
Noname manuscript No.
(will be inserted by the editor)

Analysis of I/O Performance on an Amazon EC2
Cluster Compute and High I/O Platform

Roberto R. Expósito · Guillermo L.
Taboada · Sabela Ramos · Jorge
González-Domı́nguez · Juan Touriño ·

Ramón Doallo

Abstract Cloud computing is currently being explored by the scientific commu-
nity to assess its suitability for High Performance Computing (HPC) environments.
In this novel paradigm, compute and storage resources, as well as applications, can
be dynamically provisioned on a pay-per-use basis. This paper presents a thorough
evaluation of the I/O storage subsystem using the Amazon EC2 Cluster Compute
platform and the recent High I/O instance type, to determine its suitability for
I/O-intensive applications. The evaluation has been carried out at different layers
using representative benchmarks in order to evaluate the low-level cloud storage
devices available in Amazon EC2, ephemeral disks and Elastic Block Store (EBS)
volumes, both on local and distributed file systems. In addition, several I/O inter-
faces (POSIX, MPI-IO and HDF5) commonly used by scientific workloads have
also been assessed. Furthermore, the scalability of a representative parallel I/O
code has also been analyzed at the application level, taking into account both per-
formance and cost metrics. The analysis of the experimental results has shown that
available cloud storage devices can have different performance characteristics and
usage constraints. Our comprehensive evaluation can help scientists to increase
significantly (up to several times) the performance of I/O-intensive applications in
Amazon EC2 cloud. An example of optimal configuration that can maximize I/O
performance in this cloud is the use of a RAID 0 of 2 ephemeral disks, TCP with
9,000 bytes MTU, NFS async and MPI-IO on the High I/O instance type, which
provides ephemeral disks backed by Solid State Drive (SSD) technology.

Keywords Cloud Computing · Virtualization · I/O Performance Evaluation ·

Network File System (NFS) · MPI-IO · Solid State Drive (SSD)

Roberto R. Expósito · Guillermo L. Taboada · Sabela Ramos · Jorge González-Domı́nguez ·
Juan Touriño · Ramón Doallo
Computer Architecture Group, Dept. of Electronics and Systems,
University of A Coruña (Spain)
E-mail: {rreye,taboada,sramos,jgonzalezd,juan,doallo}@udc.es

0DQXVFULSW
&OLFN�KHUH�WR�GRZQORDG�0DQXVFULSW��FORXG�LR�SGI�
&OLFN�KHUH�WR�YLHZ�OLQNHG�5HIHUHQFHV

2 Roberto R. Expósito et al.

1 Introduction

Data management is a critical component of many current scientific computing
workloads, which are generating very large data sets, contributing significantly to
the consolidation of the so-called current big data era. These applications often
require a high number of computing resources to perform large-scale experiments
into a reasonable time frame, and these needs have been typically addressed with
dedicated High Performance Computing (HPC) infrastructures such as clusters
or big supercomputers. In this scenario, scientific applications can be sensitive to
CPU power, memory bandwidth/capacity, network bandwidth/latency as well as
the performance of the I/O storage subsystem.

The cloud computing paradigm is a relatively recent computing model where
dynamically scalable and often virtualized resources are provided as a service over
the Internet. This novel paradigm has gained significant popularity in many areas,
including the scientific community. The combination of this model together with
the rich set of cloud infrastructure services can offer a feasible alternative to tradi-
tional servers and computing clusters, saving clients from the expense of building
an in-house datacenter that is provisioned to support the highest predicted load.
With cloud-based technologies, scientists can have easy access to large distributed
infrastructures and completely customize their execution environment, thus pro-
viding the perfect setup for their experiments. In addition, the interest in the use
of public clouds for HPC applications increases as their availability, computational
power, price and performance improves.

Amazon Web Services (AWS) is nowadays the leading public Infrastructure-
as-a-Service (IaaS) cloud provider in terms of number of users, allowing resources
in their data centers to be rented on-demand through Elastic Compute Cloud
(EC2) service [7]. By means of virtualization technologies, EC2 allows scalable
deployment of applications by providing a web service through which a user can,
among other tasks, boot straightforwardly an Amazon Machine Image (AMI) into
a custom Virtual Machine (a VM or “instance”). This on-demand allocation of
resources provides a new dimension for HPC due to the elastic capability of the
cloud computing model, which additionally can provide both cost-effective and
energy-efficient solutions [31].

Amazon EC2 offers a cloud infrastructure, the Cluster Compute (CC) platform,
which specifically targets HPC environments [9]. The CC platform is a family of
several instance types which are intended to be well suited for large-scale scientific
experiments and HPC applications by offering physical node allocation (a single
VM per node), powerful and up-to-date CPUs and GPUs, and an improved in-
terconnection network (10 Gigabit Ethernet). Additionally, the High I/O instance
type shares the same characteristics as the CC instances with enhanced storage
performance providing Solid State Drives (SSD) disks. Using these instance types
customers can expedite their HPC workloads on elastic resources as needed, adding
and removing compute resources to meet the size and time requirements for their
specific workloads. An example of the extent and magnitude of Amazon EC2 is
the self-made cluster that, with only a small portion of its resources (about 1,000
CC instances), ranks #102 in the latest Top 500 list (November 2012) [1].

This paper evaluates the I/O storage subsystem on the Amazon EC2 CC plat-
form to determine its suitability for scientific applications with high I/O perfor-
mance requirements. Moreover, the evaluation includes, for the first time to the

Analysis of I/O Performance on Amazon EC2 3

best of our knowledge, the High I/O instance type, which has been recently re-
leased in July 2012. This instance type is intended to provide very high instance
storage I/O performance, as it is backed by SSD disks, which is the main differen-
tial characteristic of this resource, but it also provides high levels of CPU, memory
and network performance as CC instances.

In this evaluation, experiments at different levels are conducted. Thus, several
micro-benchmarks are used to evaluate different cloud low-level storage devices
available in CC instances, ephemeral disks and Elastic Block Store (EBS) vol-
umes [6], both at the local and distributed file system levels. In addition, common
middleware libraries such as HDF5 [4] and MPI-IO [35], which are directly im-
plemented on top of file systems, have also been assessed as scientific workloads
usually rely on them to perform I/O. Finally, the scalability of a representative
parallel I/O code implemented on top of MPI-IO, the BT-IO kernel [38] from
the NAS Parallel Benchmarks (NPB) suite [24], has also been analyzed at the
application level both in terms of performance and cost effectiveness.

The paper is organized as follows: Section 2 describes the related work. Section
3 presents an overview of the storage system of the Amazon EC2 public cloud.
Section 4 introduces the experimental configuration, both hardware and software,
and the methodology of the evaluation conducted in this work. Section 5 analyzes
the I/O performance results of the selected benchmarks/kernels on Amazon EC2
CC and High I/O instances. Finally, our conclusions are presented in Section 6.

2 Related Work

In recent years there has been a spur of research activity in assessing the perfor-
mance of virtualized resources and cloud computing environments [18,25,30,40,
41]. The majority of recent studies have evaluated Amazon EC2 to examine the
feasibility of using public clouds for high performance or scientific computing, but
with different focuses.

Some previous works have shown that computationally-intensive codes present
little overhead when running on virtualized environments, whereas communication-
intensive applications tend to perform poorly [12,13,23,27,37], especially tightly-
coupled parallel applications such as MPI [3] jobs. This is primarily due to the
poor virtualized network performance, processor sharing among multiple users and
the use of commodity interconnection technologies (Gigabit Ethernet). In order
to overcome this performance bottleneck, Amazon EC2 offers the Cluster Com-
pute (CC) platform, which introduces several HPC instance types, cc1.4xlarge
and cc2.8xlarge, abbreviated as CC1 and CC2, respectively, in addition to the
recent High I/O instance type (hi1.4xlarge, abbreviated as HI1) which provides
SSD disks. Thus, Sun et al. [34] relied on 16 CC1 instances for running the Lattice
Optimization and HPL benchmark. The main conclusion derived from the results
is that MPI codes, especially those which are network latency bound, continue to
present poor scalability. Ramakrishnan et al. [29] stated that virtualized network
is the main performance bottleneck on Amazon EC2 after analyzing the commu-
nication overhead on CC1 instances. Mauch et al. [21] presented an overview of
the current state of HPC IaaS offerings and suggested how to use InfiniBand in
a private virtualized environment, showing some HPL benchmark results using a
single instance of CC1 and CC2 instance types. Finally, our previous work [14] has

4 Roberto R. Expósito et al.

stated that CC1 and CC2 instances are able to achieve reasonable scalable perfor-
mance in parallel applications, especially when hybrid shared/distributed memory
programming paradigms, such as MPI+OpenMP, are used in order to minimize
network communications.

However, most of the previous work is focused on computation and communi-
cation, whereas there are very little works that have investigated I/O and storage
performance. Some of them analyzed the suitability of running scientific work-
flows in the cloud [19,26,36], showing that it can be a successful option as these
workloads are loosely-coupled parallel applications. Thus, Juve et al. [19] studied
the performance and cost of different storage options for scientific workflows on
Amazon EC2, although regarding CC platform they only evaluated three work-
flows on the CC1 instance type. Vecchiola et al. [36] ran an fMRI brain imaging
workflow on Amazon EC2 using the object-based Amazon Simple Storage Service
(S3) [8] for storage, and analyzed the cost varying the number of nodes. In [5], Abe
and Gibson provide S3-like storage access on top of PVFS [10] on an open-source
cloud infrastructure. Palankar et al. [28] assessed the feasibility of using Ama-
zon S3 for scientific grid computing. Zhai et al. [42] conducted a comprehensive
evaluation of MPI applications on Amazon EC2 CC platform, revealing a signifi-
cant performance increase compared to previous evaluations on non-CC instances.
They also reported some experimental results of storage performance, but limited
to ephemeral devices (local disks) without RAID and using only CC1 instances.
In [32], the storage and network performance of the Eucalyptus cloud computing
framework is analyzed, confronted with some results from one large instance type
of Amazon EC2. Ghoshal et al. [16] compared I/O performance on two cloud plat-
forms, Amazon EC2 and Magellan, using IOR benchmark on the CC1 instance
type. Their study is limited to the file system level, so RAID configurations as
well as the performance of I/O interfaces are not taken into account. Finally, Liu
et al. [20] ran two parallel applications (BT-IO and POP) on CC1 instances using
ephemeral disks, both for NFS and PVFS file systems. Their results show that
cloud-based clusters enable users to build per-application parallel file systems, as
a single parallel I/O solution can not satisfy the needs of all applications.

In addition, many current applications (e.g., data mining, social network anal-
ysis) demand distributed computing frameworks such as MapReduce [11] and
iMapReduce [43] to process massive data sets. An attractive feature of these frame-
works is that they support the analysis of petabytes of data with the help of cloud
computing without any prior investment in infrastructure, which has popularized
big data analysis. For instance, Gunarathne et al. [17] present a new MapReduce
runtime for scientific applications built using the Microsoft Azure cloud infras-
tructure. In [39], Yang et al. proposed a regression model for predicting relative
performance of workloads under different Hadoop configurations with 87% accu-
racy.

In this paper we evaluate the I/O performance of an Amazon EC2 CC and
High I/O platform. Thus, we evaluated CC1 and CC2 instance types together
with the most recent HI1 instances, so they can be directly compared. Moreover,
we analyze the performance of the different low-level storage devices available on
these instances (EBS volumes and ephemeral disks) in addition to the use of soft-
ware RAID. Moreover, our study is carried out at several layers (storage devices,
file systems, I/O interfaces and applications) using representative benchmarks/ap-
plications for each layer. Finally, we also take into account the costs associated

Analysis of I/O Performance on Amazon EC2 5

with the use of a public cloud infrastructure, presenting a cost analysis at the
application level.

3 Overview of Amazon EC2 CC and High I/O Instances

Amazon EC2 offers the CC platform which currently provides two HPC instance
types. The Cluster Compute Quadruple Extra Large instances (cc1.4xlarge, ab-
breviated as CC1) and Cluster Compute Eight Extra Large instances (cc2.8xlarge,
abbreviated as CC2) are resources with 23 and 60.5 GBytes of memory and 33.5
and 88 EC2 Compute Units (ECUs) for CC1 and CC2, respectively. According
to Amazon WS one ECU provides the equivalent CPU capacity of a 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor.

In addition to the CC instances, Amazon has recently launched (July 2012)
the High I/O Quadruple Extra Large instances (hi1.4xlarge, abbreviated as HI1).
These instances have two SSD disks as local block storage, which is the main
differential characteristic of this resource, in order to provide very high instance
storage I/O performance. Moreover, HI1 instances also have powerful CPUs (35
ECUs) and a significant amount of memory (60.5 GBytes). The very high demand
for these instances has caused that Amazon currently limits their use to only two
simultaneous HI1 instances per user.

Regarding the hardware characteristics of these instances (see Table 1), the
provider details the specific processor: two Intel Xeon X5570 quad-core Nehalem
processors for CC1, hence 8 cores per CC1 instance, two Intel Xeon E5-2670 octa-
core Sandy Bridge processors for CC2, hence 16 cores per CC2 instance, and two
Intel Xeon E5620 quad-core Westmere processors for HI1, hence 8 cores per HI1
instance. Each instance will be allocated to users in a dedicated manner (a single
VM per physical node), unlike the allocation mode in most other EC2 instance
types (multiple VMs per physical node). These instances are interconnected via a
high-speed network (10 Gigabit Ethernet), which is also among the main differen-
tial characteristics of these resources. Moreover, these instances can be launched
within a placement group to obtain low latency, full bisection 10 Gbps bandwidth
between them, but with the important restriction that only instances of the same
type can be included in the same group.

Related with CC instances is the Cluster GPU Quadruple Extra Large Instance
(cg1.4xlarge, abbreviated as CG1). Instances of this family provide exactly the
same hardware capabilities than CC1 in terms of CPU power, memory capacity,
I/O storage and network performance. The differential feature of CG1 instances
is the provision of two GPUs for General-Purpose GPU computing (GPGPU). As
the main goal of this work is the evaluation of the I/O storage subsystem, which
is the same in CC1 and CG1, the study of CG1 instances has not been considered.

3.1 Storage System Overview of Amazon EC2

The virtual machines available in Amazon EC2 provide several storage solutions
with different levels of abstraction, performance and access interfaces. Generally,
each instance can access three types of storage: (1) the local block storage, known

6 Roberto R. Expósito et al.

Table 1 Description of the Amazon EC2 CC1, CC2 and HI1 instance types

CC1 (cc1.4xlarge) CC2 (cc2.8xlarge) HI1 (hi1.4xlarge)

Release Date July 2010 November 2011 July 2012

CPU
2 × Intel Xeon
X5570 Nehalem-EP
@2.93 GHz

2 × Intel Xeon E5
2670 Sandy Bridge-EP
@2.60 GHz

2 × Intel Xeon
E5620 Westmere-EP
@2.40 GHz

ECUs 33.5 88 35
#Cores 8 16 8
Memory 23 GBytes DDR3 60.5 GBytes DDR3 60.5 GBytes DDR3
Ephemeral
Storage

1.7 TBytes (2 HDD) 3.4 TBytes (4 HDD) 2 TBytes (2 SSD)

API name cc1.4xlarge cc2.8xlarge hi1.4xlarge
Price (Linux) $1.30 per hour $2.40 per hour $3.10 per hour
Interconnect 10 Gigabit Ethernet (Full bisection bandwidth)
Virtualization Xen HVM 64-bit platform

as ephemeral disk, where user data are lost once the instances are released (non-
persistent storage); (2) off-instance Elastic Block Store (EBS), which are remote
volumes accessible through the network that can be attached to an EC2 instance
as block storage devices, and whose content is persistent; and (3) Simple Storage
Service (S3), which is a distributed object storage system, accessed through a web
service that supports both SOAP and REST. We have not considered S3 in our
evaluation since, unlike ephemeral and EBS devices, it lacks general file system
interfaces required by scientific workloads so that the use of S3 is not transparent
to the applications, and also due to the poor performance shown by previous recent
works [19].

The ephemeral and EBS storage devices have different performance character-
istics and usage constraints. On the one hand, a CC1 instance can only mount up
to two ephemeral disks of approximately 845 GBytes each one, resulting in a total
capacity of 1,690 GBytes (see Table 1), whereas a CC2 instance can mount up
to four disks of the aforementioned size, 845 GBytes, which represents an overall
capacity of 3,380 GBytes. The new HI1 instances, as mentioned before, provide
two SSD disks of 1,024 GBytes each one as ephemeral storage, for a total of 2,048
GBytes. On the other hand, the number of EBS volumes attached to instances
can be almost unlimited, and the size of a single volume can range from 1 GByte
to 1 TByte.

4 Experimental Configuration and Evaluation Methodology

The I/O performance evaluation of the Amazon platform has been conducted on
CC1, CC2 and HI1 instance types. This evaluation consists of a micro-benchmarking
with IOzone benchmark [2] of a local file system (ext3) on ephemeral disks and
EBS volumes, using a single storage device as well as multiple storage devices com-
bined in a single software RAID 0 (data striping) array using the mdadm utility,
as this RAID level can improve both write and read performance without losing
overall capacity. The IOzone benchmark has also been used to evaluate the per-
formance of a representative distributed file system, NFS version 3, selected as it

Analysis of I/O Performance on Amazon EC2 7

is probably the most commonly used network file system. Additionally, it remains
as the most popular choice for small and medium-scale clusters.

After characterizing NFS with the IOzone benchmark, the performance of sev-
eral I/O interfaces commonly used in scientific applications has been analyzed
using the IOR benchmark [33] with multiple NFS clients. Three I/O interfaces
were tested: (1) POSIX, which is the IEEE Portable Operating System Interface
for computing environments that defines a standard way for an application to
obtain basic services from the operating system, the I/O API among them; (2)
MPI-IO [35], which is a comprehensive API with many features intended specifi-
cally to provide a high performance, portable, and parallel I/O interface to MPI
programs; and (3) HDF5 [4], which is a data model, library, and file format for
storing and managing data that supports an unlimited variety of datatypes, and is
designed for flexible and efficient I/O and for high volume and complex data. Ad-
ditionally, the scalability of the parallel BT-IO kernel [38], which is implemented
on top of MPI-IO, has also been analyzed at the application level both in terms
of performance and cost metrics.

The pattern of I/O the operations performed by the benchmarks/applications
previously selected is essentially sequential, both for write and read operations.
Random accesses, widely used in some scenarios such as database environments,
are rarely used in HPC applications and scientific workloads. Most parallel I/O in
HPC involves large-scale data movements, such as checkpointing the state of a run-
ning application, which makes that I/O access is mainly dominated by sequential
operations.

CC1 and CC2 resources have been allocated simultaneously in the same place-
ment group in order to obtain nearby instances, thus being able to benefit from
the low latency and full bisection of the 10 Gigabit Ethernet network. However,
Amazon’s current restriction for HI1 instances (only two HI1 instances can run
simultaneously) has severely determined the evaluation. As one HI1 instance is
needed to run the NFS server, the other HI1 instance can be used for the NFS
clients. While this configuration is enough for the characterization of NFS with
IOzone (as only one NFS client is used), for the IOR and BT-IO benchmarks
it would be necessary to launch 8 HI1 instances in order to run up to 64 NFS
clients. Therefore, for the evaluation of HI1 with these benchmarks, we opted for
the use of one HI1 instance for the NFS server and CC1 and CC2 instances for
NFS clients. This fact implies that the HI1 server and CC1/CC2 clients can not
be allocated in the same placement group, because only instances of the same type
can be included in it, which can cause a loss in network performance. In order to
minimize it, the HI1 server was always executed in the same clients’ availability
zone. Thus, all the experiments were performed in the us-east-1 region (North
Virginia), within the us-east-1d availability zone.

Regarding software settings, the Amazon Linux AMI 2012.03 was selected as
it is a supported and maintained Linux image provided by AWS for its usage
on Amazon EC2 CC instances. This AMI, which comes with kernel 3.2.18, was
customized with the incorporation of the previously described benchmarks: IO-
zone version 3.405 and IOR version 2.10.3. In addition, the MPI implementation
of the NPB suite version 3.3 was also installed for the BT-IO kernel evaluation.
The metrics considered for the evaluation of the BT-IO kernel are MOPS (Mil-
lions of Operations Per Second), which measures the operations performed in the
benchmark (that differ from the CPU operations issued), and its corresponding

8 Roberto R. Expósito et al.

I/O aggregated bandwidth measured in MBytes/sec. Moreover, the BT-IO Class
C workload has been selected because it is the largest workload that can be exe-
cuted in a single CC1 instance. The GNU C/Fortran 4.4.6 compiler has been used
with -O3 flag, whereas the message-passing library selected for IOR and BT-IO
evaluation is Open MPI [15], version 1.4.5. Finally, the performance results pre-
sented in this paper are the mean of the five measurements performed for each
evaluated configuration. Unlike non-dedicated instance types, the dedicated (one
VM per physiscal node) CC and HI1 instances present reduced variability in the
performance measurements, so the standard deviation is not significant.

5 Evaluation of I/O Performance on Amazon EC2

This section presents an analysis of the performance results of the I/O subsystem
on a cloud computing infrastructure, Amazon EC2 Cluster Compute platform and
High I/O instances, using the representative benchmarks described in the previous
section.

5.1 Local File System Performance

Figure 1 presents the maximum bandwidth obtained (measured in MBytes per
second) for sequential read and write operations using the IOzone benchmark on
EBS volumes and ephemeral disks (labeled as “EPH” on the graphs) on a single
device formatted with the ext3 file system for CC1, CC2 and HI1 instances. The
Linux buffer cache was bypassed using direct I/O (O DIRECT flag) in order to
get the real performance of the underlying storage devices.

All the configurations perform very similarly for the read operation, achieving
all of them at least 100 MBytes/sec. The exception here is the SSD (ephemeral)
disk on the HI1 instance, which is clearly the best performer in this case as it
is able to get 900 MBytes/sec, nine times better than the rest of configurations.
Regarding the write operation, the results are more insightful as EBS volumes can
obtain only a 40%-50% of the performance of ephemeral disks on CC1 and CC2 in-
stances. For writing on EBS volumes, which requires network access, the maximum
bandwidth is 50.8 MBytes/sec on CC1 and 44.5 MBytes/sec on CC2, whereas for
ephemeral disks the maximum bandwidth is 78.2 and 89.4 MBytes/sec on CC1 and
CC2, respectively. In addition, the HI1 instance type presents similar results than
CC1 and CC2 instances when using EBS volumes. Although 10 Gigabit Ethernet
is available for communication among CC instances, the interconnection technol-
ogy to access EBS volumes is not known. However, HI1 obtains again the best
performance using the SSD disk, which obtains 562 MBytes/sec, around six times
higher than the best result for the ephemeral disk on CC2. These results show that
the ephemeral disks on HI1 instances provide very high performance that seems
not to be affected at all by the virtualization layer.

Figure 2 presents the maximum bandwidth obtained when 2 (left graph) or
4 devices (right graph) are combined into a single software RAID 0 array (chunk
size was configured at 64 KBytes). For the 2-device array configurations and the
read operation, the results in CC1 and CC2 with EBS volumes and ephemeral
disks are again very similar as they achieve around 200 MBytes/sec, double the

Analysis of I/O Performance on Amazon EC2 9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Read Write

M
B

y
te

s
/s

e
c

Local File System Performance

EBS (CC1)
EBS (CC2)
EBS (HI1)
EPH (CC1)
EPH (CC2)
EPH (HI1)

Fig. 1 Local file system (ext3) performance on Amazon EC2 CC and High I/O instances

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Read Write

M
B

y
te

s
/s

e
c

Software RAID 0 Performance (2 disks)

2xEBS (CC1)
2xEBS (CC2)
2xEBS (HI1)
2xEPH (CC1)
2xEPH (CC2)
2xEPH (HI1)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Read Write

M
B

y
te

s
/s

e
c

Software RAID 0 Performance (4 disks)

4xEBS (CC1)
4xEBS (CC2)
4xEBS (HI1)
4xEPH (CC2)

Fig. 2 Software RAID 0 performance on Amazon EC2 CC and High I/O instances

performance of a single device, which suggests that the use of software RAID
and virtualization in this scenario is not harming performance. The HI1 instance
type, which is obviously the best option again, gets up to 1567 MBytes/sec, 75%
improvement compared to a single SSD disk. For the write operation, the perfor-
mance of ephemeral disks on CC1 an CC2 instances is again significantly better
than the results obtained with EBS volumes, approximately doubling its perfor-
mance, whereas the SSD array is able to achieve up to 1014 MBytes/sec, which
represents around 80% improvement.

Regarding 4-device array configurations (right graph), the option with epheme-
ral disks is only available for CC2 instances, as CC1 and HI1 are physically limited
to 2 ephemeral disks by Amazon, whereas the number of EBS volumes attached to
them can be almost unlimited. For the read operation, 4 EBS volumes combined
are able to get a 60% improvement compared to the 2-device array (e.g., from 209
MBytes/sec to 333 MBytes/sec on CC2). However, the combination of 4 ephemeral
disks on CC2 slightly outperforms EBS for reading, achieving a maximum of 358
MBytes/sec. For the write operation, although the use of two EBS volumes is able
to double the performance of a single volume (83.7 vs 44.5 MBytes/sec on CC2,

10 Roberto R. Expósito et al.

respectively), when 4 volumes are combined the maximum bandwidth obtained
is only 101.3 MBytes/sec on CC2 and 105.3 MBytes/sec on HI1, showing poor
scalability (this is the reason why the number of EBS volumes was limited to 4
in the evaluation). This poor result shows that the write performance on EBS
is severely limited by the network performance. Furthermore, although the three
instance types can not effectively take advantage of using 4 EBS volumes for the
write operation, the combination of 4 ephemeral disks on CC2 is clearly the best
performer, obtaining up to 334 MBytes/sec, showing almost a linear speedup (172
and 334 MBytes/sec for 2-device and 4-device arrays, respectively). Nevertheless,
CC2 instances can not rival HI1 instances at all, as the 2-device SSD-based array
on HI1 obtains more than 4 times higher read performance and up to three times
more write performance than the 4-device array on CC2.

This evaluation has shown that EBS volumes suffer a significant performance
penalty for write operations, and the use of software RAID can only help to partly
alleviate this issue using up to 4 volumes. Therefore, the ephemeral disks, especially
in RAID configuration, are the best option in a local file system scenario, as
write operations are highly used in scientific applications. In fact, the SSD-based
ephemeral disks of the new released HI1 instances clearly become the best choice,
as they provide significantly higher performance than CC1 and CC2 ephemeral
disks, both for read and write. Another advantage of using ephemeral disks is
that the cost of their use is free, whereas the use of EBS volumes is charged by
Amazon. However, if a particular application requires data persistence as a strong
constraint, EBS volumes should be used for data safety reasons. In this scenario,
a combination of both ephemeral and EBS volumes could be used.

5.2 Distributed File System Performance

Figures 3 and 4 present the results of the read and write performance of a dis-
tributed file system, NFS, with a base configuration of one instance running the
NFS server and one client instance connecting to the server through the 10 Gigabit
Ethernet network. The micro-benchmark selected is the IOzone benchmark using
both EBS volumes and ephemeral disks as storage devices, and using different file
sizes for CC1, CC2 and HI1 instances. In these experiments, as only two instances
are needed (one for the server and one for the client), two HI1 instances (the maxi-
mum that can be launched) allocated in the same placement group have been used,
as for CC1 and CC2. For clarity purposes, the figures only present experimental
results from RAID configurations as they provide better performance. In these
experiments the NFS server buffer cache (or page cache) has not been bypassed
in order to reflect the performance results of a typical NFS configuration, which
generally takes advantage of this mechanism to achieve higher performance.

Two NFS server configurations for the write operation have been used: (1)
asynchronous (async) mode, which can provide high performance as it supports
NFS calls to return the control to the client before the data has been flushed to
disk; and (2) synchronous (sync) mode, where a block has to be actually written to
disk before returning the control to the client, providing higher data safety in terms
of data persistence when the NFS server crashes. In addition, the Amazon AMI for
CC instances sets the Maximum Transmission Unit (MTU) of the network to 1,500
bytes by default. In order to assess the impact of the use of Jumbo frames (MTUs

Analysis of I/O Performance on Amazon EC2 11

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

y
te

s
/s

e
c

IOzone File Size

NFS over TCP Read Performance (CC1 server)

2xEBS (async,1.5k)
2xEPH (async,1.5k)
2xEBS (async,9k)
2xEPH (async,9k)
2xEBS (sync,1.5k)
2xEPH (sync,1.5k)
2xEBS (sync,9k)
2xEPH (sync,9k)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

y
te

s
/s

e
c

IOzone File Size

NFS over UDP Read Performance (CC1 server)

2xEBS (async,1.5k)
2xEPH (async,1.5k)
2xEBS (async,9k)
2xEPH (async,9k)
2xEBS (sync,1.5k)
2xEPH (sync,1.5k)
2xEBS (sync,9k)
2xEPH (sync,9k)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

y
te

s
/s

e
c

IOzone File Size

NFS over TCP Read Performance (CC2 server)

4xEBS (async,1.5k)
4xEPH (async,1.5k)
4xEBS (async,9k)
4xEPH (async,9k)
4xEBS (sync,1.5k)
4xEPH (sync,1.5k)
4xEBS (sync,9k)
4xEPH (sync,9k)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

y
te

s
/s

e
c

IOzone File Size

NFS over UDP Read Performance (CC2 server)

4xEBS (async,1.5k)
4xEPH (async,1.5k)
4xEBS (async,9k)
4xEPH (async,9k)
4xEBS (sync,1.5k)
4xEPH (sync,1.5k)
4xEBS (sync,9k)
4xEPH (sync,9k)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

y
te

s
/s

e
c

IOzone File Size

NFS over TCP Read Performance (HI1 server)

2xEBS (async,1.5k)
2xEPH (async,1.5k)
2xEBS (async,9k)
2xEPH (async,9k)
2xEBS (sync,1.5k)
2xEPH (sync,1.5k)
2xEBS (sync,9k)
2xEPH (sync,9k)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

y
te

s
/s

e
c

IOzone File Size

NFS over UDP Read Performance (HI1 server)

2xEBS (async,1.5k)
2xEPH (async,1.5k)
2xEBS (async,9k)
2xEPH (async,9k)
2xEBS (sync,1.5k)
2xEPH (sync,1.5k)
2xEBS (sync,9k)
2xEPH (sync,9k)

Fig. 3 NFS read performance through 10 Gigabit Ethernet on Amazon EC2

higher than the default 1,500 bytes) the tests have been repeated with the MTU
configured at 9,000 bytes (maximum MTU value supported) both for server and
client. Moreover, TCP and UDP transport protocols have been tested in order
to characterize the impact of the selected protocol on the overall performance,
which is highly important in virtualized environments where the network plays a
key role. Both transport protocols have been configured with the maximum block
size allowed for each one in this kernel version (1 MByte and 32 KBytes for TCP
and UDP, respectively). These are the parameters that have generally shown a
significant impact on performance. Finally, noatime and nodiratime mount options
were enabled in the client as they can provide a small performance gain.

Figure 3 shows performance results on CC1, CC2 and HI1 instances (from top
to bottom) which compare TCP and UDP protocols for the read operation under
the different settings considered. TCP results (left graphs) significantly outper-

12 Roberto R. Expósito et al.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

y
te

s
/s

e
c

IOzone File Size

NFS over TCP Write Performance (CC1 server)

2xEBS (async,1.5k)
2xEPH (async,1.5k)
2xEBS (async,9k)
2xEPH (async,9k)
2xEBS (sync,1.5k)
2xEPH (sync,1.5k)
2xEBS (sync,9k)
2xEPH (sync,9k)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

y
te

s
/s

e
c

IOzone File Size

NFS over UDP Write Performance (CC1 server)

2xEBS (async,1.5k)
2xEPH (async,1.5k)
2xEBS (async,9k)
2xEPH (async,9k)
2xEBS (sync,1.5k)
2xEPH (sync,1.5k)
2xEBS (sync,9k)
2xEPH (sync,9k)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

y
te

s
/s

e
c

IOzone File Size

NFS over TCP Write Performance (CC2 server)

4xEBS (async,1.5k)
4xEPH (async,1.5k)
4xEBS (async,9k)
4xEPH (async,9k)
4xEBS (sync,1.5k)
4xEPH (sync,1.5k)
4xEBS (sync,9k)
4xEPH (sync,9k)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

y
te

s
/s

e
c

IOzone File Size

NFS over UDP Write Performance (CC2 server)

4xEBS (async,1.5k)
4xEPH (async,1.5k)
4xEBS (async,9k)
4xEPH (async,9k)
4xEBS (sync,1.5k)
4xEPH (sync,1.5k)
4xEBS (sync,9k)
4xEPH (sync,9k)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

y
te

s
/s

e
c

IOzone File Size

NFS over TCP Write Performance (HI1 server)

2xEBS (async,1.5k)
2xEPH (async,1.5k)
2xEBS (async,9k)
2xEPH (async,9k)
2xEBS (sync,1.5k)
2xEPH (sync,1.5k)
2xEBS (sync,9k)
2xEPH (sync,9k)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

128 KB 1 MB 8 MB 64 MB 512 MB

M
B

y
te

s
/s

e
c

IOzone File Size

NFS over UDP Write Performance (HI1 server)

2xEBS (async,1.5k)
2xEPH (async,1.5k)
2xEBS (async,9k)
2xEPH (async,9k)
2xEBS (sync,1.5k)
2xEPH (sync,1.5k)
2xEBS (sync,9k)
2xEPH (sync,9k)

Fig. 4 NFS write performance through 10 Gigabit Ethernet on Amazon EC2

form UDP (right graphs) for all file sizes and configurations, especially from 8
MBytes on. This fact is due to the higher block size allowed in the TCP proto-
col, which benefits TCP especially when file sizes larger than 1 MByte are used.
The performance comparison between EBS volumes and ephemeral disks for both
protocols results in a tie, since data is actually read from the NFS server buffer
cache that hides the underlying storage performance. In addition, the server async
configuration is not able to achieve better performance as only write operations
can take full advantage of this feature. However, the MTU parameter presents a
huge impact on performance for both protocols; in fact in some cases the 9,000
byte MTU value allows for up to 165% of improvement over using the default
MTU value of 1,500 bytes (e.g., see the 1 MByte file size for TCP protocol on
CC1). The comparative analysis among different instance types shows that they

Analysis of I/O Performance on Amazon EC2 13

achieve generally similar read performance, once again due to the operation of the
NFS server cache.

Figure 4 compares TCP and UDP protocols for the write operation. In this
case, these results have revealed some important facts: (1) TCP performance is
again generally higher than UDP performance, except for the smallest file sizes, 128
KBytes and 1 MByte, where UDP slightly outperforms TCP when MTU is 1,500
bytes; (2) the async server configuration is able to provide significantly higher per-
formance (up to 4 times better) than sync configuration for both protocols and all
file sizes; (3) increasing the MTU value to 9,000 bytes provides better performance
results for all configurations, especially for the async mode; (4) ephemeral disks
show significantly better results than EBS volumes in the sync mode, confirm-
ing some of the conclusions derived from the the local file system benchmarking.
However, the async server mode allows to reduce the performance penalties of
using EBS volumes enabling the overlapping of I/O, as control is returned to the
client when data is written in the server buffer cache (the actual writing to disk is
done asynchronously), which results in similar performance for EBS volumes and
ephemeral disks in this scenario; (5) the async mode shows very similar results on
CC1 and CC2 (for both protocols), whereas HI1 seems to perform slightly bet-
ter than CC instances especially when using TCP and large file sizes; and (6) the
sync mode allows to analyze more straightforwardly the underlying storage system
performance. Thus, CC1 achieves up to 154 MBytes/sec on TCP with ephemeral
disks, showing that performance in this case is being limited by the 2-device ar-
ray. CC2, relying on an array of 4 ephemeral disks, outperforms CC1 with 238
MBytes/sec, whereas HI1 obtains up to 332 MBytes/sec thanks to the use of SSD
disks. However, these results on CC2 and HI1 instances with sync mode reveal that
the network becomes the main performance bottleneck, reducing significantly the
maximum underlying disk performance obtained in the Section 5.1 (334 and 1014
MBytes/sec for CC2 and HI1, respectively).

5.2.1 Multi-client NFS Performance Using Different I/O Interfaces

Figure 5 shows the aggregated read (left graphs) and write (right graphs) band-
widths, measured in MBytes/sec, obtained with the parallel I/O IOR benchmark
in a configuration with one NFS server exporting multiple devices, either EBS vol-
umes or ephemeral disks, and with multiple NFS clients which access the server
through a 10 Gigabit Ethernet network. The experimental configuration of this
micro-benchmarking includes an optimal combination of values of NFS parame-
ters, in order to provide the highest performance, that is to say the async mode
for the NFS server as well as the use of the TCP protocol for NFS clients. The
MTU value has also been configured at 9,000 bytes on all the machines involved,
replacing the default value.

In these experiments, each of the client instances runs 8 (on CC1) or 16 (on
CC2) parallel processes, reading and writing a single shared file collectively. For
CC1 and CC2, both server and clients are instances of the same type. However, as
mentioned in Section 4, the current restriction in the use of the HI1 instance type
(only two instances can run simultaneously) limits the configuration of the HI1
testbed to the use of one HI1 instance for the NFS server and either CC1 or CC2
instance types for the NFS clients, which also implies that server and clients can
not be allocated in the same placement group. EBS results on this HI1 testbed

14 Roberto R. Expósito et al.

 0

 50

 100

 150

 200

 250

1/8 2/16 4/32 8/64

M
B

y
te

s
/s

e
c

Number of CC1 Client Instances/Cores

NFS Read Performance (CC1 server)

POSIX (2xEBS)
POSIX (2xEPH)
MPI-IO (2xEBS)
MPI-IO (2xEPH)
HDF5 (2xEBS)
HDF5 (2xEPH)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1/8 2/16 4/32 8/64

M
B

y
te

s
/s

e
c

Number of CC1 Client Instances/Cores

NFS Write Performance (CC1 server)

POSIX (2xEBS)
POSIX (2xEPH)
MPI-IO (2xEBS)
MPI-IO (2xEPH)
HDF5 (2xEBS)
HDF5 (2xEPH)

 0

 50

 100

 150

 200

 250

1/8 1/16 2/32 4/64

M
B

y
te

s
/s

e
c

Number of CC2 Client Instances/Cores

NFS Read Performance (CC2 server)

POSIX (4xEBS)
POSIX (4xEPH)
MPI-IO (4xEBS)
MPI-IO (4xEPH)
HDF5 (4xEBS)
HDF5 (4xEPH)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1/8 1/16 2/32 4/64

M
B

y
te

s
/s

e
c

Number of CC2 Client Instances/Cores

NFS Write Performance (CC2 server)

POSIX (4xEBS)
POSIX (4xEPH)
MPI-IO (4xEBS)
MPI-IO (4xEPH)
HDF5 (4xEBS)
HDF5 (4xEPH)

 0

 50

 100

 150

 200

 250

1-1/8 2-1/16 4-2/32 8-4/64

M
B

y
te

s
/s

e
c

Number of Client Instances(CC1-CC2)/Cores

NFS Read Performance (HI1 server)

POSIX-CC1 (2xEPH)
POSIX-CC2 (2xEPH)
MPI-IO-CC1 (2xEPH)
MPI-IO-CC2 (2xEPH)
HDF5-CC1 (2xEPH)
HDF5-CC2 (2xEPH)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1-1/8 2-1/16 4-2/32 8-4/64

M
B

y
te

s
/s

e
c

Number of Client Instances(CC1-CC2)/Cores

NFS Write Performance (HI1 server)

POSIX-CC1 (2xEPH)
POSIX-CC2 (2xEPH)
MPI-IO-CC1 (2xEPH)
MPI-IO-CC2 (2xEPH)
HDF5-CC1 (2xEPH)
HDF5-CC2 (2xEPH)

Fig. 5 NFS performance using multiple clients on Amazon EC2 CC and High I/O instances

have been omitted for clarity purposes, since they are very similar to those of CC1
(for a 2-device array) and CC2 (for a 4-device array).

In order to obtain the underlying I/O throughput, the aggregated file size
has been configured for each test to ensure that the NFS server memory is ex-
hausted. This means that the aggregated file size under consideration is signifi-
cantly larger than the available memory in the server, 23 and 60.5 GBytes for CC1
and CC2/HI1, respectively, reducing the impact of the usage of the NFS server
buffer cache on the results. Finally, it has been set a high value (16 MBytes) for
the transfer size parameter of IOR, which represents the amount of data trans-
ferred per process between memory and file for each I/O function call, in order to
achieve the maximum possible aggregated bandwidth.

Analysis of I/O Performance on Amazon EC2 15

Performance results on CC1, CC2 and HI1 instances for the read operation are
presented in the left graphs. As can be observed, CC2 obtains better results than
CC1 for both storage devices and all interfaces (except for HDF5 on EBS which
performs very similarly) due to the use of a 4-device array. On CC1 instances EBS
volumes outperform ephemeral disks for the three evaluated interfaces, whereas
this fact only occurs for MPI-IO on CC2. This result confirms that ephemeral
disks scale better than EBS volumes when the number of devices combined in the
RAID array increases, as seen in the local file system benchmarking results. The
comparison between the interfaces shows that their performance is quite similar,
although HDF5 results are slightly worse than the others for the read operation.
On average, MPI-IO is the best performer for CC instances. Regarding the HI1
read graph, it shows almost similar results for the three interfaces evaluated on
ephemeral disks for both CC1 and CC2 clients, and also very similar to CC2
results. This fact confirms that the network is the main performance bottleneck
and thus the availability of a high performance storage device does not improve
performance significantly.

The right graphs of Figure 5 present the results for the write operation, where
CC2 clearly outperforms CC1 instance type again, doubling the performance in
some cases. Moreover, ephemeral disks are able to obtain better performance than
EBS, even when the number of processes increases. Here, the additional network
access incurred using EBS volumes seems to be the responsible for this performance
penalty. Regarding HI1 instance type, the results show again that the network is
clearly limiting its overall performance, achieving up to 456 and 490 MBytes/sec
with 64 clients of CC1 and CC2 instance types, respectively. In addition, the per-
formance difference between the I/O interfaces is almost null, and the difference
between CC1 and CC2 clients is also negligible for 8, 32 and 64 clients. However,
the use of a single CC2 instance to run 16 client processes (as it has 16 cores) ob-
tains significantly lower (around half) performance than using two CC1 instances,
where each one runs 8 client processes. This fact suggests that, once again, the
performance bottleneck is in the network access, as the CC2 instance client has
twice processes (16) accessing simultaneously the network card, thus dividing the
available bandwidth per process and showing a poor ratio between network and
CPU performance. For the remaining scenarios (8, 32 and 64 clients) the network
link between the server (HI1) and the clients (CC1/CC2) remains as the limiting
factor for the overall performance.

These results have revealed an important fact: the poor virtualized network
performance clearly limits the new HI1 instances with SSD disks, especially for
the read operation. Nevertheless, HI1 instances can provide better performance
(up to twice higher) than CC instances for the write operation when the NFS
server is configured in the async mode. Additionally, these results have confirmed
the higher performance of the ephemeral disks for the write operation compared to
EBS volumes, especially when using the CC2 and HI1 resources. However, for the
read operation EBS volumes can achieve similar or even better performance than
ephemeral disks. Therefore, the choice between storage devices, EBS or ephemeral,
will depend on the I/O characteristics and requirements of each particular appli-
cation.

16 Roberto R. Expósito et al.

5.2.2 The Effect of Caching and Transfer Size on NFS Performance

In Section 5.2.1, the NFS server buffer cache was exhausted writing a shared file
size which was significantly larger than the server memory in order to ensure that
the performance of the underlying storage subsystem was actually being measured.
This section presents the analysis of the effect of caching by writing a shared file
which size is less than the server memory, and under different transfer sizes (from 16
KBytes to 16 MBytes), using MPI-IO as a representative I/O interface. The results
for CC1, CC2 and HI1 instances using 64 clients are shown in Figure 6, under
the same NFS configuration than in the previous subsection but only including
ephemeral disks that they provide the best write performance.

The left graph of Figure 6 shows the performance results of writing a large file,
twice larger than the available memory on the NFS server (64 GBytes for CC1 and
128 GBytes for CC2 and HI1). The results using a transfer size of 16 MBytes are
the same as those shown in the previous subsection for MPI-IO (see Figure 5). The
right graph shows the performance of writing a file size that fits into the available
memory of the server (16-GByte file size). Performance results have been obtained
for 4 different configurations: (1) a CC1 server and 8 CC1 clients (CC1-CC1); (2)
a CC2 server and 4 CC2 clients (CC2-CC2); (3) an HI1 server and 8 CC1 clients
(HI1-CC1); and (4) an HI1 server and 4 CC2 clients (HI1-CC2). The limitation in
the number of available HI1 instances (right now up to 2 per user) has prevented
the evaluation of a scenario with both server and clients in HI1 instance. However,
in this hypothetical configuration (HI1-HI1) the clients would benefit from being
located in the same placement group, but they will not take advantage of the
locally attached SSD disks and will suffer from the limited computational power
of the HI1 systems (35 ECUs, similar to CC1 instances, but far from the 88 ECUs
of CC2 instances).

The first conclusion that can be derived from this analysis is that the use of the
largest transfer size (16 MBytes in this scenario) is key to achieve high parallel I/O
performance, mainly HI1 instances. The results in the left graph clearly show that
the SSD disks on HI1 provide significantly better performance from 64 KBytes
on. Once the server cache is exhausted, performance is determined by the I/O
subsystem, although for HI1 performance is ultimately determined by the network,
as seen in Section 5.2.1.

 0

 100

 200

 300

 400

 500

 600

16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

M
B

y
te

s
/s

e
c

IOR Transfer Size

NFS MPI-IO Write Performance (64 Cores, Uncached file)

CC1-CC1 (2xEPH)
CC2-CC2 (4xEPH)
HI1-CC1 (2xEPH)
HI1-CC2 (2xEPH)

 0

 100

 200

 300

 400

 500

 600

16 KB 64 KB 256 KB 1 MB 4 MB 16 MB

M
B

y
te

s
/s

e
c

IOR Transfer Size

NFS MPI-IO Write Performance (64 Cores, Cached file)

CC1-CC1 (2xEPH)
CC2-CC2 (4xEPH)
HI1-CC1 (2xEPH)
HI1-CC2 (2xEPH)

Fig. 6 NFS performance depending on caching and transfer size

Analysis of I/O Performance on Amazon EC2 17

The right graph shows significant performance increases for the CC2-CC2 con-
figuration when the file is cached, whereas for the rest of configurations the results
are only slightly better. The performance of the CC1-CC1 configuration is clearly
limited by the poor performance of the underlying I/O subsystem, based on a
2-device array of ephemeral disks that, according to our previous local file system
benchmarking only provides up to 160 MBytes/sec (see Figure 2 in Section 5.1).
Regarding the HI1 server-based configurations (HI1-CC1 and HI1-CC2), whose
2-device array is able to provide above 1000 MBytes/sec, the network severely
limits performance. This is mainly to the fact that the server is not in the same
placement group of CC1/CC2 clients, which increases latency and reduces the
full bandwidth available. Moreover, the CC2-CC2 configuration is now the best
performer, even slightly better than the HI1 server-based configurations, due to a
combination of two facts: (1) unlike the HI1 configurations, the allocation of CC2
server and clients in the same placement group enables to exploit the full network
bandwidth; and (2) a CC2 instance provides higher memory write performance (up
to 20% more) than an HI1 instance, according to the STREAM benchmark [22],
which clearly benefits the operation of the NFS buffer cache in a CC2 server.

5.3 I/O-intensive Parallel Application Performance

The performance of a representative I/O-intensive parallel application, the BT-
IO kernel from the NPB suite, has been analyzed. This code is the I/O-enabled
version of the NPB BT benchmark, which solves Navier-Stokes equations in three
spatial dimensions. As mentioned in Section 4, the NPB Class C workload has
been selected, whereas the I/O size is the Full subtype. With these settings, all
processes append data to a single file through 40 collective MPI-IO write opera-
tions, generating a total of 6.8 GBytes of output data, which are also read at the
end of the execution. It has been used the default I/O frequency, which consists of
appending data to the shared output file every 5 computation time steps. Finally,
the BT-IO evaluation has been performed using the same NFS configuration as in
Section 5.2, as it maximizes the NFS performance.

Figure 7 presents BT-IO performance using up to 64 clients. The performance
metrics reported are the aggregated bandwidth measured in MBytes/sec (left
graph) and MOPS (right graph). BT-IO requires that the number of client pro-
cesses must be square numbers.

The aggregated bandwidth results confirm that ephemeral disks can provide
better performance than EBS volumes. Thus, the CC1-CC1 configuration with
ephemeral devices achieves up to 271 MBytes/sec (for 64 clients) whereas EBS
volumes obtain up to 254 MBytes/sec. The numbers for the CC2-CC2 configu-
ration are 327 and 302 MBytes/sec, respectively. Regarding the HI1 server-based
testbeds, only ephemeral (SSD) devices have been considered, showing the best re-
sult for CC2 clients (e.g., 338 MBytes/sec for 64 clients). Here, the need of double
the number of CC1 instances than CC2 ones (8 vs 4 when considering 64 clients)
represents an important performance bottleneck for this code, as BT-IO is also a
computation/communication-intensive code. Thus, the higher number of network
communications required by CC1 are significantly affected by the poor virtual-
ized network performance. This fact causes that the CC2-CC2 configuration using
ephemeral devices outperforms HI1-CC1 for 36 and 64 clients.

18 Roberto R. Expósito et al.

 200

 220

 240

 260

 280

 300

 320

 340

 360

1-1/9 2-1/16 5-3/36 8-4/64

M
B

y
te

s
/s

e
c

Number of Client Instances(CC1-CC2)/Cores

BT-IO Class C I/O Data Rate

CC1-CC1 (2xEBS)
CC1-CC1 (2xEPH)
CC2-CC2 (4xEBS)
CC2-CC2 (4xEPH)
HI1-CC1 (2xEPH)
HI1-CC2 (2xEPH)

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

1-1/9 2-1/16 5-3/36 8-4/64

M
O

P
S

Number of Client Instances(CC1-CC2)/Cores

BT-IO Class C Performance

CC1-CC1 (2xEBS)
CC1-CC1 (2xEPH)
CC2-CC2 (4xEBS)
CC2-CC2 (4xEPH)
HI1-CC1 (2xEPH)
HI1-CC2 (2xEPH)

Fig. 7 BT-IO performance on Amazon EC2 CC and High I/O instances

These assessments are confirmed by the overall performance of the application
in terms of MOPS (right graph). Thus, HI1-CC1 achieves similar results to CC1-
CC1 (less than 35,000MOPS), while using CC2 clients (either for CC2-CC2 or HI1-
CC2) the measured performance is up to 20% higher (e.g., 42,000 MOPS for HI1-
CC2). Here, the differences in I/O performance are not translated into equivalent
differences in MOPS, because I/O represents around 25-35% of the total execution
time of the application on these scenarios. The remaining execution time is spent
in computation and MPI communications, increasing the communication overhead
with the number of processes, which explains the impact of MPI communications
on the overall performance as well as on I/O performance since disk writes are
performed collectively.

Taking into account the different instance types, the use of a 4-device array
allows CC2 to achieve higher performance than CC1 both for ephemeral and EBS
devices, especially when considering the aggregated bandwidth, where CC2 servers
obtain approximately 20% more bandwidth than CC1 servers. As mentioned be-
fore, the HI1-CC1 configuration obtains poor results, whereas HI1-CC2 slightly
outperforms the CC2-CC2 testbed on 64 clients (338 vs 327 MBytes/sec, respec-
tively). The fact that all data are cached in the NFS server (in this scenario, 6.8
GBytes are written to disk) together with the poor performance of the virtualized
network between the NFS server and its clients prevented the HI1 server-based
configurations (in particular, HI1-CC2) to obtain better performance.

5.3.1 Cost Analysis of I/O-intensive Parallel Codes

Amazon EC2 offers different purchasing options: (1) on-demand instances, which
allow to access immediately computation power by paying a fixed hourly rate;
(2) spot instances from the spot market, which allow customers to bid on unused
Amazon EC2 capacity and run those instances for as long as their bid exceeds
the current spot price (which changes periodically based on supply and demand);
and (3) reserved instances for one- or three-year terms, which allow to receive a
significant discount on the hourly charge. There are three reserved instance types:
light, medium and heavy, that enable to balance the amount payed upfront with
the effective hourly price. Table 2 presents all the prices considered in the analysis.

Analysis of I/O Performance on Amazon EC2 19

Table 2 EC2 pricing for CC1, CC2 and HI1 (Linux/UNIX) instance types (us-east-1 region)

Instance Type On-demand Spot Price Reserved (3-year term)

CC1 $1.30 $0.818 $0.537
CC2 $2.40 $0.948 $0.653
HI1 $3.10 Not available $0.899

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

1-1/9 2-1/16 5-3/36 8-4/64

M
B

y
te

s
/s

e
c

 p
e

r
U

S
D

$

Number of Client Instances(CC1-CC2)/Cores

BT-IO Class C Productivity (On-demand instances)

CC1-CC1 (2xEPH)
CC2-CC2 (4xEPH)
HI1-CC1 (2xEPH)
HI1-CC2 (2xEPH)

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

1-1/9 2-1/16 5-3/36 8-4/64

M
B

y
te

s
/s

e
c

 p
e

r
U

S
D

$

Number of Client Instances(CC1-CC2)/Cores

BT-IO Class C Productivity (Spot/Reserved instances)

CC1-CC1-S (2xEPH)
CC1-CC1-R (2xEPH)
CC2-CC2-S (4xEPH)
CC2-CC2-R (4xEPH)
HI1-CC1-R (2xEPH)
HI1-CC2-R (2xEPH)

Fig. 8 BT-IO productivity using on-demand, spot and reserved instances

In order to ease the analysis of the cost of Amazon EC2 resources, Figure 8
presents the productivity of the previously evaluated BT-IO application in terms
of aggregated bandwidth per USD$. Only results for ephemeral disks are shown
for clarity purposes as they provide better performance. Different purchasing op-
tions are compared: (1) using the price of on-demand instances (left graph); (2)
using the average spot price in the July-September 2012 period (right graph, la-
beled as “S”), only for CC1 and CC2 instances as currently HI1 instances are not
offered in the spot market; and (3) using the price calculated with heavy utiliza-
tion reserved instances for a three-year term (right graph, labeled as “R”), which
usually represents the lowest price that can be obtained for a particular instance
type.

On the one hand, the results using on-demand instances (left graph) show
negligible differences between the different options except for the CC1-CC1 con-
figuration with 9 clients, which is the most cost-effective option. On the other
hand, the results using spot and reserved instances (right graph) present more dif-
ferences among the evaluated configurations. First of all, the use of spot instances
can provide significant cost improvements, up to 3 times higher performance/cost
ratio than using on-demand instances (e.g., for CC2-CC2 with 64 clients), although
here the main drawback of spot instances is that they can be shut down at any
moment (when the spot price moves higher than the customer’s maximum price).
Regarding reserved instances, they allow for up to 25% higher performance/cost
ratio on average than using spot instances, being CC2-CC2 the most cost-effective
option, slighly better than HI1-CC2. Furthermore, reserved instances will be al-
ways active for the availability zone specified at purchase time. Thus, reserved
instances are the best choice in terms of performance/cost ratio.

20 Roberto R. Expósito et al.

6 Conclusions

Cloud computing is a model that enables on-demand and self-service access to a
pool of highly scalable, abstracted infrastructure, platform and/or services, which
are billed by consumption. This paradigm is currently being explored by the sci-
entific community to assess its suitability for HPC applications. Among current
cloud providers, Amazon WS is the leading commercial public cloud infrastructure
provider.

This work has presented a comprehensive evaluation of the I/O storage sub-
system on the Amazon EC2 Cluster Compute platform, a family of instance types
which are intended to be well suited for HPC applications. Moreover, this work
has included the evaluation of the new High I/O (HI1) instance type recently
released by Amazon (July 2012), which provides SSD disks as ephemeral stor-
age, thus highly oriented to be used in scalable cloud storage I/O systems. The
performance evaluation was carried out at different layers and using several rep-
resentative micro-benchmarks. Thus, the cloud low-level storage devices available
in these instances (ephemeral disks and EBS volumes) have been evaluated both
on local and distributed file systems, as well as the performance of several I/O
interfaces commonly used in scientific applications (POSIX, MPI-IO and HDF5).
Moreover, the scalability of an I/O-intensive code, the BT-IO application from the
NPB suite, has also been analyzed at the application level, including an analysis
in terms of cost.

Performance results have shown that the available cloud storage devices present
significant performance differences. Thus, this paper has revealed that the use of
ephemeral disks can provide more performance than EBS volumes for the write
operation, especially when software RAID is used, thanks to the avoidance of
additional network accesses to EBS, outside of the placement group, as EBS per-
formance is deeply influenced by the network overhead and variability. In addi-
tion, this paper has characterized NFS performance on Amazon EC2, showing
the impact of the main NFS configuration parameters on a virtualized cloud en-
vironment. Moreover, the analysis of the parallel I/O performance on Amazon
EC2 has revealed that HI1 instances can provide significantly better write per-
formance than any other instance type when writing very large files with large
transfer sizes, although the overall performance is ultimately limited by the poor
network throughput. Finally, the analysis of the performance/cost ratio of the BT-
IO application has shown that, although the use of the HI1 instance type provides
slightly better raw performance in terms of aggregated bandwidth, it may not be
the best choice when taking into account the incurred costs.

Acknowledgements This work has been funded by the Ministry of Science and Innovation
of Spain [Project TIN2010-16735 and an FPU Grant AP2010-4348], by the Galician Govern-
ment [Program for the Consolidation of Competitive Research Groups, ref. 2010/6] and by an
Amazon Web Services (AWS) LLC research grant.

References

1. Amazon Web Services in Top 500 list. http://www.top500.org/system/177457. Last
visited: November 2012

2. IOzone Filesystem Benchmark. http://www.iozone.org/. Last visited: November 2012

Analysis of I/O Performance on Amazon EC2 21

3. MPI: A Message Passing Interface Standard. http://www.mcs.anl.gov/research/
projects/mpi/. Last visited: November 2012

4. The HDF Group. http://www.hdfgroup.org/HDF5/. Last visited: November 2012
5. Abe, Y., Gibson, G.: pWalrus: Towards better integration of parallel file systems into

cloud storage. In: Workshop on Interfaces and Abstractions for Scientific Data Storage
(IASDS’10), pp. 1–7. Heraklion, Crete, Greece (2010)

6. Amazon Web Services LLC: Amazon Elastic Block Store (EBS). http://aws.amazon.com/
ebs/. Last visited: November 2012

7. Amazon Web Services LLC: Amazon Elastic Compute Cloud (Amazon EC2). http://
aws.amazon.com/ec2. Last visited: November 2012

8. Amazon Web Services LLC: Amazon Simple Storage Service (Amazon S3). http://aws.
amazon.com/s3/. Last visited: November 2012

9. Amazon Web Services LLC: High Performance Computing Using Amazon EC2. http:
//aws.amazon.com/ec2/hpc-applications/. Last visited: November 2012

10. Carns, P., Ligon III, W., Ross, R., Thakur, R.: PVFS: A parallel virtual file system for
linux clusters. In: Proc. 4th Annual Linux Showcase & Conference, pp. 317–328. Atlanta,
GA, USA (2000)

11. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Com-
munications of the ACM 51(1), 107–113 (2008)

12. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing science on
the cloud: The montage example. In: Proc. 20th ACM/IEEE Supercomputing Conference
(SC’08), pp. 50:1–50:12. Austin, TX, USA (2008)

13. Evangelinos, C., Hill, C.N.: Cloud computing for parallel scientific HPC applications: Fea-
sibility of running coupled atmosphere-ocean climate models on Amazon’s EC2. In: Proc.
1st Workshop on Cloud Computing and Its Applications (CCA’08), pp. 1–6. Chicago, IL,
USA (2008)

14. Expósito, R.R., Taboada, G.L., Ramos, S., Touriño, J., Doallo, R.: Performance analysis
of HPC applications in the cloud. Future Generation Computer Systems 29(1), 218–229
(2013)

15. Gabriel, E., et al.: Open MPI: Goals, concept, and design of a next generation MPI
implementation. In: Proc. 11th European PVM/MPI Users’ Group Meeting (Eu-
roPVM/MPI’04), pp. 97–104. Budapest, Hungary (2004)

16. Ghoshal, D., Canon, R.S., Ramakrishnan, L.: I/O performance of virtualized cloud en-
vironments. In: Proc. 2nd International Workshop on Data Intensive Computing in the
Clouds (DataCloud-SC’11), pp. 71–80. Seattle, WA, USA (2011)

17. Gunarathne, T., Wu, T.L., Qiu, J., Fox, G.: MapReduce in the Clouds for Science. In:
Proc. 2nd IEEE International Conference on Cloud Computing Technology and Science
(CloudCom’10), pp. 565–572. Indianapolis, IN, USA (2010)

18. Huang, W., Liu, J., Abali, B., Panda, D.K.: A case for high performance computing
with virtual machines. In: Proc. 20th ACM International Conference on Supercomputing
(ICS’06), pp. 125–134. Cairns, Australia (2006)

19. Juve, G., Deelman, E., Berriman, G.B., Berman, B.P., Maechling, P.: An evaluation of the
cost and performance of scientific workflows on Amazon EC2. Journal of Grid Computing
10(1), 5–21 (2012)

20. Liu, M., Zhai, J., Zhai, Y., Ma, X., Chen, W.: One optimized I/O configuration per HPC
application: Leveraging the configurability of cloud. In: Proc. 2nd ACM SIGOPS Asia-
Pacific Workshop on Systems (APSys’11), pp. 1–5. Shanghai, China (2011)

21. Mauch, V., Kunze, M., Hillenbrand, M.: High performance cloud computing. Future Gen-
eration Computer Systems (In press, http://dx.doi.org/10.1016/j.future.2012.03.011)

22. McCalpin, J.D.: Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter pp. 19–25 (1995)

23. Napper, J., Bientinesi, P.: Can cloud computing reach the TOP500? In: Proc. Combined
Workshops on UnConventional High Performance Computing Workshop Plus Memory
Access Workshop (UCHPC-MAW’09), pp. 17–20. Ischia, Italy (2009)

24. NASA: NAS Parallel Benchmarks. http://www.nas.nasa.gov/publications/npb.html.
Last visited: November 2012

25. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov,
D.: The Eucalyptus open-source cloud-computing system. In: Proc. 9th IEEE International
Symposium on Cluster Computing and the Grid (CCGRID’09), pp. 124–131. Shanghai,
China (2009)

22 Roberto R. Expósito et al.

26. de Oliveira, D., Ocaña, K.A.C.S., Baião, F.A., Mattoso, M.: A provenance-based adaptive
scheduling heuristic for parallel scientific workflows in clouds. Journal of Grid Computing
10(3), 521–552 (2012)

27. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: A perfor-
mance analysis of EC2 cloud computing services for scientific computing. In: Proc. 1st
International Conference on Cloud Computing (CLOUDCOMP’09), pp. 115–131. Munich,
Germany (2009)

28. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon S3 for science grids:
A viable solution? In: Proc. 1st International Workshop on Data-aware Distributed Com-
puting (DADC’08), pp. 55–64. Boston, MA, USA (2008)

29. Ramakrishnan, L., Canon, R.S., Muriki, K., Sakrejda, I., Wright, N.J.: Evaluating Inter-
connect and Virtualization Performance for high performance computing. SIGMETRICS
Performance Evaluation Review 40(2), 55–60 (2012)

30. Regola, N., Ducom, J.C.: Recommendations for virtualization technologies in high per-
formance computing. In: Proc. 2nd IEEE International Conference on Cloud Computing
Technology and Science (CloudCom’10), pp. 409–416. Indianapolis, IN, USA (2010)

31. Rodero, I., Viswanathan, H., Lee, E.K., Gamell, M., Pompili, D., Parashar, M.: Energy-
efficient thermal-aware autonomic management of virtualized HPC cloud infrastructure.
Journal of Grid Computing 10(3), 447–473 (2012)

32. Shafer, J.: I/O virtualization bottlenecks in cloud computing today. In: Proc. 2nd Work-
shop on I/O Virtualization (WIOV’10), p. 5 (7 pages). Pittsburgh, PA, USA (2010)

33. Shan, H., Antypas, K., Shalf, J.: Characterizing and predicting the I/O performance of
HPC applications using a parameterized synthetic benchmark. In: Proc. 20th ACM/IEEE
Supercomputing Conference (SC’08), pp. 42:1–42:12. Austin, TX, USA (2008)

34. Sun, C., Nishimura, H., James, S., Song, K., Muriki, K., Qin, Y.: HPC cloud applied to lat-
tice optimization. In: Proc. 2nd International Particle Accelerator Conference (IPAC’11),
pp. 1767–1769. San Sebastian, Spain (2011)

35. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with high per-
formance. In: Proc. 6th Workshop on I/O in Parallel and Distributed Systems (IOPADS
’99), pp. 23–32. Atlanta, GA, USA (1999)

36. Vecchiola, C., Pandey, S., Buyya, R.: High-performance cloud computing: A view of sci-
entific applications. In: Proc. 10th International Symposium on Pervasive Systems, Algo-
rithms, and Networks (ISPAN’09), pp. 4–16. Kaoshiung, Taiwan (2009)

37. Walker, E.: Benchmarking Amazon EC2 for high-performance scientific computing. ;login:
The usenix journal 33(5), 18–23 (2008)

38. Wong, P., van der Wijngaart, R.: NAS parallel benchmarks I/O version 2.4. Tech. Rep.
NAS-03-002, NASA Ames Research Center (2003)

39. Yang, H., Luan, Z., Li, W., Qian, D.: MapReduce workload modeling with statistical
approach. Journal of Grid Computing 10(2), 279–310 (2012)

40. Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Paravirtualization for HPC systems. In:
Proc. International Workshop on XEN in HPC Cluster and Grid Computing Environments
(XHPC’06), pp. 474–486. Sorrento, Italy (2006)

41. Yu, W., Vetter, J.S.: Xen-based HPC: A parallel I/O perspective. In: Proc. 8th IEEE
International Symposium on Cluster Computing and the Grid (CCGRID’08), pp. 154–
161. Lyon, France (2008)

42. Zhai, Y., Liu, M., Zhai, J., Ma, X., Chen, W.: Cloud versus in-house cluster: Evalu-
ating Amazon cluster compute instances for running MPI applications. In: Proc. 23rd
ACM/IEEE Supercomputing Conference (SC’11, State of the Practice Reports), pp. 11:1–
11:10. Seattle, WA, USA (2011)

43. Zhang, Y., Gao, Q., Gao, L., Wang, C.: iMapReduce: A distributed computing framework
for iterative computation. Journal of Grid Computing 10(1), 47–68 (2012)

