
Evaluation of Java for General Purpose GPU Computing

Jorge Docampo, Sabela Ramos, Guillermo L. Taboada, Roberto R. Expósito, Juan Touriño, Ramón Doallo
Computer Architecture Group

Department of Electronics and Systems
University of A Coruña (Spain)

Email: {jorge.docampo, sramos, taboada, rreye, juan, doallo}@udc.es

Abstract—The presence of many-core units as accelerators
has been increasing due to their ability to improve the per-
formance of highly parallel workloads. General Purpose GPU
(GPGPU) computing has allowed the graphical units to emerge
as successful co-processors that can be employed to improve
the performance of many different non-graphical applications
with high parallel requirements, which make them suitable
for many High Performance Computing workloads. While the
main libraries developed to exploit the massive parallel capacity
of GPUs are oriented to C/C++ programmers, there have been
several efforts to extend this support to other languages. Among
them, Java stands out for being one of the most extended
languages and there are multiple projects that try to enable
Java to take advantage of GPGPU computing. In this scenario,
this paper presents an evaluation of the most relevant among
the current solutions that exploit GPGPU computing in Java.

Keywords-Java; General Purpose GPU computing (GPGPU);
jCuda; Aparapi; High Performance Computing;

I. INTRODUCTION

The interest in exploiting Graphical Processing Units
(GPUs) for non-graphical purposes has been motivated by
their massively parallel architecture, their floating point
capacity and their high memory bandwidth. Thus, as GPUs
are suitable to manage parallel workloads that are typical
in scientific applications, the High Performance Computing
(HPC) community has adopted GPUs as many-core accelera-
tors, and the General Purpose GPU (GPGPU) computing has
become increasingly popular. The TOP 500 list of the most
powerful supercomputers [1] reflects this trend and, from the
12.4% of supercomputers that use many-core accelerators
(which were only 7.8% one year ago), 85% use GPUs.

The main programming models for GPGPU computing
were developed as libraries to be used from C/C++. How-
ever, since Java is one of the leading languages both in
industry and academia, several projects have emerged to
make Java able to benefit from offloading workloads on
the GPU. Java is also an increasing alternative for HPC
programming [2] since its performance has improved in the
last years, narrowing the gap with native compiled languages
like C or Fortran, and it has several interesting characteristics
like its ease of use, object orientation, multi-threading and
built-in network support, automatic memory management,
platform independence, portability and a wide community
of developers.

This paper aims to provide a reference evaluation of
the projects that enable GPGPU computing in Java, with
a compilation of the most relevant and active solutions
among the existing ones. Additionally, this work includes
a comparative evaluation and analysis of their features and
performance. To our knowledge this is the first paper that
evaluates current Java GPGPU solutions and compare their
performance against native and Java codes.

The rest of the paper organizes as follows. Section II pro-
vides an analysis of the most relevant projects for GPGPU
computing in Java, Section III includes a comparative eval-
uation of the performance of the presented solutions and
Section IV presents the main concluding remarks.

II. CURRENT SOLUTIONS FOR GENERAL PURPOSE GPU
COMPUTING IN JAVA

The massively parallel architecture of GPUs, together with
their floating point capacity, has motivated the growth of
General-Purpose computing on GPUs (GPGPU) [3], along
with different programming models, like Compute Unified
Device Architecture (CUDA) [4] or Open Computing Lan-
guage (OpenCL) [5], to enable the use of GPUs as many-
core accelerators in non-graphical workloads. Thus, it has
raised the adoption of GPUs as accelerators in HPC [6]
environments, since many scientific applications present a
huge degree of parallelism that can take advantage of GPU’s
features.

These GPGPU models are intended to be used as exten-
sions to C/C++ codes, whereas other languages like Java
must resort to wrappers (via JNI, Java Native Interface)
to be able to exploit GPUs as accelerators. Nevertheless,
the interest in Java for HPC has been growing due to its
increasing performance and its appealing features like multi-
threading or network support [2]. Thus, several projects have
appeared to support the use of Java in GPGPU programming.

Among them, we can distinguish two approaches, the
ones that provide Java bindings to a lower level language
(CUDA or OpenCL) or those with a user-friendly API that
abstracts GPU programming along with a runtime system
which translates Java bytecode into CUDA or OpenCL
in a transparent manner. While Java bindings are meant
to provide better performance, increasing programmability

makes it possible to find a tradeoff between performance
and productivity.

Table I summarizes the most relevant projects for GPGPU
computing in Java also indicating which is the under-
lying native library. Regarding CUDA-related projects,
JCUDA [7] has its own interface to invoke certain CUDA
functions and user developed kernels. Nevertheless, it is not
included in the User-friendly group since it still requires low-
level programming skills and certain knowledge of CUDA
functions.

jCuda [8] is the most active Java GPGPU project. It
provides a direct wrapper over CUDA 4.2 runtime and driver
API, allowing the direct interaction with the device, includ-
ing memory management and allowing the launch of CUDA
kernels from Java. The main strength of this project is that it
provides support for several optimized libraries from CUDA
like CUBLAS (CUDA Basic Linear Algebra Subprograms),
CUFFT (CUDA Fast Fourier Transforms), CUDPP (CUDA
Data Parallel Primitives), CURAND (CUDA Random Num-
ber Generation), CUSPARSE (CUDA Sparse Matrix) and
NPP (NVIDIA Performance Primitives). The jCuda API
consists of a group of static methods which are very similar
to the native library functions since the aim of jCuda is to
keep the API as close to the original as possible, including
also functions in order to use user defined kernels in CUDA
language, as well as pointer handling functions.

Java-GPU [9] introduces directives to offload Java code
into the GPU, whereas Rootbeer [10], which has been
published recently, provides a specific high-level API for
Java and translates the generated bytecode into CUDA.

Table I
AVAILABLE SOLUTIONS FOR GPGPU COMPUTING IN JAVA

Java bindings User-friendly
CUDA JCUDA [7] Java-GPU [9]

jCuda [8] Rootbeer [10]
OpenCL JOCL [11] Aparapi [12]

JogAmp’s JOCL [13]

Java OpenCL binding solutions include JOCL [11] and
JogAmp’s JOCL [13]. The main difference between them is
that while the former provides support for OpenCL 1.2, the
latter only handles OpenCL 1.1.

Finally, Aparapi [12] is the most up-to-date Java OpenCL
project which provides OpenCL 2.1 support. The Aparapi
programmer is provided with a high-level API to express
data parallel workloads in Java, being released from all the
GPU implementation details. Nevertheless, the programmer
should have some notions of how the GPU works in order to
perform an efficient distribution of the work and obtain a sig-
nificant performance, but no knowledge at all of the OpenCL
language is needed. The runtime system will translate these
data parallel workloads to OpenCL and will offload them on
a GPU or a pool of threads. Aparapi is supported by AMD
and its source code has been released with a GPL license.

III. PERFORMANCE EVALUATION

This section assesses the performance of two represen-
tative Java GPGPU projects, jCuda and Aparapi, selected
for being the most active and for their representativeness,
jCuda among the direct wrapper implementations over native
libraries and Aparapi among the user-friendly-approaches.
Moreover, jCuda is based on CUDA whereas Aparapi relies
on OpenCL, but this fact is not especially relevant. A previ-
ous work [14] on the evaluation of CUDA and OpenCL, on
the experimental testbed used for the performance evaluation
presented in this section, has shown that CUDA and OpenCL
are able to provide roughly the same performance, therefore
the actual implementation of a given code is the main reason
of performance differences among CUDA and OpenCL.

A. Experimental Configuration

The testbed used for the performance evaluation is an
x86 64 server with the following characteristics:

Table II
DESCRIPTION OF THE GPU-BASED TESTBED

CPU 1 × Intel(R) Xeon hexacore X5650 @ 2.67GHz
CPU performance 64.08 GFLOPS DP (10.68 GFLOPS DP per core)

GPU 1 × NVIDIA Tesla “Fermi” M2050
GPU performance 515 GFLOPS DP

Memory 12 GB DDR3 (1333 MHz)
OS Debian GNU/Linux, kernel 3.2.0-3

CUDA version 4.2 SDK Toolkit
JDK version OpenJDK 1.6.0 24

The evaluation of Java GPGPU has been done using rep-
resentative GPGPU synthetic kernels, that are code snippets
which provide with widely extended basic building blocks in
HPC applications (e.g., a matrix multiplication kernel). The
synthetic kernels used for the evaluation of Java GPGPU
have been selected from the benchmark suites Scalable
HeterOgeneus Computing (SHOC) [15] and the Java-GPU
distribution examples. On the one hand, the SHOC suite
determines the computational performance of the system
with the aid of application kernels. Table III presents the
four synthetic kernels selected. We have developed the Java,
jCuda and Aparapi implementations, which rely on the CPU,
and the CUDA and OpenCL on the GPU, respectively,
allowing the comparative analysis of their performance.

The reported performance results of the level 1 kernels
(see Figures 1 - 3) are the average of 5 runs, observing
reduced variability among measurements.

Table III
SELECTED SYNTHETIC KERNELS

Kernel Suite Measure Unit Description
MaxFlops SHOC lvl.0 GFLOPS Peak GFlops
GEMM SHOC lvl.1 GFLOPS Matrix multiplication

Stencil2D SHOC lvl.1 Time & GFLOPS A two-dimensional nine
point stencil calculation

FFT SHOC lvl.1 Time & GFLOPS Fast Fourier Transform

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

2048x2048 4096x4096 8192x8192

G
F

L
O

P
S

Problem size

Matrix Multiplication performance (Single precision)

 CUDA
 jCuda
 Aparapi
 Java

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

2048x2048 4096x4096 8192x8192

G
F

L
O

P
S

Problem size

Matrix Multiplication performance (Double precision)

 CUDA
 jCuda
 Aparapi
 Java

Figure 1. Matrix multiplication kernel performance

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

2048x2048 4096x4096 8192x8192

R
u

n
ti

m
e

 (
s

e
c

o
n

d
s

)

Problem size

Stencil2D performance (Single precision)

 Java
 Aparapi
 jCuda
 CUDA

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

2048x2048 4096x4096 8192x8192

R
u

n
ti

m
e

 (
s

e
c

o
n

d
s

)

Problem size

Stencil2D performance (Double precision)

 Java
 Aparapi
 jCuda
 CUDA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

2048x2048 4096x4096 8192x8192

G
F

L
O

P
S

Problem size

Stencil2D performance (Single precision)

 CUDA
 jCuda
 Aparapi
 Java

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

2048x2048 4096x4096 8192x8192

G
F

L
O

P
S

Problem size

Stencil2D performance (Double precision)

 CUDA
 jCuda
 Aparapi
 Java

Figure 2. Stencil 2D kernel performance

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

2048x2048 4096x4096 8192x8192

R
u

n
ti

m
e

 (
s

e
c

o
n

d
s

)

Problem size

FFT performance (Single precision)

 Java
 Aparapi
 jCuda
 CUDA

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

2048x2048 4096x4096 8192x8192

R
u

n
ti

m
e

 (
s

e
c

o
n

d
s

)

Problem size

FFT performance (Double precision)

 Java
 Aparapi
 jCuda
 CUDA

 0

 50

 100

 150

 200

 250

 300

 350

 400

2048x2048 4096x4096 8192x8192

G
F

L
O

P
S

Problem size

FFT performance (Single precision)

 CUDA
 jCuda
 Aparapi
 Java

 0

 50

 100

 150

 200

 250

 300

2048x2048 4096x4096 8192x8192

G
F

L
O

P
S

Problem size

FFT performance (Double precision)

 CUDA
 jCuda
 Aparapi
 Java

Figure 3. FFT kernel performance

B. Analysis of Experimental Results

Table IV shows an analysis of the raw peak performance
differences in GFLOPS for Aparapi and jCuda compared
to the SHOC results. The benchmark used shows that the
difference between the peak flops obtained on both Aparapi
and jCuda in the case of single precision is not a handicap at
all, being between 97-89% of the result obtained in SHOC.
But for double precision these rates fall down to 76-66%,
but still acceptable for both cases.

Table IV
MAXFLOPS PERFORMANCE

GFLOPS
Simple precision Double precision

SHOC 1008.16 100% 509.19 100%
jCuda 982.68 97.47% 387.10 76.02%

Aparapi 902.51 89.52% 338.72 66.52%

Figure 1 presents the performance results, in terms of
GFLOPS, of the CUDA, jCuda, Aparapi and Java imple-
mentations of the matrix multiplication kernel. Here CUDA
achieves the highest performance, followed by jCUDA. As
both implementations rely on the same matrix multiplication
routine of CUBLAS the performance gap between them is
due to the overhead of the data movements between Java
and the GPU. In fact, jCuda suffers a higher penalty for
2048x2048 problem size due to the high start-up overhead
of the Java-GPU data copy, but as the problem size increases
jCuda is able to obtain around 85-90% of the CUDA
performance.

As the standard JVMs do not support GPUs directly Java
performance results have been obtained on the CPU, running
a pure Java (without relying on native methods) matrix
multiplication code which yields around 1 GFLOPS both for
single and double precision. Although Java would be able to
achieve higher performance calling any BLAS library with
Java bindings (e.g., Intel Math Kernel Library, MKL), we
opt for using as baseline a standard and fully portable Java
code.

Finally, Aparapi was introduced in the standard Java ker-
nel implementation and the observed performance benefits
are highly important, up to 40 times speedup for single
precision executions (from 1.6 GFLOPS for Java up to 64
GFLOPS for Aparapi) and up to 23 times speedup for double
precision operations (from 1.3 GFLOPS for Java up to 31
GFLOPS for Aparapi). In case Aparapi does not find a GPU
in the system it would run the code using the CPU, so
portability is not compromised with this solution.

Figure 2 presents the performance results, in terms of
Time (seconds) and GFLOPS, of the CUDA, jCuda, Aparapi
and Java implementations of the Stencil2D kernel. Once
again CUDA achieves the highest performance and Java
on the CPU is around 40-60 times slower. However, jCuda
and Aparapi are able to achieve around 50-75% of the

native CUDA performance, accelerating up to 33 times the
performance of Java.

Here jCuda does not rely on a CUDA library, so its
performance is not as close to CUDA as for the matrix
multiplication kernel. Moreover, as both jCuda and Aparapi
implement the same algorithm both achieve similar perfor-
mance results. However, the productivity of Aparapi is much
higher as it has been much easier to develop the Aparapi
code than the jCuda implementation. This lower time to
solution and the significant speedup achieved suggest that
Aparapi is the best Java GPGPU option when jCuda can
not rely on an optimized CUDA library such as CUBLAS
or CUFFT.

Figure 3 presents the performance results, in terms of
Time (seconds) and GFLOPS, of the CUDA, jCuda, Aparapi
and Java implementations of the FFT kernel. In this case
jCuda relies also on CUFFT but the kernel is not as
computationally intensive as the matrix multiplication (this
FFT algorithm has a complexity of nlog(n) whereas matrix
multiplication has a complexity of O(n3)). Thus, Java-
GPU data movements have higher impact on the overall
performance of jCuda which only achieves around 25-30%
of CUDA raw performance.

Aparapi FFT is around 20 times faster than Java on the
CPU but at the same time is around 2-3 times slower than
jCuda, and more than an order of magnitude slower than
CUDA. Nevertheless, for Java programmers Aparapi repre-
sents a portable and productive option for accelerating their
standard Java applications in presence of GPUs. However,
when performance is critical jCuda and even writing CUDA
native methods, accessible through JNI, is the way to go,
although at the cost of losing portability and a higher time-
to-solution.

C. Analysis of Code

The analysis of productivity has been done in terms of
expertise needed to develop a simple application for the three
options.

On the one hand, Figures 4 and 5 show the original Java
code for vector addition and its translation to Aparapi. In
this case it is only needed to create a kernel object, override
the run function so that each thread calculates a single value
of the solution vector, and set the number of threads that will
execute the function.

f i n a l f l o a t inA [] = / / get a float array of data from somewhere
f i n a l f l o a t inB [] = / / get a float array of data from somewhere
f i n a l f l o a t r e s u l t = new f l o a t [inA . l e n g t h] ;
f o r (i n t i =0 ; i<a r r a y . l e n g t h ; i ++){

r e s u l t [i]= in tA [i]+ inB [i] ;
}

Figure 4. Java code for the Vector addition

K er ne l k e r n e l = new K er ne l (){
@Override p u b l i c vo id run () {

i n t i = g e t G l o b a l I d () ;
r e s u l t [i]= in tA [i]+ inB [i] ; }

} ;
Range r a n g e = Range . c r e a t e (r e s u l t . l e n g t h) ;
k e r n e l . e x e c u t e (r a n g e) ;

Figure 5. Aparapi code for the Vector addition

On the other hand, jCuda and CUDA would need a CUDA
kernel with the same algorithm that the run function in the
Aparapi code. However, the global (host) code will involve
device memory management in both cases, which severely
complicates the code development. Moreover, jCuda it also
involves an initialization of both device and context, as well
a compilation of the kernel code to a ptx file and its load.

g l o b a l void vecAdd (f l o a t ∗a , f l o a t ∗b ,
f l o a t ∗c , i n t n)

{
/ / Get our global thread ID
i n t i d = b l o c k I d x . x∗blockDim . x+ t h r e a d I d x . x ;
/ / Make sure we do not go out of bounds
i f (i d < n)

c [i d] = a [i d] + b [i d] ;
}

Figure 6. Kernel code for the Vector addition in jCuda and CUDA

i n t vec to rAdd (i n t n , f l o a t ∗h a , f l o a t ∗h b , f l o a t ∗h c)
{

/ / Device input vectors
f l o a t ∗d a ;
f l o a t ∗d b ;
/ / Device output vector
f l o a t ∗d c ;
/ / Size, in bytes, of each vector
s i z e t b y t e s = n∗ s i z e o f (f l o a t) ;
/ / Allocate memory for each vector on GPU
cudaMal loc (&d a , b y t e s) ;
cudaMal loc (&d b , b y t e s) ;
cudaMal loc (&d c , b y t e s) ;
/ / Copy host vectors to device
cudaMemcpy (d a , h a , b y t e s , cudaMemcpyHostToDevice) ;
cudaMemcpy (d b , h b , b y t e s , cudaMemcpyHostToDevice) ;
i n t b l o c k S i z e , g r i d S i z e ;
/ / Number of threads in each thread block
b l o c k S i z e = 1024 ;
/ / Number of thread blocks in grid
g r i d S i z e = (i n t) c e i l ((f l o a t) n / b l o c k S i z e) ;
/ / Execute the kernel
vecAdd<<<g r i d S i z e , b l o c k S i z e>>>(d a , d b , d c , n) ;
/ / Copy array back to host
cudaMemcpy (h c , d c , b y t e s , cudaMemcpyDeviceToHost) ;
/ / Release device memory
c u d a F r e e (d a) ;
c u d a F r e e (d b) ;
c u d a F r e e (d c) ;

re turn 0 ;
}

Figure 7. CUDA global C code for the Vector addition

void vec to rAdd (i n t n , f l o a t [] h a , f l o a t [] h b ,
f l o a t [] h c)

{
JCudaDr ive r . s e t E x c e p t i o n s E n a b l e d (t rue) ;

/ / Create the PTX file by calling the NVCC
S t r i n g p txFi leName = p r e p a r e P t x F i l e ("FileName.cu") ;

/ / Initialize the driver and create a context for the first device.
c u I n i t (0) ;
CUdevice d e v i c e = new CUdevice () ;
cuDeviceGet (dev i ce , 0) ;
CUcontext c o n t e x t = new CUcontext () ;
c u C t x C r e a t e (c o n t e x t , 0 , d e v i c e) ;

/ / Load the ptx file.
CUmodule module = new CUmodule () ;
cuModuleLoad (module , p txFi leName) ;

/ / Obtain a function pointer to the ”add” function.
CUfunc t ion f u n c t i o n = new CUfunc t ion () ;
cuModuleGe tFunc t ion (f u n c t i o n , module , "vecAdd") ;

/ / Allocate the device input data, and copy the
/ / host input data to the device
CUdev icep t r d e v i c e I n p u t A = new CUdev icep t r () ;
cuMemAlloc (de v i ce In pu t A , n ∗ S i z e o f . FLOAT) ;
cuMemcpyHtoD (de v i ce In pu tA , P o i n t e r . t o (h a) ,

n ∗ S i z e o f . FLOAT) ;
CUdev icep t r d e v i c e I n p u t B = new CUdev icep t r () ;
cuMemAlloc (d e v i c e I n p u t B , n ∗ S i z e o f . FLOAT) ;
cuMemcpyHtoD (d e v i c e I n p u t B , P o i n t e r . t o (h b) ,

n ∗ S i z e o f . FLOAT) ;

/ / Allocate device output memory
CUdev icep t r d e v i c e O u t p u t = new CUdev icep t r () ;
cuMemAlloc (d e v i c e O u t p u t , n ∗ S i z e o f . FLOAT) ;

/ / Set up the kernel parameters: A pointer to an array
/ / of pointers which point to the actual values.
P o i n t e r k e r n e l P a r a m e t e r s = P o i n t e r . t o (

P o i n t e r . t o (new i n t []{ n }) ,
P o i n t e r . t o (d e v i c e I n p u t A) ,
P o i n t e r . t o (d e v i c e I n p u t B) ,
P o i n t e r . t o (d e v i c e O u t p u t)
) ;

/ / Call the kernel function.
i n t b lockS izeX = 256 ;
i n t g r i d S i z e X = (i n t) Math . c e i l ((double) n / b lockS izeX) ;
cuLaunchKerne l (f u n c t i o n ,

g r idS izeX , 1 , 1 , / / Grid dimension
blockSizeX , 1 , 1 , / / Block dimension
0 , nul l , / / Shared mem size and stream
k e r n e l P a r a m e t e r s , / / Kernel parameters
n u l l / / Extra parameters

) ;
c u C t x S y n c h r o n i z e () ;

/ / Copy the device output to the host.
cuMemcpyDtoH (P o i n t e r . t o (h c) , d e v i c e O u t p u t ,

n ∗ S i z e o f . FLOAT) ;

/ / Clean up.
cuMemFree (d e v i c e I n p u t A) ;
cuMemFree (d e v i c e I n p u t B) ;
cuMemFree (d e v i c e O u t p u t) ;

}

Figure 8. jCuda code for the Vector addition

IV. CONCLUSIONS

This paper has presented and analyzed the most relevant
libraries that enables the use of Java in GPGPU computing.
After selecting the most representative ones, jCuda and
Aparapi, the performance evaluation has shown that, while
Aparapi represents a good tradeoff between productivity
and performance, jCuda requires more programming effort
but, in exchange, it provides better performance results,
especially when relying on optimized CUDA libraries such
as CUBLAS and CUFFT, being able to rival with CUDA
performance. The conclusions derived from this work are
key to provide Java developers with an up-to-date informa-
tion on the current solutions for GPGPU programming and
their performance, which would increase definitively their
productivity.

ACKNOWLEDGMENT

This work was supported by the Ministry of Science and
Innovation of Spain [Project TIN2010-16735 and an FPU
Grant AP2010-4348], and by the Galician Government [Pro-
gram for the Consolidation of Competitive Research Groups,
ref. 2010/6, and grant CN2012/211], partially supported by
ERDF funds.

REFERENCES

[1] Top 500 Supercomputers List, http://top500.org, [Last visited
December 2012].

[2] G. L. Taboada, S. Ramos, R. R. Expósito, J. Touriño, and
R. Doallo, “Java in the High Performance Computing Arena:
Research, Practice and Experience,” Science of Computing
Programming, vol. (in press), 2012.

[3] A. Leist, D. Playne, and K. Hawick, “Exploiting Graphical
Processing Units for Data-Parallel Scientific Applications,”
Concurrency and Computation: Practice and Experience,
vol. 21, no. 18, pp. 2400–2437, 2009.

[4] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable
Parallel Programming with CUDA,” Queue, vol. 6, no. 2, pp.
40–53, 2008.

[5] J. Stone, D. Gohara, and S. Guochun, “OpenCL: a Parallel
Programming Standard for Heterogeneous Computing Sys-
tems,” Computing in Science and Engineering, vol. 12, no. 3,
pp. 66–73, 2010.

[6] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “GPU
Cluster for High Performance Computing,” in Proc. 16th
ACM/IEEE Conf. on Supercomputing (SC’04), Pittsburgh, PA,
USA, 2004, p. 47 (12 pages).

[7] Y. Yan, M. Grossman, and V. Sarkar, “JCUDA: A
Programmer-Friendly Interface for Accelerating Java Pro-
grams with CUDA,” in Proc. 15th Intl. Euro-Par Conf. on
Parallel Processing (Euro-Par’09), Delft, The Netherlands,
2009, pp. 887–899.

[8] jCuda. Java bindings for CUDA, http://jcuda.org, [Last visited
December 2012].

[9] P. Calvert, “Parallelisation of Java for Graphics Processors,”
Part II Dissertation, Computer Science Tripos, University of
Cambridge, 2010.

[10] P. Pratt-Szeliga, J. Fawcett, and R. Welch, “Rootbeer: Seam-
lessly using GPUs from Java,” in Proc. 14th IEEE Intl.
Conf. on High Performance Computing and Communications
(HPCC’12), Liverpool, UK, 2012 (In press).

[11] jCuda. Java bindings for OpenCL, http://www.jocl.org/, [Last
visited Decemeber 2012].

[12] Aparapi. API for data parallel
Java, http://code.google.com/p/aparapi/,
http://developer.amd.com/tools/hc/Aparapi/Pages/default.aspx,
[Last visited December 2012].

[13] JogAmp JOCL. Java OpenCL, http://jogamp.org/jocl/www/,
[Last visited Decemeber 2012].

[14] R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and
R. Doallo, “Generalpurpose Computation on GPUs for High
Performance Cloud Computing,” Concurrency and Computa-
tion: Practice and Experience, vol. (in press), 2012.

[15] A. Danalis, G. Marin, C. McCurdy, J. Meredith, P. Roth,
K. Spafford, V. Tipparaju, and J. Vetter, “The Scalable
HeterOgeneous Computing (SHOC) Benchmark Suite,” Pitts-
burgh, PA, USA, 2010.

