines brought to the cache during the access to E ele-
ments that belong to a group of M consecutive elements, AVirreg(E, M), is nlines =
min{E, Lines(M)}, where Lines(n) is calculated using Equation (10) in Section 4.2.1.
The rationale of the formula used to calculate nlines is that Lines(M) is the maximum
number of lines occupied by M consecutive elements, but no more than E different
lines can be accessed.

The average number of lines from an access a cache set holds simultaneously, l,
is calculated using Equation (9) in Section 4.2.1 where n is replaced by M. Thus, a
maximum of �l� lines from an access can be held simultaneously by a cache set.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:21

Fig. 9. Simulation to AV conversion.

The total accessible region by the access to E elements that belong to a mem-
ory region made up of M groups of N consecutive elements separated by a con-
stant stride D, AVirreg(E, M, N, D), consists of (M − 1) × D + N elements. This way,
nlines = min{E, Lines((M − 1) × D + N)} and l is calculated using Equation (9) in
Section 4.2.1 where n is replaced by Lines((M − 1) × D + N).

The algorithm irregProcess in Figure 8 receives the values of nlines and l repre-
senting the irregular interfering region, and the vector nlinesInter f , which stores the
number of lines of interference per set brought by those regular and irregular inter-
fering regions that have been already processed. The nlines lines associated to the
irregular access to process are placed in those cache sets where they can help generate
the largest possible interference, respecting the limitation of a maximum of �l� lines
per cache set. Let us remember that in a K-way cache with LRU replacement there is
a miss in an attempt of reuse in a set if K or more lines have been placed in the set
during the reuse distance. Therefore the algorithm tries to fill as many positions as
possible of nlinesInter f with a value K. The algorithm exploits the fact that the values
in nlinesInter f are monotonically decreasing. It first skips all the sets that already have
K lines in the first loop. In the second loop it adds one line to those with K − 1 lines,
two to those with K − 2 lines, etc. until in runs out of lines. This strategy maximizes
the number of sets in which reuse attempts will result in misses, and thus models a
worst-case overlap between the interference regions.

At the end of this processing of all the regions that can interfere with the reuse, the
data structure nlinesInter f contains the number of lines each cache set receives from
the interfering regions following the worst-case overlapping policy. This data structure
must be converted into an AV, in which each component will represent the ratio of lines
from the reuse region that compete in a cache set with a given number of lines from the
interfering regions. This process requires a simulation of the distribution of the lines of
the reuse region Reg on the cache whose output is a vector sim of S elements, S being
the number of cache sets. Each component of this vector is associated to a different
cache set and it contains the number of lines that this set receives from the reuse
region. The elements of the vector sim are sorted in decreasing order of their contents.
Algorithm simT oAV in Figure 9 receives sim and nlinesInter f as parameters. Line 1
in the algorithm computes the total number of lines in the reuse region. Then, line 2
computes the makes a correspondence between the cache sets represented in sim with
the cache sets in nlinesInter f . This correspondence is reflected in an AV where each
components contains the ratio of lines from the reuse region that conflict with a certain
number of lines from the interference region in their set. As both vectors are monotoni-
cally decreasing and they are processed from left to right, this guarantees that the sets
containing most lines from the reuse region are filled also with the maximum number
of lines from the interfering region. This guarantees that the maximum miss rate is
calculated.

5.3. Safeness of the Method

The safeness of the wcPME model to predict the worst-case memory performance
has already been discussed for codes with regular access patterns in Fraguela et al.
[2010]. A discussion on the safeness of the components of the model associated to the

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:22 D. Andrade et al.

processing of irregular access patterns must be added to assure the safeness of this
extension. The discussion in Fraguela et al. [2010] is based on the premises that the
worst-case number of misses can be obtained by the PME model provided that the
number of different SOLs that a reference R can access during the execution of a loop
and the RD associated to each access are maximized. These two premises affect the
construction of the PMEs. Section 5.1 removes any uncertainty about the fulfillment of
these two premises for references following irregular access patterns, as Equation (12)
models that every one of the Ni iterations of the loop will give place to the access to a
different SOL, which also forces the RDs for the reuses of those SOLs to be maximal.

A third premise of the discussion in Fraguela et al. [2010] was that the proposed
method maximizes the miss rate associated to the regions accessed during a given RD.
The method proposed in 5.2 is safe because, in the first place, the AV representing
the worst-case placement of the regular access pattern on the cache is calculated. This
procedure follows a safe method already introduced in Fraguela et al. [2010]. The only
modifications are that the worst-case overlapping is moved after the union operation,
and that the results of the overlapping procedure are represented using the format of
the nlinesInter f data structure instead of an AV. These two modifications do not affect
the safeness of the prediction.

This way, the only possible source of unsafeness is the treatment of the irregular
access patterns in the worst-case miss rate calculation process. The placement in the
cache of the lines brought by irregular accesses is totally unpredictable due to the lack
of any pattern. It can only be assured that, given a region on which an irregular access
is performed, at most nlines are accessed and, at most �l� lines may be placed in the
same cache set. The method used to calculate these two values is safe. The algorithm in
Figure 8 maps the nlines lines of each irregular access pattern to the sets represented
in nlinesInter f in such a way that the maximum number of cache sets receives enough
lines to generate a miss when there is a reuse attempt in those sets. Then, the algorithm
in Figure 9, executed after the algorithms in Figures 7 and 8 have filled nlinesInter f
with the appropriate values, matches those sets with the largest numbers of lines of
the reuse region with those sets with the largest number of interfering lines. This
gives place to a maximization of the number of lines of the reuse region that cannot be
reused in cache, and whose access results therefore in a miss. As a consequence, the
PME model presented in this section is safe because the safeness of all its components
have been discussed.

6. EXPERIMENTAL RESULTS

The model, which is integrated in a compiler framework [Andrade et al. 2007], has been
applied automatically to ten regular codes and six irregular codes and its predictions
have been validated against a trace-driven simulator. The code of the applications is
both modeled and simulated at the source code level. The only optimization assumed
(both in the modeling and the simulation) is that the compiler will permanently store
the scalars used in processor registers; therefore only array references are modeled
and simulated. This is not a limitation of the model, but an assumption on a minimal
optimization typically applied by the compiler that is made for the experiments in the
article. Anyway, all the nonarray references could be easily modeled as references to
arrays of a single element that have stride zero with respect to any enclosing loop.

The regular codes used in the experiments have been: the average, sum and difference
of the values stored in two arrays (ST); a 1D stencil calculation (STENCIL); the sum
of all the values in a matrix (CNT); a matrix transposition (TRANS); the calculation of
the first N fibonacci numbers (FIBONACCI), and five codes from the DSPStone bench-
mark suite [Zivojnović et al. 1994]: convolution, fir, lms, matrix1 and n real updates.
Pointer-based memory accesses have been replaced with equivalent array accesses,

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:23

Table II.
Characteristics of the caches used in the experiments. Cs is the
cache size, Ls is the line size, K is the associativity, and Hit and
Miss are the hit and miss time in cycles.

System Cs Ls K Hit Miss

MicroSPARC II-ep 8KB 16B 1 1 10
PowerPC 604e 16KB 32B 4 1 38
MIPS R4000 16KB 16B 1 1 40
IDT79RC64574 32KB 32B 2 1 16

and functions were inlined. These codes have been gathered from similar works in
the bibliography [Ramaprasad and Mueller 2005; Vera et al. 2007; White et al. 1997].
The six irregular codes used in the experiments have been: the sparse-matrix vector
product (SPMXV) displayed in Figure 1, which uses the CRS format for the storage
of the sparse matrix; the three possible orderings for the sparse matrix-dense matrix
product (SPMXDM); the reordering of the elements of an array according to the in-
dexes contained in an index array (REORDER), and the addition of two arrays, where
the positions of both arrays to be added are selected from an index array (IRADD).
Regarding the SPMXDM codes, the three capital letters after the name of each one
of them (SPMXDMIKJ, SPMXDMIJK and SPMXDMJIK), indicate the ordering of the
loops from the outermost one to the innermost one. The sparse matrix is stored in CRS
format (see Example 3.1) and is thus accessed by rows. Loop I selects the different
rows of the sparse matrix, loop K iterates on the elements inside each row, and loop J
selects the different columns of the dense matrices.

The experiments were performed for each code considering a data size of 500 elements
per dimension. The complexity of the matrix1 code and thus its simulation time is O(n3),
so a smaller number of elements per dimension (200) was used in this case. In the case
of SPMXV and SPMXDM codes, a 200 × 200 sparse matrix with 4000 non-zero values
was used. The REORDER and IRADD codes used base arrays of 25000 elements, and
an index array of 2500 elements. Each code was tested using the cache configurations
of a MicroSPARC II-ep [Microelectronics 1997], a PowerPC 604e [Inc 1996], a MIPS
R4000 [MIPS 2001] and a IDT79RC64574 [IDT 2001], which have been used in [Vera
et al. 2007] too. Table II summarizes the main characteristics of these caches, including
the hit and cache miss cycles.

For the STENCIL, CNT, TRANS, FIBONACCI, convolution, fir, lms, matrix1 and
REORDER codes, and each cache configuration, all the possible relative positions in
the cache of the data structures that appear in the code were simulated systematically.
The simulations were conducted using a highly optimized simulator extensively vali-
dated against the well-known trace-driven simulator dineroIII [Hill 1985]. It was not
possible to simulate all the relative positions for ST, n real updates, SPMXV, SPMXD-
MIKJ, SPMXDMIJK, SPMXDMJIK and IRADD because the number of combinations
increases exponentially with the number of the data structures in the code, and these
ones are the codes with more than three data structures. Thus, for these codes a sub-
set of random base address combinations was simulated for 3200 hours in a 1.6 Ghz
Itanium Montvale processor.

The index arrays of the irregular codes were filled in with the worst-case values. In
the IRADD and REORDER codes, the values of the indirection were spanned as much
as possible along the dimension indexed (Case (a) of Figure 3). For the SPMXV and
the three SPMXDM orderings, we tested the usage of matrices with layouts similar to
the ones shown in Cases (a) and (b) of Figure 3. The irregular access takes place on
a vector in the SPMXV code and on a dense matrix in the SPMXDM codes. Case (b)
matrix minimizes the number of lines accessed across the indirection in each whole

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:24 D. Andrade et al.

execution of loop K (loop J in SPMXV), which iterates on the elements inside each
row. This way, the RD of loop I, which selects selects the different rows of the sparse
matrix, is maximized, which avoids many reuses between different iterations of this
loop. However, in SPMXDMIJK and SPMXDMIKJ, one iteration of loop I includes
a complete execution of the loop J (that selects the different columns of the dense
matrix), which does not happen in SPMXV and SPMXDMJIK. This inclusion increases
the interference produced in each iteration of loop I, thus avoiding a large number of
reuses with no need to minimize the number of lines accessed in each execution of loop
K. This causes that Case (a) matrix gives place to the WCMP for the SPMXDMIKJ and
SPMXDMIJK codes, while Case (b) matrix produces it in SPMXV and SPMXDMJIK.

Figure 10 shows the results of the simulations run using random varying base ad-
dresses for each one of the data structures for the codes with irregular access patterns
and the MicroSPARC II-ep [Microelectronics 1997] cache (one-way 8KB cache with
lines of 16B). Each graph represents, for each code, the percentage of the simulations
run for that code for which the memory performance obtained, expressed in cycles, was
within a given range. For example, a total of 20333308 simulations were run for the
SPMXDMIKJ code, considering each simulation a different combination of the base
addresses of the data structures used in this code. The first bar in Figure 10(b) shows
the percentage of these simulations for which the memory performance obtained was
between 11730000 and 11740000 cycles. Although these simulations did not cover all
the base addresses combinations, as it was noted previously, they considered a wide set
of them. Thus, the results shown in these figures are representative of the influence of
the base addresses in the behavior of the different codes. The memory performance in
each simulation is calculated as NM × mt + (ACCS − NM) × ht, NM being the number
of misses, ACCS the number of accesses, and ht and mt the hit time and miss time
of the studied cache, extracted from Table II. The range of cycles associated to each
bar is adjusted in each code for a better display of the graphic. As Figure 10 shows,
the number of cache misses varies largely along the simulations. Despite this large
variability, it is often the case that many (sometimes most) simulations attain a simi-
lar memory performance. These simulations are thus concentrated in a bucket of the
graph. The graphs use a logarithmic scale for the percentage of simulations so that it
is easier to see the outliers. We can see that these outliers can present a much worse
memory performance than the average. These results show that the base addresses
of the data structures largely condition the memory performance, as the simulations
only differ in their base addresses. The worst-case contents of the index arrays have
been used in all the simulations. If these contents had been varied for each simulation,
the variability of the cache performance would have even been larger. In all the codes
but SPMXDMIKJ there are large differences between the best-case and the worst-case
memory performance. The reason is the modification of the relative alignments of the
data structures on the cache when the base addresses are changed. An extreme case is
the presence of a number of fully aligned references. Since the cache is direct-mapped,
this would lead to systematic interferences (and thus misses) whenever at least two
of them are actually aligned with respect to the cache. In fact, the bars in all these
codes are concentrated in a number of groups equal to the number of references that
may be fully aligned. In SPMXDMIKJ, there are 2 potentially fully aligned references
but the number of accesses produced by those references is a small percentage of the
total number of accesses of the code, thus the impact of their full alignment is not very
important. These results confirm the interest of a base-address independent prediction
of the WCMP.

Figure 10 gave an idea of the influence of the base addresses on the cache per-
formance. Now, Table III shows the influence of the contents of the index arrays. This
table contains, for each irregular code, the number of accesses and the number of misses

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:25

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 30000 40000 50000 60000 70000 80000 90000

P
er

ce
nt

ag
e

of
 s

im
ul

at
io

ns

Memory performance (cycles)

(a) SPMXV (each bar presents a percentage
of simulations whose memory performance falls
within a range of x=1000 cycles)

 0.01

 0.1

 1

 10

 100

11730000117400001175000011760000

P
er

ce
nt

ag
e

of
 s

im
ul

at
io

ns

Memory performance (cycles)

(b) SPMXDMIKJ (each bar presents a percentage
of simulations whose memory performance falls
within a range of x=10000 cycles)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

10000000 15000000 20000000 2500000

P
er

ce
nt

ag
e

of
 s

im
ul

at
io

ns

Memory performance (cycles)

(c) SPMXDMIJK (each bar presents a percentage
of simulations whose memory performance falls
within a range of x=100000 cycles)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

8000000 12000000 16000000

P
er

ce
nt

ag
e

of
 s

im
ul

at
io

ns

Memory performance (cycles)

(d) SPMXDMJIK (each bar presents a percentage
of simulations whose memory performance falls
within a range of x=100000 cycles)

 0.1

 1

 10

 100

70000 80000 90000 100000

P
er

ce
nt

ag
e

of
 s

im
ul

at
io

ns

Memory performance (cycles)

(e) IRADD (each bar presents a percentage of sim-
ulations whose memory performance falls within
a range of x=1000 cycles)

 0.01

 0.1

 1

 10

 100

40000 50000 60000

P
er

ce
nt

ag
e

of
 s

im
ul

at
io

ns

Memory performance (cycles)

(f) REORDER (each bar presents a percentage
of simulations whose memory performance falls
within a range of x=1000 cycles)

Fig. 10. Percentage of simulations where the memory performance is within a given range for the in the
MicroSPARC II-ep cache (logarithmic scale in y axes).

it achieves in the caches described in Table II both considering the best-case and the
worst-case contents of the index arrays. Regarding the base addresses, each data struc-
ture in the code is stored after the previous one, which is a very common situation. In the
case of the IRADD and REORDER codes, the best-case contents of the index array is an
ordered list of consecutive positions. It is assumed that one element cannot be accessed
more than once across the indirection. In the case of SPMXV and the three SPMXDM,
all the nonnulls are assumed to be stored consecutively in the first columns of each row.
The results show the large influence the contents of the indirections have on the cache

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:26 D. Andrade et al.

Table III. Accesses and number of misses considering the best-case and worst-case contents of the index arrays
for four different cache configurations.

Code Accesses
MicroSPARC II-ep PowerPC 604e MIPS R4000 IDT79RC64574
BCmisses WCmisses BCmisses WCmisses BCmisses WCmisses BCmisses WCmisses

SPMXV 12400 2123 2358 1032 1059 2131 2206 1055 1077
SPMXDMIKJ 1608202 745779 1122961 147659 886652 459223 965407 98217 854281
SPMXDMIJK 2560001 238728 861402 161026 841026 207746 851794 104097 841155
SPMXDMJIK 2560200 431801 469690 210800 215200 417585 441922 33226 55776
REORDER 7500 1875 3757 939 3027 1620 3407 939 2927
IRADD 10000 1875 3757 653 3126 1539 3703 673 3126

performance. Only the results for SPMXV show a modest variability. The reason is that
in this code the index array is used to select different positions of the same vector across
different iterations of its outermost loop (see Figure 1). Thus, the possibilities of reuse
are always high and the influence of the contents of the index array are attenuated.

The rest of the section is organized as follows. Sections 6.1 and 6.2 contain the
results obtained using the hard and the soft version of the model, respectively. Finally,
Section 6.3 discusses the complexity of the model.

6.1. Results for the Soft Prediction

Table IV contains for each code and cache configuration, the average memory perfor-
mance observed along the simulations expressed in cycles, MP. �WCMP% is the difference
between the soft WCMP predicted by the model and the actual WCMP observed along
the simulations, expressed as a percentage of this latter value. The codes marked with
a ∗ are those for which 3200 hours in a 1.6 Ghz Itanium Montvale processor did not
suffice to simulate all the possible base address combinations. The nonnegativity of the
�WCMP% column shows the validty of the soft prediction, while its small value shows
its tightness for most codes. �WMP% is the difference between the WCMP observed in
the simulations and the average memory performance observed along the simulations,
MP, expressed as a percentage of this latter value. The large value of �WMP% for some
codes indicates that for these codes the WCMP observed is far from the average value
observed in the simulations, sometimes up to 7 times larger. The factor that explains
the large difference between the average and the worst-case memory performance for
these codes is the existence of full alignments of more than K (K being the associativity
of the cache) references, which causes systematic cache misses. In the TRANS code the
soft predictions of the WCMP are not very tight. The reason for this lack of tightness
is that the overlapping adjustments described in Section 4.3 consider worst-case over-
lappings that do not take place for the data size and cache configurations used in our
experiments.

Programmers can avoid explicitly full alignments by using buffering or extra
padding. In that case the model can provide a soft WCMP prediction closer to the
average behavior by disabling the modeling of the wort-case overlapping. The results
obtained using this new soft prediction of the WCMP are summarized in Table V, which
only contains thus the codes where full alignments may appear, and whose statistics
are referred only to the simulated cases where full alignments did not occur finally.
This way, MP is the average memory performance (expressed in cycles) observed in
these simulations, and �WCMP% and �WMP% are calculated considering only simulations
without full alignments. The values of �WCMP% are similar to those in Table IV and
the values of �WMP% are fairly smaller, which indicates that the WCMP is now closer
to the average observed. Table V also includes a column As, which is the percentage of

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:27

Table IV. MP, �WCMP%, and �WMP% for Four Different Cache Configurations.

Code
MicroSPARC II-ep PowerPC 604e
MP �WCMP% �WMP% MP �WCMP% �WMP%

ST∗ 8256 0.00% 202.80% 14155 0.00% 571.14%
STENCIL 4286 0.00% 183.11% 6699 0.00% 0.55%
CNT 812500 0.96% 0.96% 1406250 1.97% 1.97%
TRANS 2045300 0.12% 0.57% 6151565 17.64% 17.74%
FIBONACCI 1625 0.55% 0.55% 2794 2.65% 2.65%
convolution 3276 0.00% 205.19% 5689 0.00% 0.81%
fir 4276 0.00% 183.52% 6689 0.00% 0.69%
lms 8244 0.00% 203.22% 14386 0.76% 1.74%
matrix1 44290990 2.11% 4.07% 61416512 2.42% 2.42%
n real updates∗ 6618 0.00% 202.20% 11365 4.53% 5.17%
SPMXV∗ 33820 3.66% 176.67% 52286 0.00% 0.85%
SPMXDMIKJ∗ 11746972 12.32% 12.54% 31294745 3.86% 4.61%
SPMXDMIJK∗ 10362317 0.00% 136.83% 33677963 0.02% 0.02%
SPMXDMJIK∗ 6906561 4.46% 168.48% 10522600 12.04% 12.06%
REORDER 41394 0.00% 81.19% 123162 2.76% 2.79%
IRADD∗ 66466 0.00% 50.45% 218162 0.03% 0.05%

Code
MIPS R4000 IDT79RC64574

MP �WCMP% �WMP% MP �WCMP% �WMP%

ST∗ 27159 0.00% 268.19% 7225 0.00% 453.58%
STENCIL 11867 0.00% 286.90% 3905 0.38% 0.77%
CNT 2687500 0.99% 0.99% 718750 1.57% 1.57%
TRANS 6292982 0.03% 0.91% 1762070 17.37% 17.83%
FIBONACCI 5375 0.73% 0.73% 1430 2.10% 2.10%
convolution 10836 0.00% 269.11% 2901 0.51% 1.16%
fir 11836 0.00% 287.56% 3901 0.38% 0.87%
lms 27280 0.00% 266.56% 7318 0.00% 446.54%
matrix1 107316817 2.83% 7.03% 39195460 2.69% 5.64%
n real updates∗ 22045 0.00% 262.88% 5799 0.00% 451.77%
SPMXV∗ 100891 4.38% 254.86% 28915 0.00% 17.59%
SPMXDMIKJ∗ 39420691 8.78% 9.32% 12494302 12.53% 13.93%
SPMXDMIJK∗ 35895329 0.00% 172.39% 15131531 0.24% 1.63%
SPMXDMJIK∗ 20073189 4.52% 253.62% 3342135 0.00% 8.16%
REORDER 152658 0.00% 96.52% 54270 0.00% 0.50%
IRADD∗ 254218 0.00% 57.35% 94390 0.00% 0.22%

all the simulations where full alignments appeared. The values of this column are low,
which denotes that the existence of full alignments is unprobable.

6.2. Results for the Hard Prediction

The method used to calculate a hard prediction of the WCMP presented in Section 5
cannot be evaluated against a simulation in a reasonable time. Section 5.1 established
that when a reference R is indexed through an indirection controlled by the variable
of loop i, there are (DRi)Ni possible sequence of accesses, and conversely, the same
number of possible contents of the index array. In this expression DRi is the number of
different SOLs that R could potentially access during the execution of loop i and Ni is
the number of iterations of that loop. For each one of the (DRi)Ni possible contents of the
index array, a simulation using each possible relative position of the data structures

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:28 D. Andrade et al.

Table V.
MP, �WCMP%, �WMP% and As(At) for four different cache configurations when excluding full
alignments in the codes where they may appear.

Code
MicroSPARC II-ep PowerPC 604e

MP �WCMP% �WMP% As MP �WCMP% �WMP% As

ST∗ 8125 0.98% 2.55% 1.93 14155 1.49% 6.80% 0.0
STENCIL 4268 0.21% 0.42% 0.29 6691 0.00% 0.66% 0.0
convolution 3262 0.55% 0.72% 0.29 5680 0.00% 0.98% 0.0
fir 4264 0.42% 0.51% 0.29 6691 0.00% 0.66% 0.0
lms 8190 0.99% 0.74% 0.48 14432 0.76% 1.41% 0.0
n real updates∗ 6500 2.08% 2.08% 1.16 11324 4.53% 5.55% 0.0
SPMXV∗ 100657 0.00% 23.17% 0.10 28915 0.00% 17.59% 0.0
SPMXDMIKJ∗ 11746972 12.31% 12.53% 0.0 31294745 3.86% 4.61% 0.0
SPMXDMIJK∗ 10337504 5.26% 33.15% 0.17 33677963 0.02% 0.02% 0.0
SPMXDMJIK∗ 6887283 0.35% 13.03% 0.18 10522600 12.04% 12.06% 0.0
REORDER 41322 0.35% 0.39% 0.29 123162 2.76% 2.79% 0.0
IRADD∗ 66385 0.08% 0.12% 0.18 218162 0.03% 0.05% 0.0

Code
MIPS R4000 IDT79RC64574

MP �WCMP% �WMP% As MP �WCMP% �WMP% As

ST∗ 26875 0.14% 2.03% 0.97 7225 1.63% 3.74% 0.0030
STENCIL 11828 0.00% 0.33% 0.19 3905 0.38% 0.77% 0.0
convolution 10804 0.36% 0.58% 0.14 2900 0.51% 1.19% 0.0
fir 11812 0.33% 0.46% 0.14 3908 0.38% 0.69% 0.0
lms 27148 0.58% 0.29% 0.24 7225 1.64% 2.70% 0.0
n real updates∗ 21500 1.63% 1.63% 0.58 5780 3.37% 3.37% 0.0015
SPMXV∗ 100657 0.00% 23.17% 0.10 28915 0.00% 17.59% 0.0
SPMXDMIKJ∗ 39420691 8.48% 9.01% 0.0 12494302 12.53% 13.93% 0.0
SPMXDMIJK∗ 35837063 6.32% 42.36% 0.0910 15131531 0.24% 1.63% 0.0
SPMXDMJIK∗ 20029431 12.65% 21.19% 0.09 3342135 0.00% 8.16% 0.0
REORDER 152541 0.08% 1.02% 0.14 54270 0.00% 0.50% 0.0
IRADD∗ 254023 0.05% 0.08% 0.09 94390 0.00% 0.22% 0.0

with respect to the cache should be executed to obtain the actual maximum of the
number of misses valid for any base addresses of these structures. Since in a K-way
cache of size Cs there are Cs/K relative positions with respect to the cache, this would
involve a total of (DRi)Ni × (Cs/K)X simulations, where X is the number of different data
structures in the code.

Table VI contains simply the worst-case memory performance predicted by the hard
(safe) version of the model (WCmp) and the miss rate associated (WCmr), both when
full alignments are avoided by the programmer (wo fa) or not (w fa). Only the codes
with irregular access patterns are included in this table, as the predictions shown
in Tables IV and V for regular codes are already covered by the safe wcPME model
presented for them in Fraguela et al. [2010]. For direct-mapped caches (MicroSPARC
II-ep and MIPS R4000) or if full alignments are possible, the worst-case miss rate
predicted is close to 100%, thus, the effectivity of the cache during the execution of
irregular codes for hard RTS in these circumstances is almost null. However, the usage
of set associative caches (PowerPC 604e and IDT79RC64574) would be more useful for
irregular codes and hard RTS, as safe lower miss rates are obtained.

6.3. Complexity of the Model

In all our experiments in the previous sections and the additional ones we present here
to measure the computing demands of our model, the predictions of the model were

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:29

Table VI. WCmp and WCmr Predictions of the Safe Version of the PME Model

Code

MicroSPARC II-ep PowerPC 604e
w fa wo fa w fa wo fa

WCmp WCmr WCmp WCmr WCmp WCmr WCmp WCmr

SPMXV 124000 100% 124000 100% 471200 100% 234400 48%
SPMXDMIKJ 16082020 100% 16082020 100% 45567902 74% 45567902 74%
SPMXDMIJK 24880001 97% 24880001 97% 94320001 97% 46960001 47%
SPMXDMJIK 24880200 97% 24880200 97% 92199730 95% 46960200 47%
REORDER 75000 100% 75000 100% 285000 100% 123236 42%
IRADD 100000 100% 100000 100% 380000 100% 218236 56%

MIPS R4000 IDT79RC64574
w fa wo fa w fa wo fa

WCmp WCmr WCmp WCmr WCmp WCmr WCmp WCmr

SPMXV 496000 100% 496000 100% 198400 100% 102400 48%
SPMXDMIKJ 64328080 100% 64328080 100% 20117152 77% 20117152 77%
SPMXDMIJK 99280001 97% 99280001 97% 39760001 97% 20560001 47%
SPMXDMJIK 99280200 97% 99280200 97% 38776350 94% 19552500 44%
REORDER 300000 100% 300000 100% 120000 100% 54420 42%
IRADD 400000 100% 400000 100% 160000 100% 160000 100%

25

50

75

100

125

150

175

200

225

250

16 32 64 128 256 512 1024 2048

T
im

e
(m

ill
is

ec
on

d)

Cache size (KB)

(a) SPMXDMIKJ considering different cache sizes

100

300

500

500 750 1000 1250 1500 1750 2000 5000

T
im

e
(m

ill
is

ec
on

d)

Problem size (elements)

(b) SPMXDMIKJ considering different problem
sizes

Fig. 11. Evolution of the modeling time

always generated in less than one second. Since these experiments were performed us-
ing a set of very diverse codes, problem sizes and cache configurations, the model times
measured cover many situations and are thus very representative. The main factor
that can increase the execution time of the model is the complexity of the code, namely,
the number of references and the number of loops where they are embedded. This fac-
tor influences the number of PMEs that must be generated and the complexity and the
number of times that the worst-case miss rate calculation process must be executed.
The complexity of the model is secondarily influenced by the cache size, the associa-
tivity, the number of iterations of the loop and the sizes of the data structures. These
factors increase the complexity of some of the algorithms in the miss rate calculation
process such as the calculation of the AV associated to strided access patterns.

Figures 11(a) and 11(b) show the evolution of the modeling times of the soft version
of the model for one of the most complicated codes, SPMXDMIKJ, for different cache
and problem sizes, respectively. The model was executed in a machine with an Intel
Core 2 Duo at 2.4 Ghz and 2 GB of RAM. Figure 11(a) models the behavior of the
product (SPMXDMIKJ) of one dense 1000 × 1000 matrix and a 1000 × 1000 sparse

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:30 D. Andrade et al.

matrix with 40000 nonzeros. The cache has a line size of 32 bytes and associativity
2, while cache size varies from 16KB to 2048KB. The modeling time (expressed in
milliseconds) is always below one second. Figure 11(b) models the behavior of the
product (SPMXDMIKJ) of a n × n dense matrix and a n × n sparse matrix with 10 × n
nonzeroes. The problem size n takes values between 250 and 5000 and the cache size
is the biggest one used in Figure 11(a). The modeling time is also always below one
second. These results confirm that, although the modeling time depends on the cache
size or the size of the data structures, the model is very fast and it provides its results
in very short times.

7. RELATED WORK

None of the works in the bibliography models the behavior of codes with indirections
or can provide a base-address independent predictions, thus, it has not been possible
to compare the predictions of the wcPME model with other models.

Several researchers have used analytical methods to calculate the WCMP consider-
ing the caches of a memory hierarchy. The modeling of instruction caches [Alt et al.
1996; Healy et al. 1999] has had a lot of success, even in multicore systems with
shared L2 caches [Yan and Zhang 2008]. There are also many works devoted to the
study of data caches. White et al. [1997] bound-using a static analysis, the worst-case
performance of set-associative instruction caches and direct-mapped data-caches. The
analysis of data caches required the base addresses of the involved data structures.
Relative address information is used in conjunction with control-flow information by
an address calculator to obtain this information. The analysis classified the accesses in
one of four categories: always miss, always hit, first miss and first hit. The validation
was performed considering only one cache configuration. In most programs, the pre-
diction of the worst-case predicted was equal to the value observed. However, in some
programs similar to ours like the dense matrix product (DMXDM) an overestimation
of 10% for big data sizes occurred. A version of our ST program presented also an
overestimation of 17% in their paper.

Lundqvist and Stenström [1999] distinguish between data structures that exhibit
a predictable cache behavior, which is automatically and accurately determined, and
those with an unpredictable cache behavior, which bypass the cache. Only memory
references, whose address reference can be determined statically, were considered to
be predictable. When the cache is bypassed, the behavior is equivalent to a miss rate
of 100% The predictability of a reference is determined considering the storage type
(global, stack or heap) and the access type (scalar, regular, irregular or input data
dependent). In the validation, they showed statistics about the predictability of the
references but they did not present any result of WCMP calculations.

Ramaprasad and Mueller [2005] used the cache miss equations (CMEs) [Ghosh et al.
1999], which need the data addresses for their predictions, as a basis for the WCMP esti-
mation. Nonperfectly nested and nonrectangular loops are covered using loop transfor-
mations like the forced loop fusion that involves the insertion of loop index-dependent
conditionals in the code. Loop index-dependent conditionals are modeled using an ex-
tra analysis stage. The validation showed almost perfect predictions of the WCMP but
only two (direct-mapped) cache configurations were considered.

Vera et al. [2007] used also the data address-dependent cache miss equations (CMEs)
to predict the WCMP in a multitasking environment. This work combines the static
analysis, provided by the CMEs, with cache partitioning, for eliminating intertask
interferences, and cache locking, thus becoming predictable the cache behavior of
those pieces of code outside the scope of application of the CMEs. Good predictions

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

Static Analysis of the Worst-Case Memory Performance for Irregular Codes with Indirections 20:31

of the WCMP were achieved for codes that use the cache locking in order to improve
the WCMP predictability. The problem with the cache locking technique arises when
the data involved in the irregular access exceeds largely the cache capacity, as most
accesses result in cache misses, or when some portions of data structures involved
in that access, which are preloaded in the cache, are never accessed. Besides, cache
locking incurs the overhead of preloading the cache, even with portions of data
structures that will not be actually used. Thus, this technique is only suitable for
computations that deal with a small amount of data that fit in the cache.

8. CONCLUSIONS

This article presents an analytical model capable of predicting very fast the WCMP for
codes with irregular access patterns due to the existence of indirections. No previous
work has tackled the prediction of the WCMP in the presence of these patterns, re-
sorting instead to locking or bypassing the cache, which can degrade substantially the
performance of the memory hierarchy. The model is very general and flexible, as it does
not need the concrete values of the indirections, which are in fact usually unavailable
for the analysis; rather it considers the worst possible distribution of the indirections.
A second unique feature of this model is that it does not require the base addresses of
the data structures. Instead, it computes the overlapping of the data structures with
respect to the cache that gives place to more misses. This allows to use the model in
situations in which the data addresses are not available at compile time, and can in fact
vary in different executions. This is the case for example in systems with physically-
indexed caches or codes that use dynamically allocated memory. Another advantage of
our model is that it can predict the miss rate per individual reference. This enables its
usage to choose whether the cache is bypassed or not in the presence of irregular access
patterns, and, in the latter case, whether preloading the data and locking it in the cache
would be beneficial. Finally, the model is able to provide two kinds of estimations: a
soft one, suitable for soft or non-RTS, and a hard safe one, suitable for hard RTS, and
whose safeness has been for-mally proved.

An extensive validation using trace-driven simulations for 16 codes and 4 real cache
configurations has been performed. The results show that the cache performance can
vary largely depending on the base addresses of the data structures, and that our model
provides tight predictions of the worst-case cache performance even in the presence of
irregular access patterns. The safeness of the soft prediction is not ensured, as it
has been commented throughout the article. Still, the soft predictions of our model
have not been exceeded by any of the simulations in our experiments, even when
reasonable worst-case contents of the index arrays have been used. The hard model
predicts miss rates close to 100% for the irregular codes when direct-mapped caches
are considered and when full alignments are possible. However, reasonable lower miss
rates are obtained for set-associative caches and when full alignments are explicitly
avoided by the programmer. These experiments were conducted only for the irregular
codes as the soft model is already safe for the regular ones.

As future work, we will consider the possibility of using as optional input the base
addresses of the data structures involved in the code whenever they are available, in
order to provide a tighter WCMP calculation.

ACKNOWLEDGMENTS

We would like to thank the editor and the reviewers for their valuable comments that greatly helped to
improve this article. We also want to acknowledge the Centro de Supercomputación de Galicia (CESGA) for
the use of its computers.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

TACO0903-20 ACM-TRANSACTION September 14, 2012 17:7

20:32 D. Andrade et al.

REFERENCES

ALT, M., FERDINAND, C., MARTIN, F., AND WILHELM, R. 1996. Cache behavior prediction by abstract interpretation.
In Proceedings of the 3rd International Symposium on Static Analysis (SAS ’96). Springer, 52–66.

ANDRADE, D., ARENAZ, M., FRAGUELA, B. B., TOURIÑO, J., AND DOALLO, R. 2007a. Automated and accurate cache
behavior analysis for codes with irregular access patterns. Concur. Comput. Pract. Exper. 19, 18, 2407–
2423.

ANDRADE, D., FRAGUELA, B. B., AND DOALLO, R. 2006. Analytical modeling of codes with arbitrary data-dependent
conditional structures. J. Syst. Archit. 52, 394–410.

ANDRADE, D., FRAGUELA, B. B., AND DOALLO, R. 2007b. Precise automatable analytical modeling of the cache
behavior of codes with indirections. ACM Trans. Archit. Code Optim. 4, 3, 16.

ANDRADE, D., FRAGUELA, B. B., AND DOALLO, R. 2009. Static prediction of worst-case data cache performance
in the absence of base address information. In Proceedings of the IEEE Real-Time and Embedded
Technology and Applications Symposium. 45–54.

BARRET, R., BERRY, M., CHAN, T., DEMMEL, J., DONATO, J., DONGARRA, J., EIJKHOUT, V., POZO, R., ROMINE, C., AND VAN

DER VORST, H. 1994. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods.
SIAM Press.

DAVID, L. AND PUAUT, I. 2004. Static determination of probabilistic execution times. In Proceedings of the 16th
Euromicro Conference on Real-Time Systems (ECRTS ’04). 223–230.

FRAGUELA, B. B., ANDRADE, D., AND DOALLO, R. 2010. Address-independent estimation of the worst-case memory
performance. IEEE Trans. Ind. Inf. 6, 4, 664–677.

FRAGUELA, B. B., DOALLO, R., AND ZAPATA, E. L. 2003. Probabilistic miss equations: Evaluating memory hier-
archy performance. IEEE Trans. Comput. 52, 3, 321–336.

GHOSH, S., MARTONOSI, M., AND MALIK, S. 1999. Cache miss equations: A compiler framework for analyzing
and tuning memory behavior. ACM Trans. Program. Lang. Syst. 21, 4, 703–746.

HEALY, C. A., ARNOLD , R. D., MUELLER , F., WHALLEY, D. B., AND HARMON, M. G. 1999. Bounding pipeline and
instruction cache performance. IEEE Trans. Comput.48, 1, 53–70.

HILL, M. 1985. Dineroiii documentation, unpublished unix-style. Tech. rep.
IBM. 1996. PowerPC 604e RISC Microprocessor Technical Summary. Tech. rep.
IDT. 2001. 79RC64574/RC64575 Data Sheet. Tech. rep. http://smartdata.usbid.com/datasheets/usbid/2000/

2000-q1/rc64574 ma 75096.pdf
LUNDQVIST, T. AND STENSTRÖM, P. 1999. A method to improve the estimatedworst-case performance of data

caching. In Proceedings of the IEEE International Conference on Real-Time and Embedded Computing
Systems and Applications. 255–262.

MIPS. 2001. MIPS32 4Kp- Embedded, MIPS Processor Core. Tech. rep. www.mips.com.
RAMAPRASAD, H. AND MUELLER, F. 2005. Bounding worst-case data cache behavior by analytically deriving cache

reference patterns. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications
Symposium. 148–157.

RAMAPRASAD, H. AND MUELLER, F. 2006. Bounding preemption delay within data cache reference patterns
for real-time tasks. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications
Symposium. 71–80.

SUN MICROELECTRONICS. 1997. MicroSPARC-IIep User’s Manual. Tech. rep.
VERA, X., LISPER, B., AND XUE, J. 2007. Data cache locking for tight timing calculations. ACM Trans. Embed.

Comput. Syst. 7, 1, 1–38.
WHITE, R., HEALY, C., WHALLEY, D., MUELLER, F., AND HARMON, M. 1997. Timing analysis for data caches and set-

associative caches. In Proceedings of the IEEE Real-Time and Embedded Technology and Applications
Symposium. 192–202.

XUE, J. AND VERA, X. 2004. Efficient and accurate analytical modeling of whole-program data cache behavior.
IEEE Trans. Comput. 53, 5, 547–566.

YAN, J. AND ZHANG, W. 2008. WCET analysis for multi-core processors with shared l2 instruction caches. In
Proceedings of the IEEE Real-Time and Embedded Technology and Applications Symposium. 80–89.

ZIVOJNOVIĆ, MARTINEZ, J., SCHLÄGER, C., AND MEYR, H. 1994. DSPSTONE: A DSP-oriented benchmarking
methodology. In Proceedings of theInternational Conference on Signal Processing Applications and
Technology.

Received June 2011; revised January 2012; accepted June 2012

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 3, Article 20, Publication date: September 2012.

