
Noname manuscript No.
(will be inserted by the editor)

FastMPJ: a Scalable and
Efficient Java Message-Passing
Library

Roberto R. Expósito ·

Sabela Ramos ·

Guillermo L. Taboada ·

Juan Touriño · Ramón

Doallo

Received: / Accepted:

Abstract The performance and scalability of commu-
nications are key for High Performance Computing (HPC)
applications in the current multi-core era. Despite the
significant benefits (e.g., productivity, portability, mul-
tithreading) of Java for parallel programming, its poor
communications support has hindered its adoption in
the HPC community. This paper presents FastMPJ, an
efficient Message-Passing in Java (MPJ) library, boost-
ing Java for HPC by: (1) providing high-performance
shared memory communications using Java threads; (2)
taking full advantage of high-speed cluster networks
(e.g., InfiniBand) to provide low-latency and high band-
width communications; (3) including a scalable collec-
tive library with topology aware primitives, automati-
cally selected at runtime; (4) avoiding Java data buffer-
ing overheads through zero-copy protocols; and (5) im-
plementing the most widely extended MPI-like Java
bindings for a highly productive development. The com-
prehensive performance evaluation on representative test-
beds (InfiniBand, 10 Gigabit Ethernet, Myrinet, and
shared memory systems) has shown that FastMPJ com-

R.R. Expósito · S. Ramos · G.L. Taboada · J. Touriño ·
R. Doallo
Computer Architecture Group, Dept. of Electronics and Sys-
tems, University of A Coruña, Spain
e-mail: rreye@udc.es

S. Ramos
e-mail: sramos@udc.es

G.L. Taboada
e-mail: taboada@udc.es

J. Touriño
e-mail: juan@udc.es

R. Doallo
e-mail: doallo@udc.es

munication primitives rival native MPI implementations,
significantly improving the efficiency and scalability of
Java HPC parallel applications.

Keywords High Performance Computing (HPC) ·

Parallel Computing · Message-Passing in Java (MPJ) ·
Communication Middleware · High-Speed Networks ·

Performance Evaluation

1 Introduction

Java is currently among the preferred programming lan-
guages in web-based and distributed computing envi-
ronments, and is an attractive option for High Perfor-
mance Computing (HPC) [36]. Java provides some in-
teresting characteristics of special benefit for parallel
programming: built-in multithreading and networking
support in the core of the language, in addition to its
other traditional advantages for general programming
such as object orientation, automatic memory manage-
ment, portability, easy-to-learn properties, an extensive
API and a wide community of developers.

Although Java was severely criticized for its poor
computational performance in its beginnings [13], the
performance gap between Java and natively compiled
languages (e.g., C/C++, Fortran) has been narrow-
ing for the last years [33,36]. The Java Virtual Ma-
chine (JVM), which executes Java applications, is now
equipped with Just-in-Time (JIT) compilers that can
obtain native performance from Java bytecode [35]. Nev-
ertheless, the significant improvement in its computa-
tional performance is not enough to be a successful lan-
guage in the area of parallel computing, as the perfor-
mance of the communications is also essential to achieve
high scalability in Java for HPC, especially in the cur-
rent multi-core era.

Message-Passing Interface (MPI) [27] is the most
widely used parallel programming paradigm and it is
highly portable, scalable and provides good performance.
It is the preferred choice for writing parallel applica-
tions on distributed memory systems such as multi-
core clusters, currently the most popular system de-
ployments thanks to their interesting cost/performance
ratio. Here, Java represents an attractive alternative to
natively compiled languages traditionally used in HPC,
for the development of applications for these systems as
it provides built-in networking and multithreading sup-
port, key features for taking full advantage of hybrid
shared/distributed memory architectures. Thus, Java
can resort to threads in shared memory (intra-node)
and to its networking support for distributed memory
(inter-node) communications.

0DQXVFULSW
&OLFN�KHUH�WR�GRZQORDG�0DQXVFULSW��IPSM�SGI�
&OLFN�KHUH�WR�YLHZ�OLQNHG�5HIHUHQFHV

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2 Roberto R. Expósito et al.

The increasing number of cores per system demands
efficient and scalable message-passing communication
middleware in order to meet the ever growing com-
putational power needs. Moreover, current system de-
ployments are aggregating a significant number of cores
through advanced high-speed cluster networks such as
InfiniBand (IB) [24], which usually provide interest-
ing features such as Remote Direct Memory Access
(RDMA) support, increasing the complexity of com-
munication protocols. However, up to now Message-
Passing in Java (MPJ) [17] implementations have been
focused on providing new functionalities, rather than
concentrate on developing efficient communications on
high-speed networks and shared memory systems. This
lack of efficient communication support in Java, espe-
cially in the presence of high-speed cluster networks,
results in lower performance than native MPI imple-
mentations. Thus, the adoption of Java as a mainstream
language on these systems heavily depends on the avail-
ability of efficient communication middleware in order
to benefit from its appealing features at a reasonable
overhead.

This paper presents FastMPJ, our efficient and scal-
able MPJ implementation for parallel computing, which
addresses all these issues. Thus, FastMPJ provides high-
performance shared memory communications, efficient
support of high-speed networks, as well as a scalable
collective library which includes topology aware prim-
itives. The comprehensive performance evaluation has
shown that FastMPJ is competitive with native MPI li-
braries, which increases the scalability of communication-
intensive Java HPC parallel applications.

The structure of this paper is as follows: Section 2
presents background information about MPJ. Section
3 introduces the related work. Section 4 describes the
overall design of FastMPJ. Section 5 details some as-
pects of the FastMPJ implementation, including point-
to-point and collective communications support. Com-
prehensive benchmarking results from FastMPJ evalu-
ation are shown in Section 6. Finally, Section 7 summa-
rizes our concluding remarks.

2 Message-Passing in Java

Soon after the introduction of Java, there have been
several implementations of MPJ libraries. However, the
MPI standard [27] defines bindings for C, C++ and For-
tran programming languages. Therefore, as there are no
bindings for the Java language in the standard, most of
the initial MPJ projects have developed their own MPI-
like bindings. In contrast, most recent projects generally
adhere to one of the two major MPI-like Java bindings
which have been proposed by the community: (1) the

mpiJava 1.2 API [16], the most widely extended, which
supports an MPI C++-like interface for the MPI 1.1
subset, and (2) the JGF MPJ API [17], which is the
proposal of the Java Grande Forum (JGF) [1].

MPJ libraries are usually implemented in three ways:
(1) using some high-level Java messaging API like Re-
mote Method Invocation (RMI) to implement a “pure”
Java message-passing system (i.e., 100% Java code); (2)
wrapping an underlying native MPI library through the
Java Native Interface (JNI); or (3) following a hybrid
layered design, which includes a pluggable architecture
based on an idea of low-level communication devices.
Thus, hybrid libraries provide Java-based implementa-
tions of the high-level features of MPI at the top levels
of the software. Hence, they can offer a “pure” Java
approach through the use of Java-based communica-
tion devices (e.g., via Java sockets), and additionally
a higher performance approach through low-level na-
tive communication devices that use JNI to take ad-
vantage of specialized HPC hardware. Although most of
the Java communication middleware is based on RMI,
MPJ libraries looking for efficient communication have
followed the latter two approaches.

Generally, applications implemented on top of Java
messaging systems can have different requirements. Thus,
for some applications the main concern could be porta-
bility, while for others could be high-performance com-
munications. Each of the above solutions fit with spe-
cific situations, but can present associated trade-offs.
On the one hand, the use of RMI ensures portability,
but it may not provide an efficient solution, especially
in the presence of high-speed HPC hardware. On the
other hand, the wrapper-based approach presents some
inherent portability and instability issues derived from
the native code, as these implementations have to wrap
all the methods of the MPJ API. Moreover, the sup-
port of multiple heterogeneous runtime platforms, MPI
libraries and JVMs entails a significant maintenance
effort, although usually in exchange for higher perfor-
mance than RMI. However, the hybrid approach mini-
mizes the JNI code to the bare minimum using low-level
pluggable communication devices, being the only solu-
tion that can ensure both requirements. Nevertheless,
most of the MPJ projects that conform with this hybrid
design rely on Java sockets and inefficient TCP/IP em-
ulations to support current HPC communication hard-
ware (e.g., InfiniBand). Although the use of Java sock-
ets usually outperforms RMI-based middleware, it re-
quires an important programming effort. Furthermore,
the use of the sockets API in a communication device
still represents an important source of overhead and
lack of scalability in Java communications, especially
in the presence of high-speed networks [23].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FastMPJ: a Scalable and Efficient Java Message-Passing Library 3

3 Related Work

Multiple MPI native implementations have been devel-
oped, improved and maintained over the last 15 years
intended for cluster, grid and emerging cloud comput-
ing environments. Regarding MPJ libraries, there have
been several efforts to develop a Java message-passing
system for HPC since its introduction [36,40]. However,
most of the developed projects over the last decade were
prototype implementations, without maintenance. Cur-
rently, the most relevant ones in terms of uptake by the
HPC community are mpiJava, MPJ Express, MPJ/Ibis,
and FastMPJ, next presented.

mpiJava [9] is a Java message-passing system that
consists of a collection of wrapper classes that use JNI
to interact with an underlying native MPI library. This
project implements the mpiJava 1.2 API and has been
perhaps the most successful Java HPC messaging sys-
tem, in terms of uptake by the community. However,
mpiJava can incur a noticeable overhead, especially for
large messages, and also presents some portability and
instability issues. Thus, it only supports some native
MPI implementations, as wrapping a wide number of
methods and heterogeneous runtime platforms entails
a significant maintenance effort, as mentioned before.

MPJ Express [11] is one of the projects that con-
forms with the aforementioned hybrid approach. This
library implements the mpiJava 1.2 API and presents
a modular design which includes a pluggable architec-
ture of communication devices that allows to combine
the portability of the “pure” Java New I/O (NIO) com-
munications package together with the native Myrinet
support through JNI. Additionally, it provides shared
memory support using Java threads [34]. However, this
project poses several important issues: (1) its overall
design relies on a buffering layer [12] that significantly
limits performance and scalability of communications;
(2) it lacks efficient support for InfiniBand (IB), the
most widely adopted networking technology in current
HPC clusters; (3) it includes poorly scalable collective
algorithms; and (4) its bootstrapping mechanism typi-
cally exhibits some issues in specific environments.

MPJ/Ibis [15] is another hybrid project that, in this
case, conforms with the JGF MPJ API. Actually, this
library is implemented on top of Ibis [29], a parallel and
distributed Java computing framework. Thus, it can
use either “pure” Java communications, based on Java
sockets, or native communications on Myrinet. How-
ever, the Myrinet support is based on the GM library,
an out-of-date low-level API which has been superseded
by the MX (Myrinet Express) library [28]. Moreover,
MPJ/Ibis also lacks efficient IB support, and addition-
ally, does not provide efficient shared memory and col-

lective communications. Furthermore, MPJ/Ibis does
not fully implement some high-level features of MPI
(e.g., inter-communicators and virtual topologies).

FastMPJ is our Java message-passing implementa-
tion of the mpiJava 1.2 API, which also presents a
hybrid design approach. The initial prototype imple-
mentation was presented as a proof of concept in [38].
This prototype only implemented a small subset of the
communications-related API. Furthermore, it only in-
cluded one communication device implemented on top
of Java IO sockets, which severely limited its overall
scalability and performance. Although the use of high-
performance socket implementations, such as the Java
Fast Sockets (JFS) project [37], can improve perfor-
mance on shared memory and high-speed networks, the
use of sockets in a communication device can not pro-
vide an efficient and scalable solution, as mentioned in
the previous section.

Currently, FastMPJ has overcome these limitations
by: (1) implementing the remaining of the mpiJava 1.2
API (e.g., virtual topologies, inter-communicators and
groups operations are currently available), except part
of the derived data types (e.g., Vector, Struct) since
Java can provide any user-defined structure natively,
by using objects, which fits more straightforwardly into
an object-oriented programming model; (2) providing
high-performance shared memory support; (3) efficiently
supporting high-speed cluster networks, especially IB;
and (4) implementing a user friendly and scalable boot-
strapping mechanism to start the Java parallel pro-
cesses. The overcoming of the previous limitations of
FastMPJ, together with the implementation of an ef-
ficient communications support which provides similar
performance to native MPI libraries, are the main con-
tributions of this paper.

Additionally, some previous works have already eval-
uated the aforementioned MPJ libraries [38,39]. As main
conclusions, these studies have assessed that FastMPJ
is the best performer among them, overcoming some of
the previous performance limitations such as the high
buffering penalty and the JNI overhead. Moreover, most
of the MPJ projects, especially mpiJava and MPJ/Ibis,
are currently outdated and without active development.
Due to these drawbacks, mainly low performance and
lack of up-to-date development, the performance eval-
uation carried out in Section 6 only considers the com-
parison of FastMPJ against native MPI libraries, for
clarity purposes.

Finally, there have also been some additional works
that focused on other important aspects of Java to be
a successful option in HPC, such as providing high-
performance file I/O [14,19].

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Roberto R. Expósito et al.

Ethernet

Java ThreadsJava Sockets

IBV APIInfiniPath PSM

InfiniBandMyrinet/Ethernet

Java Native Interface (JNI)

TCP/IP

Shared Memory

niodev/iodev smdevibvdevmxdev

MX/Open−MX

psmdev

MPJ Applications
MPJ API (mpiJava 1.2)

FastMPJ Library
MPJ Collective Primitives

MPJ Point−to−Point Primitives

The xxdev layer

Fig. 1 Overview of the FastMPJ layered design

4 FastMPJ Design

Figure 1 presents an overview of the FastMPJ layered
design and the different levels of the software. The MPJ
communications API, which includes both collective and
point-to-point primitives, is implemented on top of the
xxdev device layer. The device layer has been designed
as a simple and pluggable architecture of low-level com-
munication devices. Moreover, this layer supports the
direct communication of any serializable Java object
without data buffering, whereas xdev [10], the API that
xxdev is extending, does not support this direct com-
munication. Thus, the xdev API, which is used inter-
nally by the MPJ Express library, relies on a buffer-
ing layer [12] which is only able to transfer the custom
xdev buffer objects. This fact adds a noticeable copy-
ing overhead [36], especially for large messages, which
prevents MPJ Express to implement zero-copy proto-
cols. The avoidance of this intermediate data buffer-
ing overhead on the critical path of communications is
the main benefit of the xxdev device layer with respect
to its predecessor. Thus, this fact allows xxdev com-
munication devices to implement zero-copy protocols
when communicating primitive data types using, for
instance, RDMA-capable high-speed cluster networks.
Additional benefits of this API are its flexibility, porta-
bility and modularity thanks to its encapsulated design.

In more detail, the xxdev layer provides a Java low-
level message-passing API (see Listing 1) with basic
operations such as point-to-point blocking (send and
recv) and non-blocking (isend and irecv) communi-
cation methods. Moreover, it also includes synchronous
communications (ssend and issend) and functions to

check incoming messages without actually receiving them
(probe and iprobe). Thus, an xxdev device is similar
to an MPI communicator, but with reduced function-
ality. This simple design eases significantly the devel-
opment of xxdev communications devices in order to
provide custom support of high-speed cluster networks
(e.g., High-speed Ethernet and IB) and shared memory
systems, while leveraging other infrastructure provided
by the upper levels of FastMPJ, such as the runtime
system and the layer that provides the full MPJ se-
mantics (e.g., virtual topologies, inter-communicators).
With this modular design FastMPJ enables its incre-
mental development and provides the capability to up-
date and swap layers in or out as required. Thus, end
users can opt at runtime to use a high-performance na-
tive network device, or choose a “pure” Java device,
based either on sockets or threads, for portability.

5 FastMPJ Implementation

FastMPJ communication support relies on the efficient
implementation of low-level xxdev devices on top of
specific native libraries and HPC communication hard-
ware. Currently, FastMPJ includes three communica-
tion devices that support high-speed cluster networks:
(1) mxdev, for Myrinet and High-speed Ethernet; (2)
psmdev, for Intel/QLogic InfiniBand adapters; and (3)
ibvdev, for InfiniBand adapters in general terms. These
devices are implemented on top of MX/Open-MX, In-
finiPath PSM and IB Verbs (IBV) native libraries, re-
spectively (see Figure 1). Although these underlying
native libraries have been initially designed for inter-
node network-based communication, in the particular
case of MX/Open-MX and PSM also provide efficient

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FastMPJ: a Scalable and Efficient Java Message-Passing Library 5

public abstract class Device
{

public stat ic Device newInstance (S t r i ng dev i ce) ;
abstract ProcessID [] i n i t (S t r i ng [] args) ;
abstract ProcessID id () ;
abstract void f i n i s h () ;

abstract Request i s end (Object msg ,PID dst , int tag , int context) ;
abstract Request i r e cv (Object msg ,PID src , int tag , int context , Status s ta tu s) ;
abstract void send (Object msg ,PID dst , int tag , int context) ;
abstract Status recv (Objecct msg ,PID src , int tag , int context) ;
abstract Request i s s end (Object msg ,PID dst , int tag , int context) ;
abstract void ssend (Object msg ,PID src , int tag , int context) ;

abstract Status iprobe (PID src , int tag , int context) ;
abstract Status probe (PID src , int tag , int context) ;

}

Listing 1 xxdev API

intra-node shared memory communication, usually im-
plemented through some Inter-Process Communication
(IPC) mechanism. Thus, this fact allows FastMPJ to
take full advantage of hybrid shared/distributed mem-
ory architectures, such as clusters of multi-core nodes,
except for the ibvdev device, as IBV does not sup-
port shared memory. Additionally, the TCP/IP stack
(niodev and iodev) and high-performance shared mem-
ory systems (smdev) are also supported through “pure”
Java communication devices, which ensures portability.

The user-level methods of the MPJ API related to
the collective and point-to-point communication layers
are implemented on top of these xxdev communication
devices. This may involve some native code depend-
ing on the underlying device being used (e.g., ibvdev
and psmdev for IB support). The rest of the high-level
abstractions of the MPJ API (e.g., virtual topologies,
intra- and inter-communicators, groups operations) is
implemented in “pure” Java code (i.e., 100% Java).
Hence, this implementation can ensure both portability
and/or high-performance requirements of Java message-
passing applications, while avoiding some of the associ-
ated problems of the wrapper-based approach through
JNI, as mentioned in Section 2 (e.g., instability and
portability issues, high maintenance effort). These is-
sues are derived from the amount of native code that
is involved using a wrapper-based implementation (note
that all the methods of the MPJ API have to be wrapped).
However, FastMPJ can minimize to the bare minimum
the amount of JNI code needed to support a specific
network device, as the xxdev devices only have to im-
plement a very small number of methods (see Listing 1).
In the next sections, the implementation of the various
MPI features in FastMPJ will be discussed.

5.1 High-Speed Networks Support

FastMPJ provides efficient support for high-speed clus-
ter networks through mxdev, ibvdev and psmdev com-
munications devices, next presented.

5.1.1 Myrinet/High-speed Ethernet

The mxdev device implements the xxdev API on top
of the Myrinet Express (MX) library [28], which runs
natively on Myrinet networks. More recently, the MX
API has also been supported in high-speed Ethernet
networks (10/40 Gigabit Ethernet), both on Myricom
specialized NICs and on any generic Ethernet hardware
through the Open-MX [22] open-source project. Thus,
the TCP/IP stack can be replaced by mxdev transfers
over Ethernet networks providing higher performance
than using standard Java sockets. Moreover, the mxdev

device can also take advantage of the efficient intra-
node shared memory communication protocol imple-
mented by MX/Open-MX [21] to improve the perfor-
mance of networked applications in multi-core systems.

In MX messages are exchanged among endpoints,
which are software representations of Myrinet/Ether-
net NICs. Every message operation, either sending or
receiving, starts with a non-blocking communication re-
quest (e.g., mx isend), which is queued by MX, return-
ing the control to mxdev. Then, the mxdev device is
responsible for checking the successful completion of
the communication operation. The message matching
mechanism at the receiver side is based on a 64-bit
matching field, specified by both communication peers,
in order to deliver incoming messages to the right re-
ceive requests.

The MX API is only available in C, thus the mxdev

device implements xxdevmethods calling MX functions

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Roberto R. Expósito et al.

through JNI. Moreover, as MX already provides a low-
level messaging API which closely matches the xxdev

layer, mxdev deals with the Java objects marshaling and
communication, the JNI transfers and the MX parame-
ters handling. Therefore, FastMPJ with mxdev provides
the user with a higher level messaging API than MX,
also freeing Java developers from the implementation
of JNI calls, which benefits programmability without
trading off much performance.

5.1.2 InfiniBand

The native and efficient InfiniBand (IB) support is also
included in FastMPJ with ibvdev and psmdev devices.
On the one hand, the ibvdev device directly imple-
ments its own communication protocols through JNI on
top of the IBV API, which is part of the OpenFabrics
Enterprise Distribution (OFED [30]), an open-source
software for RDMA and kernel bypass applications. The
native support of the IBV API in Java is somewhat re-
stricted so far to native MPI libraries, as previous MPJ
libraries relied on the TCP/IP emulation over IB pro-
tocol (IPoIB) [25], which provides significantly poorer
performance, especially for short messages [23].

A previous implementation of the ibvdev device was
firstly integrated into the MPJ Express library [20] as
a proof of concept, but only for internal testing pur-
poses as it was never part of the official release. Al-
though it was able to provide higher performance than
using the IPoIB protocol, the buffering layer in MPJ
Express significantly limited its performance and scal-
ability. Therefore, the ibvdev device had to be reim-
plemented to conform with the xxdev API and then
adapted for its integration into the FastMPJ library
in order to improve its performance. Thus, FastMPJ
achieves start-up latencies and bandwidths similar to
native MPI performance results on IB networks thanks
to the efficient, lightweight and scalable communication
protocol implemented in ibvdev, which includes a zero-
copy mechanism for large messages using the RDMA-
write operation.

On the other hand, another original contribution
of this paper is the introduction of the psmdev device,
which provides for the first time in Java native support
for the InfiniPath family of Intel/QLogic IB adapters
over the Performance Scaled Messaging (PSM) inter-
face. PSM is a low-level user-space messaging library
which implements an intra-node shared memory and
inter-node communication protocol, which are completely
transparent to the application.

In order to establish the initial connections between
endpoints, the psmdev device has to rely on an out-
of-band mechanism, which has been implemented with

TCP sockets, to distribute the endpoint identifiers. Af-
ter initializing endpoints, a Matched Queue (MQ) in-
terface is created and can be used to send and re-
ceive messages. The MQ interface semantics are con-
sistent with those defined by the MPI 1.2 standard for
message-passing between two processes. Thus, incom-
ing messages are stored according to their tags to pre-
posted receive buffers. The PSM API is only available
in C; thus, following a similar approach to mxdev, the
psmdev device also implements xxdev methods calling
PSM functions through JNI dealing with the Java Ob-
jects marshaling and communication, the JNI transfers
and the PSM parameters handling. Although the In-
tel/QLogic adapters are also supported by the ibvdev

device through the IBV API, psmdev usually achieves
significantly higher performance than using ibvdev, as
PSM is specifically designed and highly tuned by In-
tel/QLogic for its own IB adapters.

5.2 Socket-based Communications Devices

Initially, FastMPJ included only one communication
device implemented on top of Java IO sockets (iodev),
which turned out to be the limiting factor in perfor-
mance and scalability, especially for non-blocking com-
munication. This fact has motivated the implementa-
tion of a new communication device based on Java
NIO sockets (niodev), which include more scalable non-
blocking communication support by providing select()
like functionality. Additionally, a new socket-based de-
vice (sctpdev) implemented on top of Stream Con-
trol Transmission Protocol (SCTP) sockets is currently
work in progress.

Nevertheless, these “pure” Java communication de-
vices are only provided for portability reasons, as they
rely on the ubiquitous TCP/IP stack, which introduces
high communication overhead and limited scalability
for communication-intensive HPC applications.

5.3 Shared Memory Communications

FastMPJ includes a “pure” Java thread-based commu-
nication device (smdev) that efficiently supports shared
memory intra-node communication [31], thus being able
to exploit the underlying multi-core architecture re-
placing inter-process and network-based communica-
tions by Java threads and shared memory intra-process
transfers.

In this thread-based device, there is a single JVM
instance and each MPJ rank in the parallel application
(i.e., each Java process in the case of using a network-
based communication device) is represented by a Java

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FastMPJ: a Scalable and Efficient Java Message-Passing Library 7

thread. Consequently, message-passing communication
between these threads is achieved using shared data
structures. Therefore, the FastMPJ runtime must cre-
ate a single JVM with as many Java threads as the
number of ranks exist in the global communicator (i.e.,
MPI.COMM WORLD), which depends on an input pa-
rameter that is specified by the user when starting the
MPJ application.

An obvious advantage of this approach, especially in
the context of Java, is that an application does not com-
promise portability. Moreover, the use of a single JVM
can take advantage of lower memory consumption and
garbage collection overhead. Furthermore, while multi-
threading programming allows to exploit shared mem-
ory intra-process transfers, it usually increases the de-
velopment complexity due to the need for thread con-
trol and management, task scheduling, synchronization,
and maintenance of shared data structures. Thus, using
the smdev device, the developer does not have to deal
with the issues of the multithreading programming, as
smdev offers a high level of abstraction that supports
handling threads as message-passing processes, provid-
ing similar or even higher performance than native MPI
implementations.

5.3.1 Class Loading

The use of threads in the smdev device requires the
isolation of the namespace for each thread, configur-
ing a distributed memory space in which they can ex-
change messages through shared memory references.
While processes from different JVMs are completely in-
dependent entities, threads within a JVM are instances
of the same application class, sharing all static vari-
ables. Thus, this device creates each running thread
with its custom class loader. Therefore, all the non-
shared classes within a thread can be directly isolated in
its own namespace in order to behave like independent
processes. Nevertheless, communication through shared
memory transfers requires the access to several shared
classes within the device. When the system loader does
not find a class, the custom class loader is used, follow-
ing the JVM class loader hierarchy. This mechanism
implies that the system class loader loads every reach-
able class that, in consequence, is shared by all threads.
Thus, its classpath has to be bounded in such a way
that it only has access to shared packages that contain
the implementation of shared memory transfers among
threads. Consequently, communications are delegated
to a shared class which allocates and manages shared
message queues (a pair of queues per thread) in order
to implement the data transfers as regular data copies

between threads, thus providing a highly efficient zero-
copy protocol.

Finally, the use of a pair of queues per thread en-
ables smdev to include fine-grained synchronizations,
combining busy waits and locks, thus reducing con-
tention in the access to the shared structures. As an ex-
ample, MPJ Express shared memory support [34] uses
a global pair of queues with class lock-based synchro-
nization, which can result in a very inefficient approach
in applications that involve a high number of threads.

5.4 Scalable Collective Communications

The MPI specification defines collective communica-
tion operations as a convenience to application devel-
opers, which can save significant time in the develop-
ment of parallel applications. FastMPJ provides a scal-
able and efficient collective communication library for
parallel computing on multi-core architectures. This li-
brary includes topology aware primitives which are im-
plemented on top of point-to-point communications,
taking advantage of communications overlapping and
obtaining significant performance benefits in collective-
based communication-intensive MPJ applications. The
library implements up to six algorithms per collective
primitive, whereas previous MPJ libraries are usually
restricted to one algorithm. Furthermore, the algorithms
can be selected automatically at runtime, depending on
the number of cores and the message length involved in
the collective operation.

The collective algorithms present in the FastMPJ
collective library can be classified in six types, namely
Flat Tree (FT) or linear, Minimum-Spanning Tree (MST),
Binomial Tree (BT), Four-ary Tree (FaT), Bucket (BKT)
or cyclic, and BiDirectional Exchange (BDE) or recur-
sive doubling, which have been extensively described in
the literature [18].

5.5 Runtime System

Although the runtime system is not part of the MPI
specification, it is an essential element which allows to
execute processes across various platforms. Thus, the
FastMPJ runtime system is in charge of starting the
parallel Java processes across multiple machines, sup-
porting several OSs either UNIX-based (e.g. GNU/Linux,
MAC OS X) or Microsoft Windows-based (XP/Vis-
ta/7/8). In addition, the runtime does not assume a
shared file system and it allows to run MPJ applica-
tions using both class and JAR file formats.

This fully portable runtime system mainly consists
of two modules: (1) an fmpjd module (Java daemon

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Roberto R. Expósito et al.

64 128 256 512 1024
 5

 10

 15

 20

 25

 30

 35

Ti
m

e
(s

ec
on

ds
)

Number of Cores

MPJ/MPI Runtime Comparison

 MPICH-MX
 FastMPJ

Fig. 2 MPJ/MPI deployment and initialization

listening on a configurable TCP port) which executes
on compute nodes and listens for requests to start Java
processes in a new JVM; and (2) an fmpjrun module,
client of the Java daemons. In UNIX-based OSs, a set of
Java daemons can be started/stopped over the network
using SSH within the fmpjrun application, as the OS
is automatically detected by FastMPJ. Moreover, the
runtime system is also compatible with traditional job
schedulers such as SGE/OGE, SLURM, LSF and PBS.
Additionally, other modules are provided to start, stop
and trace the status (running/not running) of the dae-
mons. However, on Windows platforms, the daemons
either need to be: (1) manually started, (2) configured
to start automatically on OS startup, or (3) installed as
a native service, as SSH utilities are not usually avail-
able in these platforms.

The FastMPJ runtime efficiently supports the han-
dling of a high number of machines and processes. For
instance, a 1024-core “Hello World” MPJ program can
be executed in less than 35 seconds, including the time
needed for starting the Java daemons and the initial-
ization of the parallel environment. Figure 2 compares
FastMPJ against MPICH-MX, which was configured
with the SLURM PMI process launcher, running a “Hello
World” example application on the MareNostrum test-
bed (see Table 1 in Section 6.1 for more details on this
testbed).

6 Performance Evaluation

This section presents a comprehensive performance eval-
uation of the FastMPJ library compared to representa-
tive native MPI libraries: Open MPI [5], MVAPICH2 [3]
and MPICH-MX [6], from point-to-point and collec-
tive message-passing primitives to the assessment of
their impact on the scalability of representative par-
allel codes, using the NASA Advanced Supercomput-
ing (NAS) Parallel Benchmarks suite (NPB) [4,8]. The

NPB parallel codes have been selected as it is the bench-
marking suite most commonly used in the evaluation of
languages, libraries and middleware for HPC.

As mentioned in Section 3, previous works [38,39]
have already characterized the performance of the other
popular MPJ implementations (mpiJava, MPJ/Ibis and
MPJ Express) against native MPI libraries, so for clar-
ity purposes these MPJ implementations have not been
re-evaluated. In fact, these libraries obtained poor per-
formance, as shown in the references, and they have not
been updated since their last evaluations.

6.1 Experimental Configuration

Table 1 shows the main characteristics of the five repre-
sentative systems used in the performance evaluation.
Both FastMPJ and native MPI libraries have been con-
figured with the most efficient settings and communica-
tion device for each testbed (e.g., using only the shared
memory device in shared memory systems).

Regarding distributed memory systems, the first test-
bed (from now on IB-QDR) is a multi-core cluster [7]
that consists of 64 nodes, each of them with 24 GBytes
of memory and 2 Intel Xeon quad-core Westmere-EP
processors (hence 8 cores per node) interconnected via
IB QDR (Mellanox-based NICs). The performance re-
sults for the collective primitives micro-benchmarking
and the NPB kernels evaluation on this system have
been obtained using 8 processes per node (hence 512
cores in total). The second system (from now on IB-
DDR) is a multi-core cluster that consists of 16 nodes,
each of them with 16 GBytes of memory and 2 Intel
Xeon quad-core Nehalem-EP processors (hence 8 cores
per node) interconnected via IB DDR (QLogic-based
NICs). Additionally, two nodes have also one 10 Gigabit
Ethernet (GbE) Intel NIC. Performance results on this
testbed have also been obtained using 8 processes per
node (hence 128 cores in total). The third system is the
MareNostrum supercomputer [2] (from now on MN),
which was ranked #465 in the TOP500 [41] list (June
2012). This supercomputer consists of 2560 nodes, each
of them with 8 GBytes of memory and 2 PowerPC dual-
core processors (hence 4 cores per node) interconnected
via Myrinet 2000. General user accounts on this super-
computer are limited to use up to 1024 cores. Thus,
performance results on this system have been obtained
using 256 nodes and 4 processes per node (hence 1024
cores in total).

Regarding shared memory systems, the Intel-SHM
testbed has 4 Intel Xeon ten-core Westmere-EX pro-
cessors (hence 40 cores) and 512 GBytes of memory,
whereas the AMD-SHM testbed provides with 4 AMD
Opteron twelve-core Magny-Cours processors (hence 48

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FastMPJ: a Scalable and Efficient Java Message-Passing Library 9

T
a
b
le

1
D

es
cr

ip
ti

on
of

th
e

sy
st

em
s

u
se

d
in

th
e

p
er

fo
rm

an
ce

ev
al

u
at

io
n

#
n
o
d
e
s

C
P

U
M

e
m

o
ry

#
c
o
re

s
N

IC
(D

ri
v
e
r)

N
e
tw

o
rk

O
S

(K
e
rn

e
l)

M
P

I
li
b
ra

ri
e
s

J
V

M

IB
-Q

D
R

64
2

x
4-

co
re

In
te

l
X

eo
n

E
56

20
24

G
B

y
te

s
51

2
M

el
la

n
ox

M
T

26
42

8
(O

F
E

D
1.

3)
IB

Q
D

R
(3

2
G

b
p
s)

C
en

tO
S

(2
.6

.3
2)

O
p
en

M
P

I
1.

4.
4

M
V
A

P
IC

H
2

1.
6

O
ra

cl
eJ

D
K

1.
6.

0
27

IB
-D

D
R

16
2

x
4-

co
re

In
te

l
X

eo
n

E
55

20
16

G
B

y
te

s
12

8

Q
L
og

ic
Q

L
E

72
40

(O
F
E

D
1.

5)
In

te
l

82
59

8E
B

(O
p
en

-M
X

1.
5.

1)

IB
D

D
R

(1
6

G
b
p
s)

10
G

b
E

(1
0

G
b
p
s)

C
en

tO
S

(2
.6

.1
8)

O
p
en

M
P

I
1.

4.
5

M
V
A

P
IC

H
2

1.
7

O
ra

cl
eJ

D
K

1.
6.

0
23

M
N

25
60

2
x

2-
co

re
IB

M
P
ow

er
P

C
97

0M
P

8
G

B
y
te

s
10

24
0

M
y
ri

n
et

20
00

(M
X

1.
2.

7)
M

y
ri

n
et

(2
G

b
p
s)

S
u
se

(2
.6

.1
6)

M
P

IC
H

-M
X

1.
2.

7
IB

M
1.

7.
0

In
te

l-
S
H

M
1

4
x

10
-c

or
e

In
te

l
X

eo
n

E
7

48
50

51
2

G
B

y
te

s
40

-
-

U
b
u
n
tu

(3
.2

.0
)

O
p
en

M
P

I
1.

4.
5

M
V
A

P
IC

H
2

1.
7

O
p
en

J
D

K
1.

6.
0

23

A
M

D
-S

H
M

1
4

x
12

-c
or

e
A

M
D

O
p
te

ro
n

61
72

12
8

G
B

y
te

s
48

-
-

C
en

tO
S

(2
.6

.3
2)

O
p
en

M
P

I
1.

4.
4

M
V
A

P
IC

H
2

1.
6

O
ra

cl
eJ

D
K

1.
6.

0
23

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

10 Roberto R. Expósito et al.

cores) and 128 GBytes of memory. The NPB perfor-
mance results on these systems have been executed us-
ing 1, 2, 4, 8, 16 and 32 cores. Thus, the maximum
number of available cores in each shared memory sys-
tem could not be used, as the selected NBP kernels only
work for a number of cores which is a power of two.

The evaluation of message-passing communication
primitives (Sections 6.2 and 6.3) has been carried out
using a representative micro-benchmarking suite, the
Intel MPI Benchmarks (IMB) [32], and our own MPJ
counterpart, which adheres to the IMB measurement
methodology. The transferred data are byte arrays, avoid-
ing the Java serialization overhead that would distort
the analysis of the results, in order to present a fair
comparison with MPI. In addition, these benchmark
suites have been used without cache invalidaton, as it
is more representative of a real scenario, where data to
be transmitted is generally in cache.

Finally, the evaluation of representative message-
passing parallel codes (Section 6.4) has used the MPI
and OpenMP implementations of the NPB suite (NPB-
MPI/NPB-OMP version 3.3) together with its MPJ
counterpart (NPB-MPJ) [26]. Four representative NPB
kernels have been evaluated: Conjugate Gradient (CG),
Fourier Transform (FT), Integer Sort (IS) and Multi-
Grid (MG), selected as they present medium to high
communication intensiveness. The performance of two
different common scaling metrics has been analyzed:
(1) strong scaling (i.e., fix the problem size and vary
the number of cores); and (2) weak scaling (i.e., vary
the problem size linearly with the number of cores).

6.2 Point-to-point Micro-benchmarking

Figure 3 presents point-to-point performance results
obtained on IB (top graphs), 10 GbE and Myrinet (mid-
dle graphs), and on shared memory systems (bottom
graphs). The metric shown is the half of the round-trip
time of a pingpong test for messages up to 1 KByte
(left part of the graphs), and the bandwidth for mes-
sages larger than 1 KByte (right part).

On the IB-QDR testbed (top left graph), FastMPJ
ibvdev device obtains 2.2 µs start-up latency, quite
close to MPI results (around 1.9 µs). Regarding band-
width results, ibvdev bandwidth is slightly lower than
the MPI performance up to 64-KByte messages. From
this point, ibvdev changes to an RDMA Write-based
zero-copy protocol which is able to obtain similar band-
widths (up to 22.5 Gbps) to MPI libraries for large
messages. On the IB-DDR testbed (top right graph),
the psmdev device and Open MPI obtain the lowest
start-up latency, around 1.9 µs, slightly outperforming

MVAPICH2 (2 µs). The observed bandwidths are iden-
tical up to 128 KBytes, when MVAPICH2 gets slightly
better results than Open MPI and FastMPJ in the mes-
sage range [256 KBytes-2 MBytes]. For messages ≥ 2
MBytes, psmdev obtains up to 11.5 Gbps whereas MPI
libraries only achieve a 6% more bandwidth, around
12.2 Gbps. These results confirm that ibvdev and psmdev

devices implement highly efficient and lightweight com-
munication protocols, which allows Java applications to
take full advantage of the low-latency and high through-
put provided by IB.

Regarding the 10 GbE testbed (middle left graph),
mxdev gets start-up latencies as low as 15.6 µs, quite
competitive compared to MPI libraries which obtain
11.2 µs and 11.5 µs for MVAPICH2 and Open MPI, re-
spectively. Fortunately, this small gap disappears from
1 KByte, when mxdev and MVAPICH2 achieve iden-
tical bandwidths, whereas Open MPI results are the
worst up to 2 MBytes. From this point, the network
turns out to be the main performance bottleneck, as
the maximum bandwidth achieved is around 9.4 Gbps
for all evaluated libraries, quite close to the 10 Gbps
limit for this networking technology. Here, the avoid-
ance of the TCP/IP protocol is key for FastMPJ to
obtain competitive results compared to MPI, especially
for short messages, as the use of a socket-based device
(iodev or niodev) would incur a significant overhead
due to the poor performance of Java sockets. The re-
sults on the MN supercomputer over a Myrinet network
(middle right graph) show that mxdev start-up latency
gets even closer to MPI results, obtaining 5.2 and 4.1
µs, respectively. Their observed bandwidths are quite
similar from 1 KByte, suffering the 2 Gbps limit for
this networking technology.

Regarding shared memory systems, the performance
results of the smdev device on the Intel-SHM testbed
(bottom left graph) show even below 1 µs start-up la-
tencies, but approximately twice the latency obtained
by MPI libraries (around 0.42-0.48 µs). However, for
message sizes > 2 KBytes, the zero-copy thread-based
intra-process protocol implemented by smdev, which al-
lows direct data transfers between Java threads, clearly
outperforms MPI libraries. Here, MPI libraries usually
implement one-copy protocols since data transfers are
inter-process communications through an intermediate
shared memory structure, using IPC resources, which
requires at least two data transfers. However, the di-
rect communication in smdev does not show significant
benefits in the latency of very short messages, as MPI li-
braries achieve lower start-up latencies for message sizes
< 2 KBytes. Thus, the thread synchronization over-
head for smdev, which combines busy waits and locks,
seems to be higher than the process synchronization

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FastMPJ: a Scalable and Efficient Java Message-Passing Library 11

Message size (bytes)

Point-to-point Performance on IB-QDR (Mellanox)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

1 4 16 64 256 1K

La
te

nc
y

(µ
s)

1K 4K 16K 64K 256K 1M 4M 16M
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22
 24

B
an

dw
id

th
 (G

bp
s)

 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

Message size (bytes)

Point-to-point Performance on IB-DDR (QLogic)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 4 16 64 256 1K

La
te

nc
y

(µ
s)

1K 4K 16K 64K 256K 1M 4M 16M
 0

 2

 4

 6

 8

 10

 12

 14

B
an

dw
id

th
 (G

bp
s)

 MVAPICH2
 Open MPI
 FastMPJ (psmdev)

Message size (bytes)

Point-to-point Performance on IB-DDR (10 GbE)

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

1 4 16 64 256 1K

La
te

nc
y

(µ
s)

1K 4K 16K 64K 256K 1M 4M 16M
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

B
an

dw
id

th
 (G

bp
s)

MVAPICH2
Open MPI
FastMPJ (mxdev)

Message size (bytes)

Point-to-point Performance on MN (Myrinet)

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 4 16 64 256 1K

La
te

nc
y

(µ
s)

1K 4K 16K 64K 256K 1M 4M 16M
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8
 2

B
an

dw
id

th
 (G

bp
s)

 MPICH-MX
 FastMPJ (mxdev)

Message size (bytes)

Point-to-point Performance on Intel-SHM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 4 16 64 256 1K

La
te

nc
y

(µ
s)

1K 4K 16K 64K 256K 1M 4M 16M
 0

 10

 20

 30

 40

 50

 60

 70

 80

B
an

dw
id

th
 (G

bp
s)

 MVAPICH2
 Open MPI
 FastMPJ (smdev)

Message size (bytes)

Point-to-point Performance on AMD-SHM

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

 2.7

1 4 16 64 256 1K

La
te

nc
y

(µ
s)

1K 4K 16K 64K 256K 1M 4M 16M
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

B
an

dw
id

th
 (G

bp
s)

 MVAPICH2
 Open MPI
 FastMPJ (smdev)

Fig. 3 Point-to-point performance on InfiniBand QDR and DDR, 10 Gigabit Ethernet, Myrinet and shared memory

overhead for MPI libraries, which usually use only lock-
free algorithms. In addition, the high start-up latency
overhead imposed by the JVM in the initialization of
the copy is higher than the cost of the IPC extra copy
performed by MPI when transferring short messages.
As the overhead per byte transferred in MPI, which
uses two data transfers, is higher than the combined
overhead for smdev (thread synchronization plus JVM
start-up latency), the consequence is that up to a cer-

tain threshold point (message size < 2 KBytes), short
messages have less overhead for MPI, whereas FastMPJ
is the best performer for medium and large messages
due to the avoidance of extra copies in smdev. More-
over, the smdev device obtains the highest performance
(up to 71.2 Gbps) especially when messages are around
the L1 cache size (32 KBytes). When the message does
not fit in the L2 cache (256 KBytes), the performance
gap between smdev and MPI reduces, which evidences

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 Roberto R. Expósito et al.

the impact of the memory hierarchy on shared memory
performance, as no cache invalidation is performed in
this test, as mentioned before.

The performance results on the AMD-SHM test-
bed (bottom right graph) show a similar pattern. Thus,
MPI obtains lower start-up latencies than smdev, 0.88
µs and 1.53 µs, respectively, but relatively high com-
pared to the Intel-SHM ones owing to the lower com-
putational power of the AMD processor core. Regarding
large message performance, smdev again clearly outper-
forms MPI libraries, obtaining up to 41.6 Gbps whereas
MPI does not even reach 10 Gbps. This poor perfor-
mance is explained by the low memory access through-
put and the high copy penalty in this system. In ad-
dition, the peak bandwidth for smdev now is obtained
for 256 KBytes (the L2 cache size in this system), not
taking advantage of the messages fitting in the L1 cache
(64 KBytes), while in the Intel testbed the peak was for
32 KBytes (the L1 cache size for this system).

The observed point-to-point communication efficiency
of xxdev devices allows FastMPJ to provide low-latency
and high-bandwidth communications for MPJ parallel
applications, both on high-speed networks and high-
performance shared memory systems. Furthermore, the
obtained results are quite close to native MPI results,
even outperforming them in some scenarios (e.g., large
message performance in shared memory).

6.3 Collective Primitives Micro-benchmarking

Figure 4 presents the aggregated bandwidth for the
broadcast primitive, a representative data movement
operation, on the IB-QDR, IB-DDR, MN and AMD-
SHM testbeds using all the available cores in each sys-
tem. The aggregated bandwidth metric has been se-
lected as it takes into account the global amount of data
transferred (i.e., message size∗number of processes).

On the IB-QDR testbed (top left graph), the ibvdev
device obtains higher bandwidth than MVAPICH2 in
the message range [2 KBytes - 256 KBytes]. However,
Open MPI is the best performer, especially from 256
KBytes on. From this point, Open MPI dramatically in-
creases its performance, which suggests that it switchs
to a highly efficient algorithm for large messages (the
same behaviour has been observed in the remaining sce-
narios where Open MPI is also evaluated). The IB-DDR
testbed results (top right graph) show that psmdev is
the best performer up to 64-KByte messages, from then
MVAPICH2 performs slightly better up to 256 KBytes,
but then Open MPI becomes again the best large mes-
sage performer. Regarding the MN supercomputer (bot-
tom left graph), mxdev results are worse than the MPICH-
MX ones up to 256 KBytes, but it shows quite competi-

tive performance and scalability from this point on. Fi-
nally, on the AMD-SHM testbed (bottom right graph),
smdev generally outperforms MVAPICH2 from 2-KByte
messages and shows results quite close to Open MPI
up to 256 KBytes, although Open MPI benefits, once
again, from its better large message performance.

The presented results show that FastMPJ is gener-
ally able to obtain performance results for the broad-
cast operation similar to MPI libraries, even outper-
forming them in some message ranges. This supports
the fact that the MST-based algorithm implemented
in the FastMPJ collective library is very efficient (e.g.,
clearly outperforms MVAPICH on the AMD-SHM test-
bed) and highly scalable (e.g., large message perfor-
mance using 1024 cores on the MN supercomputer).
Therefore, these results confirm that FastMPJ is bridg-
ing the gap between MPJ and MPI collectives perfor-
mance. Nevertheless, there is still potential room for
improvement, especially for large message bandwidth,
which means that enhanced collective algorithms and
techniques need to be explored in order to achieve the
high performance shown by Open MPI.

6.4 HPC Kernel Performance Analysis

The performance analysis of representative HPC ker-
nels has been carried out using both strong (Section 6.4.1)
and weak (Section 6.4.2) scaling models. The metrics
considered for this evaluation using the NPB suite are
MOPS (Millions of Operations Per Second), which mea-
sures the operations performed in the benchmark (and
which differs from the CPU operations issued), and
their corresponding speedups and efficiencies for the
strong and weak scaling models, respectively.

6.4.1 Strong Scaling

In this first set of experiments, the problem size is
fixed using the NPB class C workload while the num-
ber of cores is increased, hence applying a strong scal-
ing model. These experiments have been conducted on
the IB-QDR and IB-DDR testbeds, selected as they are
the most representative distributed memory systems
under evaluation. Thus, both multi-core clusters pro-
vide an IB interconnection network from the major cur-
rent vendors (Mellanox and Intel/QLogic, respectively).
Furthermore, in recent years, IB has become the most
widely adopted networking technology in the TOP500
list. Additionally, both shared memory testbeds (Intel-
SHM and AMD-SHM) have also been included in this
analysis, as they provide with representative Intel- and
AMD-based processors, respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FastMPJ: a Scalable and Efficient Java Message-Passing Library 13

 0

 500

 1000

 1500

 2000

 2500

 3000

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

A
gg

re
ga

te
d

B
an

dw
id

th
 (G

bp
s)

Message size (bytes)

Broadcast Performance on IB-QDR (512 cores)
 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

A
gg

re
ga

te
d

B
an

dw
id

th
 (G

bp
s)

Message size (bytes)

Broadcast Performance on IB-DDR (128 cores)
 MVAPICH2
 Open MPI
 FastMPJ (psmdev)

 50

 100

 150

 200

 250

 300

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

A
gg

re
ga

te
d

B
an

dw
id

th
 (G

bp
s)

Message size (bytes)

Broadcast Performance on MN (1024 cores)
 MPICH-MX
 FastMPJ (mxdev)

 10

 20

 30

 40

 50

 60

 70

 80

 90

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

A
gg

re
ga

te
d

B
an

dw
id

th
 (G

bp
s)

Message size (bytes)

Broadcast Performance on AMD-SHM (48 cores)
 MVAPICH2
 Open MPI
 FastMPJ (smdev)

Fig. 4 Broadcast performance on InfiniBand QDR and DDR, Myrinet and shared memory

Figure 5 shows the NPB kernels performance on
the IB-QDR testbed in terms of MOPS (left graphs)
and its corresponding speedups (right graphs) using up
to 512 cores. Regarding CG, FastMPJ and MPI show
very similar results using up to 64 cores, as the scala-
bility of this kernel is strongly based on point-to-point
data transfers where FastMPJ and MPI achieve com-
parable performance, as has been observed before in
the point-to-point micro-benchmarking. From 64 cores,
ibvdev starts to suffer the current limitation of not
being able to take advantage of intra-node communi-
cations, which seems to aggravate when the number
of cores increases, as more communications have to be
performed accessing the NIC instead of using a shared
memory approach. This fact allows MPI libraries to ob-
tain the highest performance and speedup from 128
cores on, but FastMPJ results remain competitive at
least compared to MVAPICH2. FT results show that,
while FastMPJ performance is on average 25% lower
than MPI, the reported speedups are quite similar. In
this case, FastMPJ performance is limited by its poor
performance on a single core, as this kernel presents the
largest performance gap between Java and native im-
plementations (approximately 35% less performance).
In addition, the FT kernel makes an intensive use of

Alltoall collective operations, which has not prevented
FastMPJ scalability. The performance and scalability of
FastMPJ for the IS kernel is quite similar to Open MPI,
although the maximum observed speedups are signifi-
cantly low (below 60 on 256 cores for MVAPICH2).
The implementation of this kernel relies heavily on All-
toall and Allreduce primitives, whose overhead is the
main performance penalty, especially when using more
than 256 cores on this testbed (all evaluated middleware
drops in performance from this point). Finally, the MG
kernel is the least communication-intensive code under
evaluation; it shows relatively high speedups (above 300
on 512 cores) both for FastMPJ and MPI.

Figure 6 shows the NPB kernels performance on the
IB-DDR testbed using up to 128 cores. CG results on
this system show that FastMPJ is able to match the
performance and speedup of MVAPICH2. In this sce-
nario, all the middleware relies on the same underlying
low-level communication sub-system (the PSM library).
Thus, PSM implements the communication protocols
and ultimately determines the point-to-point perfor-
mance both for inter-node and intra-node communica-
tions, which prevents MPI libraries to use their own
shared memory protocol (PSM already provides effi-
cient shared memory support). Regarding the FT ker-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 Roberto R. Expósito et al.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

1 16 32 64 128 256 512

M
O

PS

Number of Cores

NPB CG Performance on IB-QDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

1 16 32 64 128 256 512
 0

 20

 40

 60

 80

 100

 120

 140

 160

Sp
ee

du
p

Number of Cores

NPB CG Scalability on IB-QDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

 0

 50000

 100000

 150000

 200000

 250000

1 16 32 64 128 256 512

M
O

PS

Number of Cores

NPB FT Performance on IB-QDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

1 16 32 64 128 256 512
 0

 50

 100

 150

 200

 250

Sp
ee

du
p

Number of Cores

NPB FT Scalability on IB-QDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 16 32 64 128 256 512

M
O

PS

Number of Cores

NPB IS Performance on IB-QDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

1 16 32 64 128 256 512
 0

 10

 20

 30

 40

 50

 60

Sp
ee

du
p

Number of Cores

NPB IS Scalability on IB-QDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

1 16 32 64 128 256 512

M
O

PS

Number of Cores

NPB MG Performance on IB-QDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

1 16 32 64 128 256 512
 0

 50

 100

 150

 200

 250

 300

 350

 400

Sp
ee

du
p

Number of Cores

NPB MG Scalability on IB-QDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

Fig. 5 NPB kernel results on the IB-QDR testbed (strong scaling)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FastMPJ: a Scalable and Efficient Java Message-Passing Library 15

 0

 5000

 10000

 15000

 20000

 25000

1 8 16 32 64 128

M
O

PS

Number of Cores

NPB CG Performance on IB-DDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (psmdev)

1 8 16 32 64 128
 0

 10

 20

 30

 40

 50

Sp
ee

du
p

Number of Cores

NPB CG Scalability on IB-DDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (psmdev)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1 8 16 32 64 128

M
O

PS

Number of Cores

NPB FT Performance on IB-DDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (psmdev)

1 8 16 32 64 128
 0

 10

 20

 30

 40

 50

 60

Sp
ee

du
p

Number of Cores

NPB FT Scalability on IB-DDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (psmdev)

 0

 500

 1000

 1500

 2000

 2500

1 8 16 32 64 128

M
O

PS

Number of Cores

NPB IS Performance on IB-DDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (psmdev)

1 8 16 32 64 128
 0

 5

 10

 15

 20

 25

 30

Sp
ee

du
p

Number of Cores

NPB IS Scalability on IB-DDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (psmdev)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

1 8 16 32 64 128

M
O

PS

Number of Cores

NPB MG Performance on IB-DDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (psmdev)

1 8 16 32 64 128
 0

 10

 20

 30

 40

 50

 60

 70

Sp
ee

du
p

Number of Cores

NPB MG Scalability on IB-DDR (Class C)

 MVAPICH2
 Open MPI
 FastMPJ (psmdev)

Fig. 6 NPB kernel results on the IB-DDR testbed (strong scaling)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 Roberto R. Expósito et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 4 8 16 32

M
O

PS

Number of Cores

NPB CG Performance on Intel-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

1 2 4 8 16 32
 0

 5

 10

 15

 20

 25

Sp
ee

du
p

Number of Cores

NPB CG Scalability on Intel-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

 0

 5000

 10000

 15000

 20000

 25000

1 2 4 8 16 32

M
O

PS

Number of Cores

NPB FT Performance on Intel-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

1 2 4 8 16 32
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22

Sp
ee

du
p

Number of Cores

NPB FT Scalability on Intel-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8 16 32

M
O

PS

Number of Cores

NPB IS Performance on Intel-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

1 2 4 8 16 32
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22

Sp
ee

du
p

Number of Cores

NPB IS Scalability on Intel-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

1 2 4 8 16 32

M
O

PS

Number of Cores

NPB MG Performance on Intel-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

1 2 4 8 16 32
 0

 2

 4

 6

 8

 10

 12

 14

Sp
ee

du
p

Number of Cores

NPB MG Scalability on Intel-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

Fig. 7 NPB kernel results on the Intel-SHM testbed (strong scaling)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FastMPJ: a Scalable and Efficient Java Message-Passing Library 17

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 4 8 16 32

M
O

PS

Number of Cores

NPB CG Performance on AMD-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

1 2 4 8 16 32
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18

Sp
ee

du
p

Number of Cores

NPB CG Scalability on AMD-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16 32

M
O

PS

Number of Cores

NPB FT Performance on AMD-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

1 2 4 8 16 32
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Sp
ee

du
p

Number of Cores

NPB FT Scalability on AMD-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

 0

 100

 200

 300

 400

 500

 600

 700

 800

1 2 4 8 16 32

M
O

PS

Number of Cores

NPB IS Performance on AMD-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

1 2 4 8 16 32
 0

 2

 4

 6

 8

 10

 12

 14

Sp
ee

du
p

Number of Cores

NPB IS Scalability on AMD-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

1 2 4 8 16 32

M
O

PS

Number of Cores

NPB MG Performance on AMD-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

1 2 4 8 16 32
 0

 5

 10

 15

 20

 25

Sp
ee

du
p

Number of Cores

NPB MG Scalability on AMD-SHM (Class C)

 MVAPICH2
 Open MPI
 OpenMP
 FastMPJ (smdev)

Fig. 8 NPB kernel results on the AMD-SHM testbed (strong scaling)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 Roberto R. Expósito et al.

nel, FastMPJ obtains the highest speedup when using
128 cores, although its performance is around 30% lower
than MVAPICH2 due to the poor Java serial perfor-
mance, as mentioned before. The IS kernel shows again
the poorest scalability (below 30 on 128 cores), where
FastMPJ is able to achieve the same performance as
MPI libraries using up to 64 cores. For MG, FastMPJ
shows again the highest speedups, especially on 128
cores, motivated by the different serial runtime of the
native and Java implementation (30% gap in this test-
bed). This also causes that FastMPJ obtains lower per-
formance than MPI on 128 cores (around 20%).

Regarding shared memory systems, Figures 7 and 8
show the NPB kernels performance on the Intel-SHM
and AMD-SHM testbeds, respectively, using up to 32
cores. The comparison on this scenario also includes
the results from the OpenMP implementation of the
NPB kernels. On the one hand, Intel-SHM results show
that OpenMP is generally the best performer, both in
terms of MOPS and scalability, except for the MG ker-
nel where FastMPJ obtains the highest speedup. In ad-
dition, FastMPJ is able to achieve better performance
than MPI for the CG kernel, taking advantage of the
higher bandwidth obtained by smdev, whereas for the
remaining kernels FastMPJ shows competitive results
compared to MPI using up to 16 cores. On the other
hand, results on the AMD-SHM testbed show that: (1)
FastMPJ is able to outperform all the middleware for
the CG kernel using up to 16 cores; (2) it obtains simi-
lar results as Open MPI for FT; and (3) it outperforms
OpenMP and gets comparable performance to MVA-
PICH2 for the IS and MG kernels, using up to 16 cores.
However, the AMD system generally obtains lower per-
formance than the Intel system for all the evaluated
middleware, due to its lower computational power per
core and poorer memory access throughput, which lim-
its the obtained speedups.

6.4.2 Weak Scaling

In the case of weak scaling, the problem size increases
with the number of cores so that the workload per core
remains constant. In our experiments, the NPB Class
C are solved using a quarter of the number of available
cores. Maintaining a fixed workload per core, results are
reported from a workload of Class C divided by 8 up to
4 times Class C. Thus, the problem size is scaled liner-
aly with the core count, as will be shown in the X-axis
of the graphs (see Figures 9 and 10). This set of exper-
iments has been conducted on the IB-QDR and Intel-
SHM testbeds, selected as representative distributed
and shared memory systems, respectively, which, ac-
cording to the previous strong scaling evaluation, have

shown the best performance results. In addition, as the
NPB weak scaling results were, in general, quite simi-
lar to the previous strong scaling counterparts, both in
terms of MOPS and speedups, only results for CG and
FT kernels are shown for clarity purposes.

NPB weak scaling results are shown in MOPS (as
in the case of strong scaling) together with their corre-
sponding scaling efficiencies, instead of speedups. Note
that the scaling efficiency metric has not been calcu-
lated as a percentage of the linear speedup, because usu-
ally can not be achieved. Instead, an upper bound on
performance has been estimated for each core count us-
ing the serial code with the corresponding problem size.
Thus, running multiple serial processes concurrently (as
many processes per node as the number of cores under
evaluation) takes into account the overhead associated
with several processes accessing some shared levels of
cache and memory bandwidth, which prevents obtain-
ing the linear speedup. As an example, the upper bound
performance for the FT kernel has achieved a speedup
of 458 on 512 cores on IB-QDR, and 21 on 32 cores
on Intel-SHM. Additionally, as there is no inter-process
communication involved in the estimation of this value,
it also represents an upper bound on performance if it
were possible to perform zero-latency communications.
Therefore, the efficiency of the corresponding parallel
code calculated as a percentage of this estimated up-
per bound value can serve as a reliable metric to mea-
sure the communication efficiency of message-passing
libraries. As there are no explicit communication rou-
tines in the OpenMP standard, NPB-OMP results are
not shown in the Intel-SHM testbed.

NPB results on the IB-QDR and Intel-SHM test-
beds are presented in Figures 9 and 10, respectively.
On the one hand, the CG kernel shows that Java can
obtain an upper bound performance quite similar to
Fortran when no communication is involved, especially
in the Intel-SHM testbed. In this scenario, FastMPJ is
able to almost match the performance of at least one
of the MPI libraries on both testbeds (MVAPICH2 on
IB-QDR and OpenMPI on Intel-SHM). Consequently,
the communication efficiency of FastMPJ is in tune
with MPI libraries, as shown in the right graphs, es-
pecially for the higher core counts. On the other hand,
the FT kernel results show that in this case the upper
bound performance for Java is limited by its poor per-
formance on a single core, which is on average around
60% of Fortran’s performance. The main performance
penalty is the lack of a high-performance numerical li-
brary in Java that would implement the Fourier trans-
form, which is the most computationally intensive part
of this kernel. However, while FastMPJ performance
is on average 20% lower than MPI for the higher core

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FastMPJ: a Scalable and Efficient Java Message-Passing Library 19

 0

 50000

 100000

 150000

 200000

 250000

16(C/8) 32(C/4) 64(C/2) 128(C) 256(2C) 512(4C)

M
O

PS

Number of Cores (Problem Size)

NPB CG Performance on IB-QDR

 Upper Bound (Fortran)
 Upper Bound (Java)
 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

16(C/8) 32(C/4) 64(C/2) 128(C) 256(2C) 512(4C)
 0

 20

 40

 60

 80

 100

%
 E

ffi
ci

en
cy

Number of Cores (Problem Size)

NPB CG Efficiency on IB-QDR

 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

 0

 100000

 200000

 300000

 400000

 500000

16(C/8) 32(C/4) 64(C/2) 128(C) 256(2C) 512(4C)

M
O

PS

Number of Cores (Problem Size)

NPB FT Performance on IB-QDR

 Upper Bound (Fortran)
 Upper Bound (Java)
 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

16(C/8) 32(C/4) 64(C/2) 128(C) 256(2C) 512(4C)
 0

 20

 40

 60

 80

 100

%
 E

ffi
ci

en
cy

Number of Cores (Problem Size)

NPB FT Efficiency on IB-QDR

 MVAPICH2
 Open MPI
 FastMPJ (ibvdev)

Fig. 9 NPB kernel results on the IB-QDR testbed (weak scaling)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

2(C/4) 4(C/2) 8(C) 16(2C) 32(4C)

M
O

PS

Number of Cores (Problem Size)

NPB CG Performance on Intel-SHM

 Upper Bound (Fortran)
 Upper Bound (Java)
 MVAPICH2
 Open MPI
 FastMPJ (smdev)

2(C/4) 4(C/2) 8(C) 16(2C) 32(4C)
 0

 20

 40

 60

 80

 100

%
 E

ffi
ci

en
cy

Number of Cores (Problem Size)

NPB CG Efficiency on Intel-SHM

 MVAPICH2
 Open MPI
 FastMPJ (smdev)

 0

 5000

 10000

 15000

 20000

 25000

 30000

2(C/4) 4(C/2) 8(C) 16(2C) 32(4C)

M
O

PS

Number of Cores (Problem Size)

NPB FT Performance on Intel-SHM

 Upper Bound (Fortran)
 Upper Bound (Java)
 MVAPICH2
 Open MPI
 FastMPJ (smdev)

2(C/4) 4(C/2) 8(C) 16(2C) 32(4C)
 0

 20

 40

 60

 80

 100

%
 E

ffi
ci

en
cy

Number of Cores (Problem Size)

NPB FT Efficiency on Intel-SHM

 MVAPICH2
 Open MPI
 FastMPJ (smdev)

Fig. 10 NPB kernel results on the Intel-SHM testbed (weak scaling)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 Roberto R. Expósito et al.

counts, the reported efficiencies are quite similar. Thus,
this fact confirms that the underlying communication
support implemented by FastMPJ is able to achieve
comparable performance to MPI.

To sum up, the NPB results using both scaling met-
rics have shown that FastMPJ is able to rival native
MPI performance and scalability, even outperforming
MPI in some scenarios (e.g., CG kernel on IB-DDR and
shared memory systems). This allows Java to take ad-
vantage of the use of a high number of cores, especially
on shared memory and hybrid shared/distributed mem-
ory architectures, widely extended nowadays.

7 Conclusions

The continuous increase in the number of cores per
system underscores the need for scalable parallel so-
lutions both in shared and distributed memory archi-
tectures, where the efficiency of the underlying commu-
nication middleware is fundamental. In fact, the scal-
ability of Java message-passing parallel applications de-
pends heavily on the communications performance. How-
ever, current Java communication middleware lacks ef-
ficient communication support, especially in the pres-
ence of high-speed cluster networks and shared memory
systems.

This paper has presented FastMPJ, a scalable and
efficient Java message-passing library for parallel com-
puting, which overcomes these performance constraints
by: (1) providing thread-based high-performance shared
memory communications which obtains sub-microsecond
start-up latencies and up to 71.2 Gbps bandwidth; (2)
enabling low-latency (less than 2 µs) and high band-
width communications (higher than 22 Gbps) on RDMA-
capable high-speed cluster networks (e.g., InfiniBand);
(3) including a scalable collective library with more
than 60 topology aware algorithms, which are automat-
ically selected at runtime; (4) avoiding Java data buffer-
ing overheads through efficient zero-copy protocols; and
(5) implementing the mpiJava 1.2 API, the most widely
extended MPI-like Java bindings, for a highly produc-
tive development of MPJ parallel applications.

FastMPJ has been evaluated comparatively with na-
tive MPI libraries on five representative testbeds: two
InfiniBand multi-core clusters, one Myrinet supercom-
puter, and two shared memory systems using both Intel-
and AMD-based processors. The comprehensive per-
formance evaluation has revealed that FastMPJ com-
munication primitives are quite competitive with MPI
results, both in terms of point-to-point and collective
operations performance. Thus, the use of our message-
passing library in communication-intensive HPC codes

allows Java to benefit from a more efficient communi-
cation support, taking advantage of the use of a high
number of cores and improving significantly the per-
formance and scalability of Java parallel applications.
In fact, the development of this efficient Java com-
munication middleware is definitely bridging the gap
between Java and native languages in HPC applica-
tions. Further information of this project is available at
http://torusware.com.

Acknowledgements This work has been funded by the Min-
istry of Education of Spain (FPU grant AP2010-4348), the
Ministry of Economy and Competitiviness (project TIN2010-
16735) and the Galician Government (projects CN2012/211
and GRC2013/055), partially supported by FEDER funds.
We thankfully acknowledge the computer resources, techni-
cal expertise and assistance provided by the Barcelona Su-
percomputing Center. We also gratefully thank the Advanced
School for Computing and Imaging (ASCI) and the Vrije Uni-
versity Amsterdam for providing access to the DAS-4 cluster.

References

1. Java Grande Forum. http://www.javagrande.org. Ac-
cessed: October 2013

2. MareNostrum supercomputer in TOP500 List. http://
www.top500.org/system/8242. Accessed: October 2013

3. MVAPICH: MPI over InfiniBand, 10GigE/iWARP and
RoCE. http://mvapich.cse.ohio-state.edu/. Ac-
cessed: October 2013

4. NAS Parallel Benchmarks. http://www.nas.nasa.gov/
publications/npb.html. Accessed: October 2013

5. Open MPI: Open Source High Performance Computing.
http://www.open-mpi.org/. Accessed: October 2013

6. Portable MPI Model Implementation over MX. https://
www.myricom.com/support/downloads/mx/mpich-mx.
html. Accessed: October 2013

7. Advanced School for Computing and Imaging (ASCI):
Distributed ASCI Supercomputer - Version 4 (DAS-4).
http://www.cs.vu.nl/das4/. Accessed: October 2013

8. Bailey, D. H., et al.: The NAS parallel benchmarks. In-
ternational Journal of High Performance Computing Ap-
plications 5(3), 63–73 (1991)

9. Baker, M., Carpenter, B., Fox, G., Ko, S.H., Lim, S.:
mpiJava: An object-oriented Java interface to MPI. In:
Proc. of 1st International Workshop on Java for Parallel
and Distributed Computing (IWJPDC’99), pp. 748–762.
San Juan, Puerto Rico (1999)

10. Baker, M., Carpenter, B., Shafi, A.: A pluggable archi-
tecture for high-performance Java messaging. IEEE Dis-
tributed Systems Online 6(10) (2005)

11. Baker, M., Carpenter, B., Shafi, A.: MPJ Express: To-
wards thread safe Java HPC. In: Proc. of 8th IEEE
International Conference on Cluster Computing (CLUS-
TER’06), pp. 1–10. Barcelona, Spain (2006)

12. Baker, M., Carpenter, B., Shafi, A.: A buffering layer to
support derived types and proprietary networks for Java
HPC. Scalable Computing Practice and Experience 8(4),
343–358 (2007)

13. Blount, B., Chatterjee, S.: An evaluation of Java for nu-
merical computing. Scientific Programming 7(2), 97–110
(1999)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

FastMPJ: a Scalable and Efficient Java Message-Passing Library 21

14. Bonachea, D., Dickens, P.M., Thakur, R.: High-
performance file I/O in Java: Existing approaches and
bulk I/O extensions. Concurrency and Computation:
Practice and Experience 13(8-9), 713–736 (2001)

15. Bornemann, M., van Nieuwpoort, R.V., Kielmann, T.:
MPJ/Ibis: A flexible and efficient message passing plat-
form for Java. In: Proc. of 12th European PVM/MPI
Users’ Group Meeting (EuroPVM/MPI’05), pp. 217–224.
Sorrento, Italy (2005)

16. Carpenter, B., Fox, G., Ko, S.H., Lim, S.: mpiJava 1.2:
API specification. http://www.hpjava.org/reports/
mpiJava-spec/mpiJava-spec/mpiJava-spec.html. Ac-
cessed: October 2013

17. Carpenter, B., Getov, V., Judd, G., Skjellum, A., Fox,
G.: MPJ: MPI-like message passing for Java. Concur-
rency and Computation: Practice and Experience 12(11),
1019–1038 (2000)

18. Chan, E., Heimlich, M., Purkayastha, A., van de Geijn,
R.A.: Collective communication: Theory, practice, and
experience. Concurrency and Computation: Practice and
Experience 19(13), 1749–1783 (2007)

19. Dickens, P.M., Thakur, R.: An evaluation of Java’s I/O
capabilities for high-performance computing. In: Proc. of
1st ACM Java Grande Conference (JAVA’00), pp. 26–35.
San Francisco, CA, USA (2000)

20. Expósito, R.R., Taboada, G.L., Touriño, J., Doallo, R.:
Design of scalable Java message-passing communications
over InfiniBand. Journal of Supercomputing 61(1), 141–
165 (2012)

21. Goglin, B.: High throughput intra-node MPI communica-
tion with Open-MX. In: Proc. of 17th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-
Based Processing (PDP’09), pp. 173–180. Weimar, Ger-
many (2009)

22. Goglin, B.: High-performance message passing over
generic Ethernet hardware with Open-MX. Parallel Com-
puting 37(2), 85–100 (2011)

23. Hongwei, Z., Wan, H., Jizhong, H., Jin, H., Lisheng, Z.:
A performance study of Java communication stacks over
InfiniBand and Gigabit Ethernet. In: Proc. 4th IFIP In-
ternational Conference on Network and Parallel Comput-
ing - Workshops (NPC’07), pp. 602–607. Dalian, China
(2007)

24. IBTA: The InfiniBand Trade Association. http://www.
infinibandta.org/. Accessed: October 2013

25. IETF RFC 4392: IP over InfiniBand (IPoIB) Architec-
ture. http://www.ietf.org/rfc/rfc4392.txt.pdf. Ac-
cessed: October 2013

26. Mallón, D.A., Taboada, G.L., Touriño, J., Doallo, R.:
NPB-MPJ: NAS parallel benchmarks implementation for
message-passing in Java. In: Proc. of 17th Euromi-
cro International Conference on Parallel, Distributed
and Network-based Processing (PDP’09), pp. 181–190.
Weimar, Germany (2009)

27. Message Passing Interface Forum: MPI: A Message
Passing Interface standard. http://www.mcs.anl.gov/
research/projects/mpi/ (1995). Accessed: October
2013

28. Myrinet Express (MX): A high performance, low-level,
message-passing interface for Myrinet. Version 1.2, Octo-
ber 2006

29. van Nieuwpoort, R.V., Maassen, J., Wrzesinska, G., Hof-
man, R., Jacobs, C., Kielmann, T., Bal, H.E.: Ibis: A
flexible and efficient Java-based Grid programming envi-
ronment. Concurrency and Computation: Practice and
Experience 17(7-8), 1079–1107 (2005)

30. OpenFabrics Alliance: http://www.openfabrics.org/.
Accessed: October 2013

31. Ramos, S., Taboada, G.L., Expósito, R.R., Touriño, J.,
Doallo, R.: Design of scalable Java communication mid-
dleware for multi-core systems. The Computer Journal
56(2), 214–228 (2013)

32. Saini, S. et al.: Performance evaluation of supercomputers
using HPCC and IMB benchmarks. Journal of Computer
and System Sciences 74(6), 965–982 (2008)

33. Shafi, A., Carpenter, B., Baker, M., Hussain, A.: A com-
parative study of Java and C performance in two large-
scale parallel applications. Concurrency and Computa-
tion: Practice and Experience 21(15), 1882–1906 (2009)

34. Shafi, A., Manzoor, J., Hameed, K., Carpenter, B., Baker,
M.: Multicore-enabling the MPJ Express messaging li-
brary. In: Proc. of 8th International Conference on
the Principles and Practice of Programming in Java
(PPPJ’10), pp. 49–58. Vienna, Austria (2010)

35. Suganuma, T., Ogasawara, T., Takeuchi, M., Yasue, T.,
Kawahito, M., Ishizaki, K., Komatsu, H., Nakatani, T.:
Overview of the IBM Java Just-in-Time compiler. IBM
Systems Journal 39(1), 175–193 (2000)

36. Taboada, G.L., Ramos, S., Expósito, R.R., Touriño, J.,
Doallo, R.: Java in the high performance computing
arena: Research, practice and experience. Science of
Computer Programming 78(5), 425–444 (2013)

37. Taboada, G.L., Touriño, J., Doallo, R.: Java Fast Sockets:
Enabling high-speed Java communications on high per-
formance clusters. Computer Communications 31(17),
4049–4059 (2008)

38. Taboada, G.L., Touriño, J., Doallo, R.: F-MPJ: Scalable
Java message-passing communications on parallel sys-
tems. Journal of Supercomputing 60(1), 117–140 (2012)

39. Taboada, G.L., Touriño, J., Doallo, R., Shafi, A., Baker,
M., Carpenter, B.: Device level communication libraries
for high-performance computing in Java. Concur-
rency and Computation: Practice and Experience 23(18),
2382–2403 (2011)

40. Thiruvathukal, G.K., Dickens, P.M., Bhatti, S.: Java on
networks of workstations (JavaNOW): A parallel com-
puting framework inspired by Linda and the Message
Passing Interface (MPI). Concurrency and Computation:
Practice and Experience 12(11), 1093–1116 (2000)

41. TOP500 Org.: Top 500 Supercomputer Sites. http://
www.top500.org/. Accessed: October 2013

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

22 Roberto R. Expósito et al.

Roberto R. Expósito received
the B.S. (2010) and M.S. (2011)
degrees in Computer Science from
the University of A Coruña, Spain.
Currently he is a Ph.D. student
in the Department of Electronics
and Systems at the University of A
Coruña. His research interests are
in the area of High Performance
Computing (HPC), focused on
message-passing communications
on high-speed cluster networks and
cluster/cloud computing.

Sabela Ramos received the B.S.
(2009), M.S. (2010) and Ph.D.
(2013) degrees in Computer Sci-
ence from the University of A
Coruña, Spain. Currently she
is a Teaching Assistant in the
Department of Electronics and
Systems at the University of A
Coruña. Her research interests are
in the area of High Performance
Computing (HPC), focused on
message-passing communications
on multicore architectures and
cluster/cloud computing. Her
homepage is http://gac.udc.es/

~sramos.

Guillermo L. Taboada received
the B.S. (2002), M.S. (2004) and
Ph.D. (2009) degrees in Computer
Science from the University of A
Coruña, Spain. Currently he is an
Associate Professor in the Depart-
ment of Electronics and Systems
at the University of A Coruña. His
main research interest is in the area
of High Performance Computing
(HPC), focused on high-speed
networks, programming languages
for HPC, cluster/cloud computing
and, in general, middleware for
HPC. He is coauthor of more than
25 technical papers on these topics.
His homepage is http://gac.udc.
es/~gltaboada.

Juan Touriño received the B.S.
(1993), M.S. (1993) and Ph.D.
(1998) degrees in Computer Sci-
ence from the University of A
Coruña, Spain. In 1993 he joined
the Department of Electronics and
Systems at the University of A
Coruña, where he is currently a Full
Professor of computer engineer-
ing. He has extensively published
in the areas of compilers and
programming languages for High
Performance Computing (HPC),
and parallel and distributed com-
puting. He is coauthor of more
than 120 technical papers on these
topics. His homepage is http://
gac.udc.es/~juan.

Ramón Doallo received the B.S.
(1987), M.S. (1987) and Ph.D.
(1992) degrees in Physics from the
University of Santiago de Com-
postela, Spain. In 1990 he joined
the Department of Electronics and
Systems at the University of A
Coruña, Spain, where he became
a Full Professor in 1999. He has
extensively published in the areas
of computer architecture, and
parallel and distributed computing.
He is coauthor of more than 140
technical papers on these topics.
His homepage is http://gac.udc.
es/~doallo.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

